

C

Consiglio Nazionale delle Ricerche

Evaluating Load Balancing in Peer-to-Peer
Resource Sharing Algorithms for Wireless

Mesh Networks

CC.. CCaannaallii,, MM.. EE.. RReennddaa,, PP.. SSaannttii

IIT TR-08/2008

Technical report

Maggio 2008

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluating Load Balancing in Peer-to-Peer Resource Sharing Algorithms
for Wireless Mesh Networks

Claudia Canali
IIT-CNR

Pisa, ITALY

M. Elena Renda
IIT-CNR

Pisa, ITALY

Paolo Santi
IIT-CNR

Pisa, ITALY

Abstract
Wireless mesh networks are a promising area for the

deployment of new wireless communication and network-
ing technologies. In this paper, we address the problem
of enabling effective peer-to-peer resource sharing in this
type of networks. In particular, we consider the well-known
Chord protocol for resource sharing in wired networks and
the recently proposed MeshChord specialization for wire-
less mesh networks, and compare their performance under
various network settings for what concerns total generated
traffic and load balancing. Both iterative and recursive key
lookup implementation in Chord/MeshChord are consid-
ered in our extensive performance evaluation. The results
confirm superiority of MeshChord with respect to Chord,
and show that recursive key lookup is to be preferred when
considering communication overhead, while similar degree
of load unbalancing is observed. However, recursive lookup
implementation reduces the efficacy of MeshChord cross-
layer design with respect to the original Chord algorithm.
MeshChord has also the advantage of reducing load unbal-
ancing with respect to Chord, although a moderate degree
of load unbalancing is still observed, leaving room for fur-
ther improvement of the MeshChord design.
1 Introduction

Wireless mesh networks are a promising technology for
providing low-cost Internet access to wide areas (entire
cities or rural areas), and to enable the creation of new type
of applications and services for clients accessing the net-
work. Among innovative applications enabled by mesh net-
working, we mention wireless community networks (see,
e.g., the Seattle Wireless initiative [14]), in which users in
a community (neighborhood, city, rural area, etc.) spon-
taneously decide to share their communication facilities
(wireless access points) and form a wireless multi-hop net-
work to be used by community members. Wireless com-
munity networks can be used to share the cost of broadband
Internet access, but also to realize innovative services for
the community, such as sharing of community-related re-
sources, live broadcast of local events, distributed backup
systems, and so on.

As the above mentioned innovative applications suggest,
peer-to-peer resource sharing is expected to play an im-
portant role in forthcoming wireless networks based on the
mesh technology. Hence, designing an efficient overlay net-
work for enabling effective resource sharing can be consid-
ered as a fundamental middleware technology for mesh net-
works.

With respect to other types of wireless networks (e.g.,
MANETs), the availability of a wireless backbone of sta-
tionary routers in mesh networks lessen the well-known dif-
ficulties of enabling large-scale, peer-to-peer resource shar-
ing. Recently, we have proposed MESHCHORD [3], a spe-
cialization for mesh networks of the well-known Chord al-
gorithm [15], which exploits i) the availability of a wireless
infrastructure and ii) the 1-hop broadcast nature of wireless
communications, to realize a) location-aware ID assign-
ment to nodes, and b) implementation of a cross-layering
technique that bridges the MAC to the middleware layer.

MESHCHORD has been shown to have superior perfor-
mance with respect to Chord, achieving a reduction of the
total number of network-level packets exchanged to main-
tain the overlay structure and resolve queries in the or-
der of as much as 40%. Yet, important issues are left
unaddressed in [3], such as whether the load induced by
Chord/MESHCHORD is evenly distributed among the wire-
less routers composing the mesh network. Load unbalanc-
ing is a major cause of performance degradation in mesh
networks, as clients connected to relatively highly loaded
routers experience a much lower QoS than those connected
to relatively lightly loaded ones. Hence, evaluating the to-
tal number of exchanged packets gives only a partial view
of the expected Chord/MESHCHORD performance, view
which should be complemented with a careful evaluation
of load distribution. Such an evaluation is the main contri-
bution of this paper.

The second contribution of this paper is considering an-
other method for resolving queries (key lookup operation)
with respect to the one considered in [3]. More specifi-
cally, while in [3] we considered iterative query resolution,
in which the intermediate results of a query are returned to

the node which issued the query, in this paper we consider
also the potentially more efficient recursive query resolu-
tion, in which intermediate results of a query are directly
forwarded to the next node in charge of query resolution
(details in Section 3). Since the query resolution primitive
is invoked not only to resolve client-generated queries, but
also to proactively maintain the overlay structure, a consid-
erable reduction in packet overhead with respect to the case
of iterative query resolution is expected.

The results presented in this paper show that MESH-
CHORD with recursive lookup implementation is the best
solution in terms of total network-level traffic, and that
MESHCHORD in both iterative and recursive case achieves
also a better load balancing with respect to the basic Chord
design. Nevertheless, a moderate degree of load unbalanc-
ing is still observed, especially in case of random router
distribution, which might lead to the creation of hot-spots
in large-scale mesh deployments. This calls for further im-
provements of the MESHCHORD design.

2 Related work and contribution
Recent papers have addressed the problem of enabling

P2P resource sharing in mobile ad hoc networks (MANETs)
[5, 8, 11, 13, 16]. A standard technique used to improve
performance of P2P algorithms when used in wireless net-
works is cross-layering, i.e., taking advantage of informa-
tion delivered from lower layer protocols (typically, the net-
work layer) when constructing the logical links between
peers. Approaches based on this idea are [4, 9, 10]. Al-
though a careful design of the overlay improves the effi-
ciency of P2P systems for MANETs, the combination of
node mobility, lack of infrastructure, and unreliable com-
munication medium has hindered the application of P2P ap-
proaches in medium to large size ad hoc networks.

Only a few recent papers have explored how P2P ap-
proaches can be applied to wireless mesh networks. In [1],
the authors evaluate the gain that can be obtained from us-
ing network coding when running file sharing applications
in wireless mesh networks, and conclude that some gain can
actually be achieved, although not as much as in a wired net-
work. In [6], some of the authors of this paper introduced
a two-tier architecture for file sharing in wireless mesh net-
works: the lower tier is composed of mobile mesh clients,
which provide the content (files/resources to share) to the
P2P overlay; the upper tier is composed of stationary mesh
routers, and implements a distributed hash table (DHT) for
locating resources within the network.

The work that is more closely related to this paper is
[3], in which we investigated the performance of the Chord
P2P algorithm in typical wireless mesh network scenarios
through extensive, packet-level simulations. Furthermore,
we proposed the MESHCHORD specialization of the basic
Chord design, which, by explicitly accounting for peculiar
features of mesh networks, reduces total network-level traf-

fic of as much as 40% with respect to Chord.
The investigation presented in this paper complements

our previous work [3] in many respects. While the emphasis
in [3] was on evaluating the total network-level traffic un-
der varying network conditions, in this paper we consider
how the total traffic generated by Chord/MESHCHORD is
distributed among the wireless routers. The motivation for
this study is that load unbalancing is a major cause of per-
formance degradation in mesh networks and, say, a proto-
col generating a perfectly balanced load might be prefer-
able to another protocol which generates a relatively lower
total, but highly unbalanced, traffic load. Although Chord
has been designed to balance the load (with high probabil-
ity) among nodes at the overlay level, whether the load is
also well balanced when overlay links are mapped to (pos-
sibly several) physical links of a wireless mesh network is
an important open issue. Also, the effects of the specialized
Chord design for mesh networks (MESHCHORD) on load
balancing are still unexplored. To the best of our knowl-
edge, the one presented in this paper is the first study of
load balancing in peer-to-peer resource sharing algorithms
for wireless mesh networks (and for wireless multi-hop net-
works in general).

Another major difference between this paper and our
previous work [3] is the implementation of two alternative
techniques (both part of the original Chord design) for key
lookup implementation: iterative (the technique used in [3])
and recursive. Since the number of overlay-level packets
generated to recursively resolve a query is at most as high
as in the case of iterative query resolution in the basic Chord
design, we expect a reduction also in terms of network-level
packets. However, recursive query resolution impairs effi-
ciency of MESHCHORD cross-layer mechanism (see Sec-
tion 3 for details), and whether recursive query resolution
is advantageous in combination with MESHCHORD is not
clear.
3 Chord and MESHCHORD
3.1 Network architecture

Similarly to [3, 6], we assume a two-tier architecture
for file/resource sharing: the lower tier of the architecture
is composed of (possibly) mobile mesh clients (clients for
short), which provide the content to be shared in the P2P
system; the upper tier of the architecture is composed of sta-
tionary mesh routers (routers for short), which implement a
DHT used to locate file/resources within the network. Un-
less otherwise stated, in the following we use the term peer
to refer to a router forming the DHT at the upper tier of the
architecture.

We assume routers are stationary, but they can be
switched on/off during network lifetime. When a client u
wants to find a certain resource, it sends to its responsi-
ble router a (a mesh router within its transmission range)
a FindKey packet, containing the key (unique ID) of the re-

0

P21

range(p)

peer ID

resource key

P12

P7

P31

P40

P49

p

P60

Finger Table (P21)
P21+1 P31
P21+2 P31
P21+4 P31
P21+8 P31
P21+16 P40
P21+32 P60lookup(45)

Figure 1. Basic Chord operations (m = 6). It-
erative (solid) and recursive (dashed) lookup
implementation.

source to find (see next section for details on key assign-
ment to router/resources). The responsible router forwards
the resource request in the DHT overlay according to the
rules specified by the Chord protocol (see below), until the
resource query can be answered. In case of successful query
resolution, a packet containing the IP address of the client
holding the requested file/resource is returned to client u
through its responsible router a. For details on the rules for
responsible router selection, on the procedures needed to
deal with client mobility, and to add/remove resources from
the distributed index, see [6].
3.2 Basic Chord operations

Chord [15] is based on the idea of mapping both peer
(mesh router) IDs and resource IDs (keys) into the same ID
space, namely the unit ring [0, 1]. Each key resides on the
peer with the smallest ID larger than the key (see Figure
1), i.e., peer p manages keys comprised between its own
ID and the ID of the predecessor of p in the unit ring (de-
noted range(p)). Chord maps peer and resource IDs into
the unit ring using a hashing function, named Sha1, which
has the property of uniformly distributing IDs in [0, 1]. In-
deed, IDs in Chord are represented through m-bit numbers,
i.e., at most 2m distinct (peer or resource) IDs are present
in the Chord system (we set m = 24 in this study).

The main operation implemented by Chord is the
lookup(x) operation, which can be invoked at any peer to
find the IP address of the peer with ID= x if x is a peer ID,
or the IP address of the peer responsible of key x in case x
is a resource ID. lookup operations are used both for query
resolution and for overlay maintenance.

To speed up lookup operations, every peer maintains a
table of up to m distinct peers (fingers). The i-th finger of
peer j, with 1 ≤ i ≤ m, is the peer which has the smaller
ID larger than j+2i−1. Note that some of the fingers (espe-
cially for low values of i) can actually coincide (see Figure
1). In order to facilitate join/leave operations, each peer

maintains also the ID of its predecessor in the Chord ring
(peer P12 for peer P21 in Figure 1).

The lookup(x) operation can be implemented in an it-
erative or recursive way. In the iterative implementation,
when a lookup(x) operation is invoked at peer p and the op-
eration cannot be resolved locally (because x is not within
range(p)), a packet is sent to the peer p′ with largest ID< x
in the finger table of node p. If p′ cannot resolve the lookup
operation, it replies to peer p with a packet containing the
ID of the peer p′′ with largest ID < x in its own finger ta-
ble. Peer p then forwards the request to peer p′′, and so on,
until the lookup operation can be resolved (in at most m
steps). Referring to Figure 1, a lookup operation for key
45 issued at node P21 is first forwarded to node P40, and
then to node P49, which is responsible for the key and can
resolve the lookup. In the recursive implementation, the in-
termediate response to a lookup operation (e.g., the ID of
the peer p′′ with largest ID < x in p′’s finger table) is not
sent to the peer p which first invoked the lookup(x) opera-
tion, but it is directly forwarded to the next node in charge
of lookup(x) resolution. Referring again to Figure 1, peer
P40 does not return the ID of the next peer to interrogate
(P49) to peer P21, but it directly forwards the lookup(x)
operation to peer P49. As the example of Figure 1 shows,
recursive lookup implementation is more efficient in terms
of overlay-level packet overhead with respect to the iterative
implementation.

Chord also includes procedures to deal with dynamic
join/leaves of peers in the systems, and to periodically up-
dates peer finger tables. However, in this study we have
considered only static network conditions, in which peers
initially join the network, and remain active throughout the
entire simulation time. This choice has been done to study
load balancing induced by Chord/MESHCHORD in isola-
tion, excluding possible effects due to dynamic join/leave
of peers. For details on procedures for dealing with dy-
namic join/leave of peers, and their effects on total packet
overhead, the reader is referred to [3].

3.3 MESHCHORD

Two modifications are implemented in MESHCHORD
with respect to the basic Chord design: a) location-
aware peer-ID assignment, and b) MAC-middleware cross-
layering.

For what concerns a), the idea is to exploit locality, and
to assign peers which are close in the physical network with
close-by IDs in the unit ring. This choice is motivated by the
observation that, according to Chord specifications, most of
the packets are exchanged between a peer and its succes-
sor/predecessor in the unit ring.

More specifically, location-awareness is implemented by
assigning IDs to peers according to the following function

(see [6]):

ID(x, y) =

x∆
s2 + b y

∆c ·
∆
s ifb y

∆c is even

(s−x)∆
s2 + b y

∆c ·
∆
s ifb y

∆c is odd
,

where ID(x, y) is the ID of a peer with coordinates
(x, y) ∈ [0, s]2, s is the side of the deployment region, and
∆ is a parameter which defines the ‘granularity’ of location-
awareness: the lower the value of ∆, the closer the peers
must be in the physical network in order to be mapped into
close-by regions of the unit ring1.

For what concerns b), the idea is to use 1-hop broadcast
nature of wireless communications to speed up lookup op-
erations. More specifically, whenever a peer u receives a
packet at the MAC layer, u sends it up to the middleware
layer for further processing, even if the packet was not des-
tined to u. If the packet does not contain a lookup request,
it is discarded. Otherwise, u checks whether it may resolve
the lookup(x) operation. This occurs if x is comprised be-
tween u’s ID and the ID of the predecessor of u in the unit
ring. In this case, u sends a packet containing its own ID
to the peer that originally invoked the lookup(x) operation
(called source peer in the following). It is important to note
that, since the lookup primitive is invoked for both query
resolution and overlay maintenance, cross-layering may im-
prove the performance of both these operations.

It is important to observe that recursive lookup imple-
mentation challenges the above described cross-layering
technique, due to the following reason. Suppose peer p
is the source peer, and that resolving a lookup(x) opera-
tion initiated by p involves forwarding the lookup(x) prim-
itive to peers p1, p2, . . . , pk, for some k ≤ m. Suppose
that, on the way to, say, peer p1, the overlay packet is in-
tercepted by peer p′, which is the responsible peer of key
x. Then, our cross-layering technique ensures that peer p′

sends a packet with the result of the lookup(x) operation
directly to the source peer p, with the advantage of consid-
erably speeding up the lookup operation. In case of iterative
lookup(x) implementation, when the source peer receives
the first intermediate lookup result from peer p1 (indicating
that peer p2 is the next peer to contact), it realizes that it al-
ready knows the result of the lookup(x) operation. So, the
source peer p can abort the rest of the lookup(x) operation,
and no further overlay-level packets are sent. However, if
lookup is implemented recursively, the source peer p does
not receive intermediate lookup results, and aborting the
ongoing lookup(x) operation is not immediate. Two possi-
ble choices can be considered here: i) lookup chasing, i.e.,
the source peer sends an abort(x) packet on the overlay,

1Note that the above location-aware ID assignment function requires
that peers are aware of their location, which can be easily accomplished in
wireless mesh networks through, e.g., the use of GPS receivers.

whose purpose is intercepting the ongoing lookup(x) oper-
ation and killing it; and ii) leaving the lookup(x) operation
alive, and ignore the final result when eventually received
at the source peer (which already received the correct result
from the intercepting peer p′). Note that which one of i)
and ii) is more efficient in terms of exchanged overlay-level
packets is not clear, since the number of packets exchanged
to chase and abort an ongoing lookup operation might actu-
ally be higher than the useless packets exchanged to finish
an already resolved lookup. In view of the above, and with
the goal of keeping MESHCHORD design reasonably sim-
ple, we have opted for option ii).

4 Performance evaluation
We have evaluated the performance of Chord and MESH-

CHORD on mesh networks using GTNetS, a packet-level
network simulator developed at Georgia Institute of Tech-
nology [12].

We considered two network topologies in simulations:
– grid: n peers are located in a square, equally-spaced grid;
peer separation is 100m;
– random uniform: n peers are distributed uniformly at ran-
dom in a square area of side s, where s =

√
n · 100m.

Grid deployments are a representative case of planned
mesh deployment, while random uniform distribution ac-
counts for unplanned mesh deployments (e.g., sponta-
neously created wireless community networks).

In both cases, we assume peers are equipped with
802.11b radios, the link data rate is 11Mbs, and radio signal
obeys free space propagation. For routing packets between
far-away peers, we used DSR [7].

A certain number of queries is generated during
Chord/MESHCHORD lifetime. Queries are generated uni-
formly over time (every tquery seconds); when a new query
is generated, the peer from which the query starts is cho-
sen uniformly at random among the peers, and the ID of the
key k to be searched is chosen uniformly at random in [0,1]
(expressed as an m-bits binary number).

In order to better understand load balancing behavior,
we have run separate set of experiments with and with-
out client-generated queries. In case of no client-generated
queries, what is evaluated is the packet overhead and load
distribution for building and maintaing (e.g., updating fin-
ger tables) the overlay network. In both sets of exper-
iments, the simulated time interval was 1200sec, where
the first 200sec were used to incrementally add peers to
Chord/MESHCHORD, and to stabilize the overlay. In case
of simulation with client-generated queries, these are gen-
erated after this initial 200sec stabilization period, with an
average rate of n queries every 30sec. The simulation re-
sults presented in the following are averaged over 10 runs.

The performance of the iterative and recursive version of
Chord/MESHCHORD considered in our simulations is ex-
pressed in terms of:

a)
 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 20 40 60 80 100 120 140 160

Nu
m

be
r o

f o
ve

rla
y

pa
ck

et
s

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

b)
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 20 40 60 80 100 120 140 160

Nu
m

be
r o

f p
ac

ke
ts

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

c)
 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140 160

Nu
m

be
r o

f o
ve

rla
y

pa
ck

et
s

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

d)
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 20 40 60 80 100 120 140 160

Nu
m

be
r o

f p
ac

ke
ts

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

e)
 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140 160
M

ax
/m

in

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

f)
 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140 160

M
ax

/m
in

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

g)
 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140 160

M
ax

/m
in

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

h)
 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 40 60 80 100 120 140 160

M
ax

/m
in

Number of nodes

Chord no req
MeshChord no req

Chord with req
MeshChord with req

Figure 2. Total number of exchanged overlay-level and network-level packets for different values of
n and grid topology: iterative (a)-b)) and recursive (c)-d)) lookup implementation. max/min ratio for
overlay-level and network-level traffic, for different values of n and grid topology: iterative (e)-f)) and
recursive (g)-h)) lookup implementation.

– packet overhead: total number of network-level packets
exchanged by Chord/MESHCHORD to maintain the over-
lay, and to resolve client-generated queries;
– overlay packet overhead: total number of overlay-level
packets exchanged by Chord/MESHCHORD to maintain the
overlay, and to resolve client-generated queries;
– load balancing: we use two metrics to evaluate load bal-
ancing. The first metric is the well-known balance index
(see, e.g., [2]), which is formally defined as follows: let Li

denote the load observed at the i-th peer, 1 ≤ i ≤ n. The
balance index β is defined as

β =
(
∑n

i=1 Li)
2

n ·
∑n

i=1 L
2
i

.

The balance index is defined so that if the load is equally di-
vided amongst the peers, we have β = 1; conversely, with
highly unbalanced network load we have β ≈ 1/n. Since it
is known that relatively low values of β (say, below 0.8) oc-
curs only if the load is extremely unbalanced, we have used
also a more intuitive index of load balancing, namely the ra-
tio max/min between the load observed at the maximally
loaded peer over that observed at the minimally loaded one.

Let us first consider the total number of overlay- and
network-level packets for increasing values of network size,
in case of iterative (Figure 2-a),b)) and recursive (Figure 2-
c),d)) lookup implementation. In the iterative case, while

the number of exchanged overlay-level packets with MESH-
CHORD is only marginally smaller than with Chord, we
have a considerable reduction in number of network-level
packets (in the order of 30%). In the recursive case the sit-
uation is different: the number of overlay-level packets ex-
changed with MESHCHORD is bigger than with Chord, ow-
ing to the inefficiency of the cross-layering mechanism de-
scribed in Section 3. However, thanks to the better matching
between overlay and physical links achieved by location-
aware ID assignment, MESHCHORD is considerably supe-
rior to Chord in terms of number of exchanged network-
level packets (percentage reduction in the order of 35%).
When comparing the relative Chord/MESHCHORD perfor-
mance in the iterative and recursive case, we observe as
expected a better efficiency at the overlay level of the re-
cursive technique (only marginal improvements in case of
MESHCHORD, owing to inefficiency in cross-layering), and
a considerable decrease in number of network-level packets
for both Chord (in the order of 24%) and MESHCHORD (in
the order of 27%) in case of recursive lookup implemen-
tation. Thus, MESHCHORD with recursive lookup imple-
mentation, despite some inherent inefficiency in the cross-
layering mechanism, is the best solution for what concerns
total network-level traffic.

Let us now consider how well the overlay-level and,

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

Y-
co

or
di

na
te

X-coordinate

< 2000
2000-3000

3000-4000
4000-5000

5000-6000
6000-7000

Figure 3. Load distribution of network-level
packets in a sample instance with n = 36
nodes.

most importantly, network-level traffic is distributed among
the network nodes. Figures 2-e), f) ,g), h) report the
max/min ratio of both overlay- and network-level traffic,
in case of both iterative and recursive lookup implemen-
tation. We observe an increasing trend of load unbalanc-
ing with n, which indicates that the considered algorithms
might actually lead to creation of hot-spots in large-scale
mesh deployments. We also observe that the difference
between iterative and recursive lookup implementation in
terms of load balancing is scarcely significant. The better
overlay-level load balancing of MESHCHORD w.r.t. Chord
is due to the fact that Chord was originally designed to bal-
ance overlay traffic under the assumption that peer IDs are
evenly distributed in ring, which is actually the case with
location-aware ID assignment on a grid topology (MESH-
CHORD). It is also worth observing the relatively worse
load balancing which is achieved by both algorithms in
terms of network-level traffic, which is due to the fact that
many network-level paths tend to cross the center of the de-
ployment region. This effect can clearly be seen in Figure
3, which refers to a sample scenario with n = 36 nodes
(Chord with recursive lookup). Overall, MESHCHORD pro-
vides better performance than Chord also in terms of load
balancing, although a relatively moderate degree of load un-
balancing is still observed (max/min ratio in the order of
3 for n > 120).

The above described trends are confirmed also by the
load balance index β (plots not reported due to lack of
space), which varied between 0.94 and 0.99 at the overlay-
and between 0.95 and 0.97 at the network-level for Chord,
and between 0.993 and 0.999 at the overlay- and between
0.965 and 0.98 at the network-level for MESHCHORD.

The results for the case of random peer deployment,
which are not shown due to lack of space, have shown sim-
ilar trends for what concerns the total network-level traffic.
More specifically, MESHCHORD reduced total network-
level traffic with respect to Chord in the order of 35% with
iterative lookup implementation, and in the order of 42%
with recursive lookup implementation. Recursive lookup

implementation resulted again the best design choice, al-
lowing a reduction of total network-level traffic w.r.t. iter-
ative implementation in the order of 16% with Chord, and
in the order of 45% with MESHCHORD. For what concerns
load balancing, simulation results show that load is much
less balanced than in the case of grid peer deployment. In
particular, themax/min ratio (β) is as high (low) as 5 (0.9)
for overlay-level traffic, and as high (low) as 19 (0.67) for
network-level traffic. These values refer to Chord with ei-
ther iterative or recursive lookup implementation. MESH-
CHORD achieves a better load balancing than Chord, yet
the max/min ratio (β) is much higher (lower) than in the
case of grid peer deployment: it is as high (low) as 3 (0.95)
for overlay-level traffic, and as high (low) as 8 (0.84) for
network-level traffic.

5 Conclusions
The main finding of the study reported in this paper

is that, despite some inherent inefficiency in MAC cross-
layering, MESHCHORD with recursive lookup implementa-
tion performs best among the considered middleware tech-
nologies, in terms of both total generated network-level traf-
fic, and load balancing. However, a moderate degree of
load unbalancing can be observed, especially with random
router deployment (ratio between maximally and minimally
loaded router in the order of 8), as well as a relatively higher
degree of unbalancing with increasing network size. This
indicates that application of MESHCHORD in large-scale
mesh networks might lead to creation of hot-spots, calling
for improvements of the MESHCHORD design. Currently,
we are considering usage of carefully designed, load-aware
hash functions to assign peer/resource IDs, in such a way
that, say, relatively less resources are managed by relatively
more congested peers. We expect that usage of such hash
functions might achieve a better load balancing, while at the
same time keeping network-level traffic at a low level.

References
[1] A. Al Hamra, C. Barakat, T. Turletti, “Network Coding for Wireless Mesh Networks: A Case Study”, Proc.

IEEE Int. Symposium on a World of Wireless, Mobile and Multimedia (WoWMoM), 2006.
[2] A. Balachandran, P. Bahl, G.M. Voelker, “Hot-Spot Congestion Relief and User Service Guarantees in

Public-Area Wireless Networks”, Proc. IEEE Workshop on Mobile Computing System and Applications
(WMCSA), 2002.

[3] S. Burresi, C. Canali, M.E. Renda, P. Santi, “MeshChord: A Location-Aware, Cross-Layer Specialization of
Chord for Wireless Mesh Networks”, Proc. IEEE PerCom, pp. 206–212, 2008.

[4] M. Conti, E. Gregori, G. Turi, “A Cross-Layer Optimization of Gnutella for Mobile Ad Hoc Networks”,
Proc. ACM MobiHoc, May 2005.

[5] M. Denny, M. Franklin, P. Castro, A. Purakayastha, “Mobiscope: A Scalable Spatial Discovery Service for
Mobile Network Resources”, Proc. International Conference on Mobile Data Management (MDM), 2003.

[6] L. Galluccio, G. Morabito, S. Palazzo, M. Pellegrini, M.E. Renda, P. Santi, “Georoy: A Location-Aware
Enhancement to Viceroy Peer-to-Peer Algorithm”, Computer Networks, Vol. 51, n. 8, pp. 379–398, June
2007.

[7] D.B. Johnson, D.A. Maltz, “Dynamic Source Routing in Ad Hod Wireless Networks”, Mobile Computing,
n. 353, pp. 153–181, 1996.

[8] A. Klemm, C. Lindemann, O.P. Waldhorst, “A Special-Purpose Peer-to-Peer File Sharing System for Mobile
Ad Hoc Networks”, Proc. IEEE VTC-Fall, Oct. 2003.

[9] G. Moro, G. Monti, “W-Grid: a Cross-Layer Infrastructure for Multi-Dimensional Indexing, Querying and
Routing in Wireless Ad Hoc and Sensor Networks”, Proc. IEEE Conf. on Peer-to-Peer Computing, 2006.

[10] A. Passarella, F. Delmastro, M. Conti, “XScribe: a Stateless, Cross-Layer Approach to P2P Multicast in
Multi-Hop Ad Hoc Networks”, Proc. ACM MobiShare, pp. 6–11, 2006.

[11] H. Pucha, S.M. Das, Y.C. Hu, “Ekta: An Efficient DHT Substrate for Distributed Applications in Mobile Ad
Hoc Networks”, Proc. IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), 2004.

[12] G. Riley, “The Georgia Tech Network Simulator,” ACM SIGCOMM MoMeTools Workshop, 2003.
[13] F. Sailhan, V. Issarny, “Scalable Service Discovery for MANET”, Proc. IEEE PerCom, 2005.
[14] http://www.seattlewireless.net/

[15] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, Proc. ACM Sigcomm, Aug. 2001.

[16] O.Wolfson, B. Xu, H. Yin, H. Cao, “Search-and-Discover in Mobile P2P Network Databases”, Proc. IEEE
ICDCS, 2006.

	TR8.pdf
	Consiglio Nazionale delle Ricerche
	C. Canali, M. E. Renda, P. Santi
	Iit

