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A survey on recursive algorithms for unbalanced

banded Toeplitz systems: computational issues

P. Favati G. Lotti O. Menchi

Abstract

Several direct recursive algorithms for the solution of band Toeplitz

systems are considered. All the methods exploit the displacement rank

properties, which allow a large reduction of computational efforts and stor-

age requirements. Some algorithms make use of the Sherman-Morrison-

Woodbury formula and result to be particularly suitable for the case of

unbalanced bandwidths. The computational costs of the algorithms un-

der consideration are compared both in a theoretical and practical setting.

Some stability issues are discussed as well.

1 Introduction

A Toeplitz matrix is a matrix whose elements are constant along each descend-
ing diagonal from left to right. Toeplitz matrices appear in many applications
where shift invariance properties are present. Classical examples are the systems
arising from the finite difference discretization of differential equations. Toeplitz
systems arise also in the modeling of queueing problems with Markov chains and
in image deconvolution problems, where the blurring operator is described in
terms of a point spread function space invariant with respect to translation, see
[9] for a survey of some scientific applications.

By exploiting the persymmetry of Toeplitz matrices, these systems can be
easily solved with a computational cost equal to the square of the size (see
[13]). Faster methods employing recursive techniques have been devised (see for
example [5]).

Often the systems with Toeplitz matrices are banded in a natural way or
can be considered banded from a numerical point of view because of the decay
of the coefficients when going away from the diagonal. Since large scale banded
Toeplitz systems are frequently encountered in the applications, efficient algo-
rithms are especially required. Techniques based on the cyclic reduction or on
preconditioned conjugate gradient have been proposed [3], [8], [20].
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In this note we consider the problem of solving a linear system whose matrix
A has a band Toeplitz structure, with m upper diagonals and n ≥ m lower
diagonals. Such a matrix can be seen as having a block tridiagonal structure,
with blocks of size n. We assume that the size of A is multiple of n. Matrix
A is said to be unbalanced if m is lower than n. The problem is described in
Section 2.

A fundamental device when dealing with Toeplitz matrices is the displace-
ment rank theory, which allows a substantial reduction in the computational
cost and storage requirements. For this reason a short survey of the basic dis-
placement properties is included in Section 3.

The following four recursive methods are taken into consideration. For all
the methods, except the second one, a considerable saving of the cost is achieved
by using the Sherman-Morrison-Woodbury (in the following SMW) formula for
computing the inverses.

ge a recursive factorization, which in the case of a block tridiagonal matrix
like (3) coincides with the block Gaussian elimination,

cr the algorithm of [3], based on the cyclic reduction, which can be seen as
the block Gaussian elimination of a suitably permuted matrix,

mcr a modified version of algorithm of cr, which implements the SMW formula
as suggested in [17],

st a version of the divide-and-conquer algorithm introduced by Stewart in [22]
and applied [2] to Toeplitz matrices, modified in [11] in order to exploit
the band presence.

The methods are described in Sections 4, 5, 6 and 7. For each method, a
brief sketch of its implementation is presented and an approximation of the
multiplicative cost of the version exploiting displacement properties is given.

An important aspect which should always be taken into account is that of
stability. Citing from [13] “unstable Toeplitz techniques abound and caution
must be exercised”. Block Gaussian elimination is known to be stable for di-
agonally dominant matrices. A brief analysis of the stability of each method
is given in Section 8. We examine also how diagonal dominance properties
influence the stability of the SMW formula used for computing the inverses.

A comparative analysis of the costs is presented in Section 9. Finally in
Section 10 numerical experiments are performed to test the effectiveness of the
different methods and their performance with respect to costs and stability.

2 The problem

We consider here the linear system

Ax = b (1)

where A is a non singular banded Toeplitz matrix, with m upper diagonals, and
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n ≥ m lower diagonals

A =




a0 a−1 . . . a−m

a1 a0 a−1 . . . a−m

...
. . .

. . .
. . .

. . .

an . . . a1 a0 a−1 . . . a−m

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . a−1

an . . . a1 a0




. (2)

We consider the case of an unbalanced matrix A, where m is significantly lower
than n. Without loss of generality we assume n N to be the size of A, with
N = 2p, p ≥ 2. Then matrix A can be partitioned as an N×N block tridiagonal
Toeplitz matrix

A =




B0 B−1

B1 B0 B−1

. . .
. . .

. . .

B1 B0 B−1

B1 B0




, (3)

where B0, B1 and B−1 are Toeplitz blocks of order n

B0 =




a0 . . . a−m

...
. . .

. . .
...

. . . a−m

...
. . .

...
an−1 . . . . . . . . . a0




, (4)

B1 =




an . . . . . . a1

. . .
...

. . .
...

an




, B−1 =




0
...

. . .
a−m 0

...
. . .

. . .
a−1 . . . a−m . . . 0




.

We assume that an 6= 0 and detB0 6= 0. In the following we use the vectors

ej , the jth canonical vector of size n,

ej , the jth canonical vector of size m,

f0 = B0e1, the first column of B0,

f−1 = B−1e1, the first column of B−1,

and the matrices
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Oh, the null matrix of order h,

Ih, the identity matrix of order h,

Ih,k, the rectangular matrix formed by the first h rows of Ik if h ≤ k or by the
first k columns of Ih if k ≤ h,

Jh, the exchange matrix of order h,

Fh, the h × m matrix formed by the first m columns of Ih,

Fh, the h × m matrix formed by the last m columns of Ih,

Eh, the h × n matrix formed by the first n columns of Ih,

Eh, the h × n matrix formed by the last n columns of Ih.

For the sake of notation simplicity, these matrices will be used without the index
h, i.e. without mentioning the number of rows, when it is possible to infer the
right size from the context. So the persymmetry of A and B0 is expressed by
A = JAT J and B0 = JBT

0 J (in the first case J = JnN and in the second case
J = Jn).

We consider also the m × m block R in the bottom left angle of B−1, i.e.

R =




a−m O

...
. . .

a−1 . . . a−m



 , such that B−1 = FRF
T
.

The function log, used for expressing the computational cost of the algo-
rithms, is the base 2 logarithm.

3 Exploiting the Toeplitz structure

A significant reduction of the computational cost can be achieved by making use
of the concept of displacement rank, introduced in [16], [15], [4]. This concept
allows a compact representation of the matrices involved in the algorithms. In
this section, after the first definitions and properties, we examine how to perform
the basic operations on matrices represented in such a way.

3.1 Basic properties

Let h ≥ 2 be an integer and consider down-shift matrix of order h

Zh =




0
1 0

. . .
. . .

1 0


 .
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For an h × k matrix T the following displacement operator will be considered
here

∆(T ) = TZk − ZhT (5)

(the subscripts h and k will be dropped when equal). Matrix T is said to have
d-rank r if ∆(T ) has rank r. In this case ∆(T ) can be expressed in the form

∆(T ) =

r∑

i=1

xiy
T
i , (6)

for suitable h-vectors xi and k-vectors yi, called the d-vectors of T . Matrix T
is said to be Toeplitz-like if its d-rank r is low with respect to its size (more
exactly if r = O(1) for h, k → ∞). All the matrices discussed in this paper are
Toeplitz-like.

The d-vectors, together with the first column Te1, allow the complete re-
construction of T . In fact from (6) it follows that

T = L(Te1) Ih,k +

r∑

i=1

L(xi) Ih,k LT (Zkyi), (7)

where L(s) denotes the lower triangular Toeplitz matrix whose first column is
s. The set of the d-vectors plus the first column constitute the d-description of
T , while formula (7) provides the d-representation of T .

The components of the vector Zkyi are shifted one place to the right. Since
Zken = 0, if one of the vector yi coincides with en the corresponding ith term
is missing from the sum of (7).

If a Toeplitz-like matrix T is (square and) persymmetric, then

[
∆(T )

]T
= ZT T T − T T ZT = −J(TZ − ZT )J = −J∆(T )J.

Hence, for any pair xiy
T
i J appearing in sum (6), the pair −yix

T
i J must appear

too. Then r must be even and (6) becomes

∆(T ) =

r/2∑

i=1

(
xiy

T
i J − yix

T
i J).

It follows that under the hypothesis of persymmetry the d-representation (7) of
T becomes

T = L(Te1) +

r/2∑

i=1

L(xi)LT (ZJyi) −
r/2∑

i=1

L(yi)LT (ZJxi). (8)

From (5) we derive the following rules:

1. displacement of a sum ∆(S + T ) = ∆(S) + ∆(T ),
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2. displacement of a product ∆(ST ) = ∆(S)T + S ∆(T ),

3. displacement of the inverse ∆(T−1) = −T−1∆(T )T−1.

Hence the inverse matrix has the same d-rank as the direct matrix.

We give now the d-description of the matrices we are considering.

Matrix B0 size n × n d-rank=2

∆(B0) = e1e
T
nB−1 − B−1e1e

T
n = e1f

T
−1J − f−1e

T
1 J.

The first column f0 is not a d-vector.

Matrix B1 size n × n d-rank=2

∆(B1) = e1e
T
nB0 − B0e1e

T
n = e1f

T
0 J − f0e

T
1 J.

The first column is the d-vector ane1.

Matrix B−1 size n × n d-rank=0

∆(B−1) = O.

The first column f−1 is not a d-vector.

Matrix B−1
0 size n × n d-rank=2

∆(B−1
0 ) = −B−1

0 ∆(B0)B
−1
0 = −B−1

0

(
e1f

T
−1J − f−1e

T
1 J

)
B−1

0

= f̂1 f̂
T

2 J − f̂2 f̂
T

1 J,

where
f̂1 = B−1

0 B−1e1 = B−1
0 f−1, f̂2 = B−1

0 e1.

The first column of B−1
0 is the d-vector f̂2.

Matrices E = Eh and E = Eh (with h > n)

∆(E) = −ẽn+1e
T
n , ∆(E T ) = 0, ∆(E) = 0, ∆(ET ) = e1ẽ

T
h−n,

where ẽj is the jth canonical vector of length h.

Matrices F = Fn and F = Fn

∆(F ) = −em+1e
T
m, ∆(F

T
) = O, ∆(F ) = O, ∆(FT ) = e1e

T
n−m.

3.2 Product of a Toeplitz-like matrix by vector

The most important operation that we have to perform is the multiplication of
T by a vector v. To see how it is made in a fast way and to estimate the cost,
we start with the case of the lower triangular Toeplitz matrix. Let s and v be
two input vectors of order n. To compute the product L(s)v or the product
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LT (ZJs)v, the two vectors v and s are embedded into vectors of double size v′

and s′. Then we consider the circulant matrix C(s′) whose first column is s′

v′ =

[
v

0

]
, s′ =

[
s

0

]
, C(s′) =

[
L(s) LT (ZJs)

LT (ZJs) L(s)

]
.

Computing

z = C(s′)v′ =

[
L(s)v

LT (ZJs)v

]
,

we find the product L(s)v in the first half of z and the product LT (ZJs)v in
the second half of z.

Circulant matrices of order 2n are diagonalized by the Fourier matrix F2n

whose (j, k)th element is fjk = exp(πijk/n), for j, k = 0, . . . , 2n − 1. Hence z

can be obtained by computing successively the vectors

w = F(v′), g = F(s′), h = g ⊙ w, z = F−1(h), (9)

where ⊙ indicates the element-wise product of two vectors of the same size and
F and F−1 indicate the discrete Fourier transform and its inverse, defined as

F(x) = F2n x, F−1(x) =
1

2n
F ∗

2n x.

Since the cost for computing the Fourier transform of a real vector of order n
using a specialized FFT routine is 3/4n logn+O(n) real multiplications [21], in
what follows we indicate by πn = 3/2n logn the cost of each Fourier transform
(implicitly assuming n large enough to neglect the term O(n)). We estimate the
cost of computing the product L(s)v or LT (ZJs)v by the number of Fourier
transforms required (in some cases one or both input vectors may have already
been encountered and transformed).

For a general Toeplitz-like matrix T expressed as in (7), the product is found
by combining the results obtained for the different triangular matrices. Due to
the linearity of the Fourier transform, the transformation of the initial vector
v and of the final output vector is counted only once. To help estimating the
cost of the product for the matrices involved in the different methods, we will
give for each matrix its d-description and a corresponding sketch of the lower
and upper triangles. The sections of identity matrix dealing with the changes
of size required for nonsquare matrices are represented by rectangles.

Sometimes it happens that different matrices are multiplied by the same
vector or that the same matrix is multiplied by different vectors. To avoid
counting double, we count separately the cost of the transformation of the input
vector and assume that when a vector involved in the d-description of a matrix
is computed, it is immediately transformed and the cost of this transformation is
counted separately. Practically, this means that to each pair of a lower triangle
of size n times an upper triangle of size m the cost πn + πm is counted, while
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no cost is counted for a single triangle. One cost is assigned to the final vector.
Different tables give the costs of the multiplication for the matrices of each
algorithm. If not explicitly indicated, the cost for multiplying the transposed
matrices is the same.

3.3 Inverse of a Toeplitz-like matrix

Many algorithms have been devised for computing the inverse of a Toeplitz-like
matrix T . They are called “fast” and “superfast”, according to the technique
employed. Fast algorithms, like the one by Trench [23], exploit the persimmetry
of Toeplitz matrices and have a computational cost O(n2), where n is the order
of T . Superfast algorithms, which employ recursive techniques, have a lower
computational cost O(n log2 n) but are less stable. For this reason we employ
here a fast algorithm modified from Levinson’s for Toeplitz-like matrices [19].
It solves k systems with the same matrix T having d-rank r with multiplicative
cost σn,r′(k) + O(n), where

σn,r′(k) = (2k + 5r′ + 1)/2 n2, (10)

with r′ = r if the first column of T is one of its d-vectors and r′ = r+1 otherwise
(see [12], Table 1).

As we will see, all the methods require the knowledge of B−1
0 . To compute

this inverse one can apply also the algorithm described in [2], which exploits
the presence of an upper band and has a cost O(m2 log(n/m) + n log n). This
computation is made in an initialization phase, preceding a transformation phase
and a substitution phase which constitute the core of the algorithm. For this
reason the cost of computing B−1

0 will be not considered in the theoretical
estimates of the costs given in terms of πn, πm and σn,r′(k).

4 Algorithm ge

It is well-known that when A is a tridiagonal matrix, the recursive method based
on the partitioned LU factorization coincides with the Gaussian elimination.
Hence the first method we consider for solving (1), which will be called ge,
results to be just the block Gaussian elimination. It is based on the sequence
of the Schur complements

S0 = B0, Si = B0 − B1S
−1
i−1B−1, for i = 1, . . . , N − 1, (11)

and consists of two phases.

1. Transformation phase, where matrices S−1
i are constructed.

2. Substitution phase: partitioning the vectors b and x into subvectors
b1, . . . , bN and x1, . . . , xN of size n, the solution of system (1) is found
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by performing a forward substitution, where the vectors zi are computed
from the right hand-side

z1 = B−1
0 b1,

zi = S−1
i−1(bi − B1zi−1), for i = 2, . . . , N,

(12)

followed by a backward substitution

xN = zN ,

xi = zi − S−1
i−1B−1xi+1, for i = N − 1, . . . , 1.

(13)

It is evident that the main part of the computational cost of the method lies in
the transformation phase. This cost can be reduced if we exploit the fact that
according to (11) each matrix Si differs from B0 by a correction of low rank (at

most m). Since B−1 = FRF
T
, by SMW formula we have

S−1
i+1 = (B0 − B1S

−1
i FRF

T
)−1 = B−1

0 + B−1
0 UiP

−1
i V, (14)

where
V = RF

T
B−1

0 , Ui = B1S
−1
i F Pi = I − V Ui. (15)

Once B−1
0 has been computed, the computation of the inverse of the n × n

matrices Si can be made through the inversion of the smaller m × m matrices
Pi.

4.1 Sketchy implementation

The algorithm can be implemented in the following way. All the computations
are carried out by using the d-descriptions of the involved matrices.

Function ge (A, N, b)

1. compute B−1
0 and V ,

2. for i = 0, . . . , N − 1

3. compute Ui and Pi by applying (15),

4. compute P−1
i ,

5. compute S−1
i+1 by applying (14),

6. for i = 1, . . . , N compute the vectors zi by applying (12),

7. for i = N, . . . , 1 compute the vectors xi by applying (13).

4.2 D-description of the matrices

Matrix V = RF
T
B−1

0 size m × n d-rank=2. Since ∆(RF
T
) = O,

∆(V ) = RF
T
∆(B−1

0 ) = V
(
f−1 f̂

T

2 J − e1 f̂
T

1 J
)

= t̂1f̂
T

2 J − t̂2f̂
T

1 J,

9



where
t̂1 = V f−1, t̂2 = V e1.

The first column of V is the d-vector t̂2. The d-representation of V has the form

@
@

@ @
@

@

@
@

@
@

@
@

− @
@

@ @
@

@

@
@

@
@

@
@

L(̂t1) LT (ZJ f̂2) L(̂t2) I + LT (ZJ f̂1)

Matrix Si = B0 − B1S
−1
i−1B−1 size n × n d-rank=3

∆(Si) = s
(i)
1 t

(i)T
1 + s

(i)
2 t

(i)T
2 − f−1e

T
n ,

where

s
(0)
1 = f0, t

(0)T
1 = 0T , s

(0)
2 = e1, t

(0)T
2 = fT

−1J,

and for i ≥ 1

s
(i)
1 = Sie1, t

(i)T
1 = eT

nS−1
i−1B−1,

s
(i)
2 = B1S

−1
i−1s

(i−1)
2 , t

(i)T
2 = t

(i−1)T
2 S−1

i−1B−1.

Proof by induction. For i = 0 we have S0 = B0 and the relation holds. For
i ≥ 1, since B1e1e

T
n = e1e

T
n B1, we have

∆(Si+1) = ∆(B0) − ∆(B1)S
−1
i B−1 − B1∆(S−1

i )B−1

= e1e
T
nB−1 − B−1e1e

T
n − e1e

T
nB0S

−1
i B−1 + B0e1e

T
n S−1

i B−1

+B1e1e
T
n S−1

i−1B−1S
−1
i B−1 + B1S

−1
i s

(i)
2 t

(i)T
2 S−1

i B−1 − B1S
−1
i B−1e1e

T
nS−1

i B−1

= e1e
T
nB−1 − e1e

T
n

(
B0 − B1S

−1
i−1B−1

)
S−1

i B−1

+
(
B0 − B1S

−1
i B−1

)
e1e

T
nS−1

i B−1 + B1S
−1
i s

(i)
2 t

(i)T
2 S−1

i B−1 − f−1e
T
n

= Si+1e1e
T
nS−1

i B−1 + B1S
−1
i s

(i)
2 t

(i)T
2 S−1

i B−1 − f−1e
T
n .

The first column of Si is the d-vector s
(1)
i . The d-representation of Si has the

form
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@
@

@
@

@
@

@
@

@
@

@
@

+

@
@

@
@

@
@

@
@

@
@

@
@

L(s
(i)
1 ) I + LT (Zt

(i)
1 ) L(s

(i)
2 ) LT (Zt

(i)
2 )

Matrix Ui = B1S
−1
i F size n × m d-rank=3

∆(Ui) = ∆(B1S
−1
i F ) = ∆(B1)S

−1
i F + B1∆(S−1

i )F

=
(
e1e

T
n B0 − B0e1e

T
n

)
S−1

i F − B1S
−1
i

(
s
(i)
1 t

(i)T
1 + s

(i)
2 t

(i)T
2 − B−1e1e

T
n

)
S−1

i F

= −(B0 − B1S
−1
i B−1)e1e

T
n S−1

i F − B1S
−1
i s

(i)
2 t

(i)T
2 S−1

i F

+e1e
T
n (B0 − B1S

−1
i−1B−1)S

−1
i F

= u
(i)
1 v

(i)T
1 + u

(i)
2 v

(i)T
2 + e1e

T
nF ,

where

u
(i)
1 = −B0e1 + B1S

−1
i B−1e1 = −s

(i+1)
1 , v

(i)T
1 = eT

nS−1
i F = t̃

(i)T

3 F ,

u
(i)
2 = −B1S

−1
i s

(i)
2 = −s

(i+1)
2 , v

(i)T
2 = t

(i)T
2 S−1

i F = t̃
(i)T

2 F ,

t̃
(i)

2 and t̃
(i)

3 are d-vectors of S−1
i .

The first column of Ui is u(i) = Uie1 = B1S
−1
i Fe1 = B1S

−1
i en−m+1 and is

not a d-vector. The d-representation of Ui has the form

@
@

@
@

@
@ @

@
@ +

@
@

@
@

@
@ @

@
@ @

@
@

+

@
@

@
@

@
@ @

@
@ @

@
@

L(u(i)) L(u
(i)
1 ) LT (Zv

(i)
1 ) L(u

(i)
2 ) LT (Zv

(i)
2 )

Matrix Pi = I − V Ui size m × m d-rank=4 (since F − B−1B
−1
0 Ui = Pi)

∆(Pi) = −V ∆(Ui) − ∆(V )Ui

= −
(
V u

(i)
1

)
v

(i)T
1 −

(
V u

(i)
2

)
v

(i)T
2 −

(
V e1

)
eT

n F

−
(
V B−1e1

) (
eT

n B−1
0 Ui

)
+

(
V e1

) (
eT

nB−1B
−1
0 Ui

)

= −
(
V u

(i)
1

)
v

(i)T
1 −

(
V u

(i)
2

)
v

(i)T
2 −

(
V e1

)(
eT

n FPi

)
−

(
V B−1e1

) (
eT

n B−1
0 Ui

)

= p
(i)
1 q

(i)T
1 + p

(i)
2 q

(i)T
2 + p

(i)
3 q

(i)T
3 + p

(i)
4 q

(i)T
4 ,
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where

p
(i)
1 = −V u

(i)
1 , q

(i)T
1 = v

(i)T
1 ,

p
(i)
2 = −V u

(i)
2 , q

(i)T
2 = v

(i)T
2 ,

p
(i)
3 = −V e1 = −t̂2, q

(i)T
3 = eT

nFPi = eT
n F − f̂

T

1 JUi,

p
(i)
4 = −V B−1e1 = −t̂1, q

(i)T
4 = eT

nB−1
0 Ui = f̂

T

2 JUi.

The first column of Pi is p(i) = PiFe1 = Fe1 − V UiFe1 = Fe1 − V u(i) and is
not a d-vector. The d-representation of Pi has the form

@
@

@
+

@
@

@

@
@

@
+

@
@

@

@
@

@
+

@
@

@

@
@

@
+

@
@

@

@
@

@

L(u
(i)
1 ) L(p

(i)
1 ) LT (Zq

(i)
1 ) L(p

(i)
2 ) LT (Zq

(i)
2 ) L(p

(i)
3 ) LT (Zq

(i)
3 ) L(p

(i)
4 ) LT (Zq

(i)
4 )

Matrix S−1
i size n × n d-rank=3

∆(S−1
i ) = −S−1

i ∆(Si)S
−1
i

= s̃
(i)
1 t̃

(i)T

1 + s̃
(i)
2 t̃

(i)T

2 + s̃
(i)
3 t̃

(i)T

3 ,

where

s̃
(i)
1 = −S−1

i s
(i)
1 = −e1, t̃

(i)T

1 = t
(i)T
1 S−1

i ,

s̃
(i)
2 = −S−1

i s
(i)
2 , t̃

(i)T

2 = t
(i)T
2 S−1

i ,

s̃
(i)
3 = S−1

i f−1, t̃
(i)T

3 = eT
nS−1

i .

The first column of S−1
i is s̃

(i) = S−1
i e1 = B−1

0

(
e1 + Ui−1P

−1
i−1t̂2

)
and is not

a d-vector. It must be computed by solving a system with matrix Pi−1. The
d-representation of S−1

i has the form

@
@

@
@

@
@

−

@
@

@
@

@
@

+

@
@

@
@

@
@

@
@

@
@

@
@

+

@
@

@
@

@
@

@
@

@
@

@
@

L(s̃(i)) LT (Z t̃
(i)

1 ) L(s̃
(i)
2 ) LT (Z t̃

(i)

2 ) L(s̃
(i)
3 ) LT (Z t̃

(i)

3 )
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4.3 Cost of matrix by vector product

Table 1 lists the cost of computing matrix by vector products, for the matrices
used in algorithm ge. As already said, this cost does not include the cost for
the transformation of the vectors of the d-description of the matrix itself and
the cost of transforming the input vector.

matrix cost

B1 πn

B−1 2πm

B−1
0 5πn

V 2πn + 3πm

Ui 4πn + 2πm

UT
i 3πn + 3πm

S−1
i 5πm

Table 1: Cost of computing matrix by vector products for algorithm ge.

Note. The product of B−1 by an n-vector v is computed multiplying matrix
R by the subvector v of the first m components of v and appending n − m
zeros in front of the result. Hence it requires transforming v even if v has
already been transformed. This explains why the cost for B−1 is 2πm instead of
πm. Moreover, to multiply Ui by a m-vector v we need two transformed input
vectors: the first one is obtained by transforming v, the second one is obtained
by transforming the vector v followed by n − m zeros. This explains why the
cost for Ui is 4πn + 2πm instead of 3πn + 2πm.

4.4 Cost of algorithm ge

4.4.1 Transformation phase

(a) Initially the d-descriptions of matrices B−1
0 , V and U0 are computed by

solving three systems with matrix B0 and computing the products

f̂1 = B−1
0 f−1, f̂2 = B−1

0 e1, f̂3 = B−1
0 en−m+1, t̂1 = FT B−1f̂1,

t̂2 = FT B−1f̂2, u
(0)
1 = −f0 + B1f̂1, u

(0)
2 = −B1f̂2, u(0) = B1f̂3,

v
(0)T
1 = f̂

T

2 JF , v
(0)T
2 = f̂

T

1 JF .

All these vectors are then transformed. Since S−1
0 = B−1

0 , we have also the
d-description of S−1

0

s̃
(0)
1 = −e1, s̃

(0)
2 = −f̂2, s̃

(0)
3 = f̂1, s̃

(0) = f̂2,

t̃
(0)

1 = 0, t̃
(0)

2 = f̂1J, t̃
(0)

3 = f̂2J.

13



As already said in Section 3.3, the cost of this initialization is not taken into
consideration.

(b) Now the ith step begins, for i = 0, . . . , p−1. We assume that the d-vectors
of Si, S−1

i and Ui are known and we compute the d-vectors of Si+1, Pi, S−1
i+1

and Ui+1.

For matrix Si+1 we have

s
(i+1)
1 = −u

(i)
1 and s

(i+1)
2 = −u

(i)
2 . It remains to compute

t
(i+1)T
1 = eT

n S−1
i B−1 = t̃

(i)

3 B−1, the product by Toeplitz matrix RT is per-

formed with cost 2πm. The transformation of t
(i+1)
1 costs πn.

t
(i+1)T
2 = t

(i)T

2 S−1
i B−1 = t̃

(i)T

2 B−1, as above the cost is πn + 2πm.

For matrix Pi we have to compute four d-vectors and the first column, but we
do not transform them.

p
(i)
1 = −V u

(i)
1 , the product by matrix V with an input vector already trans-

formed costs 2πn + 3πm.

p
(i)
2 = −V u

(i)
2 , as above the cost is 2πn + 3πm.

p(i) = Fe1 − V u(i), as above the cost is 2πn + 3πm.

q
(i)T
3 = eT

nFPi = eT
n F − f̂

T

1 JUi, the product by UT
i with an input vector

already transformed costs 3πn + 3πm.

q
(i)T
4 = eT

nB−1
0 Ui = f̂

T

2 JUi, as above the cost is 3πn + 3πm.

Now the vectors

w1 = V s
(i+1)
2 , wT

2 = t
(i+1)T
1 B−1

0 , wT
3 = t

(i+1)T
2 B−1

0 ,

wT
4 = wT

2 Ui, wT
5 = wT

3 Ui

are computed. The product by V with an input vector already transformed
costs 2πn +3πm. The products by B−T

0 with input vectors already transformed
cost 5πn each. The products by UT

i with input vectors not yet transformed cost
4πn + 3πm each.

Then the vectors

y1 = P−1
i w1, y2 = P−1

i t̂1, y3 = P−1
i t̂2,

yT
4 = wT

4 P−1
i , yT

5 = wT
5 P−1

i , yT
6 = q

(i)T
4 P−1

i

are obtained by solving six systems, three with matrix Pi and three with matrix
PT

i . The cost is 2σm,4(3).

For matrix S−1
i+1 we have to compute

14



s̃
(i+1)
2 = −B−1

0

(
s
(i+1)
2 + Uiy1

)
, one product by matrix Ui and one product by

matrix B−1
0 are required. The input vectors have not yet been transformed.

The costs are 10πn + 3πm. The transformation of s̃
(i+1)
2 costs πn.

s̃
(i+1)
3 = B−1

0

(
f−1 + Uiy2

)
, as above, the cost is 11πn + 3πm.

s̃
(i+1) = B−1

0

(
e1 + Uiy3

)
, as above, the cost is 11πn + 3πm.

t̃
(i+1)T

1 = wT
2 + yT

4 V, the product by matrix V T with an input vector not yet

transformed costs 3πn + 3πm. The transformation of t̃
(i+1)

1 costs πn.

t̃
(i+1)T

2 = wT
3 + yT

5 V, as above the cost is 4πn + 3πm.

t̃
(i+1)T

3 = f̂
T

2 J + yT
6 V, as above the cost is 4πn + 3πm.

At this point the d-representation of S−1
i+1 is available and we have only to

compute the d-representation of Ui+1. For the left d-vectors we have

u
(i+1)
1 = −

(
B0−B1S

−1
i+1B−1

)
e1 = −f0 +B1s̃

(i+1)
3 , the product by B1 with an

input vector already transformed costs πn. The transformation of u
(i+1)
1 costs

πn.

u
(i+1)
2 = −B1S

−1
i s

(i+1)
2 = B1s̃

(i+1)
2 , as above the cost is 2πn.

The right d-vectors of Ui+1 are obtained by truncating those of S−1
i+1 and must

be transformed, with cost 2πm.

For the first column of Ui+1, i.e. u(i+1) = B1S
−1
i+1en−m+1, we have to compute

one product by S−1
i+1, with input vector already transformed, and one product

by B1. The first one costs 5πn, the second one costs 2πn. The transformation
of u(i+1) costs πn.

4.4.2 Substitution phase

For the forward phase zi = S−1
i−1(bi −B1zi−1), one product by matrix B1 and

one product by matrix S−1
i−1 are required. The input vectors have not yet been

transformed. The costs are 2πn and 6πn.

For backward phase xi = zi − S−1
i−1B−1xi+1, one product by matrix B−1 and

one product by matrix S−1
i−1 are required. The input vectors have not yet been

transformed. The costs are 2πm and 6πn.

4.4.3 Overall cost

For the transformation phase the cost of the ith step is

ti = 91πn + 48πm + 2σm,4(3),
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for the substitution phase the cost is

si = 14πn + 2πm.

Both costs must be multiplied by N . According to (10) we assume σm,4(3) =
27/2m2, we have

cge = (ti + si)N = (105πn + 50πm + 27m2)N. (16)

5 Algorithm cr

Various different methods go under the name of cyclic reduction. They all share
the characteristic of building a sequence of problems having a progressively re-
duced size. When the size is sufficiently small, the reduced problem is solved and
from its solution the solution of the original problem is reconstructed through
backward steps. We describe here an implementation of the method proposed
in [3], where the reduction of size is achieved by applying a block Gaussian
elimination to a suitably permuted system.

Let N = 2p, with p ≥ 2. Denote by

A(0)x(0) = b(0)

the given system (1), where A(0) = A is the block tridiagonal Toeplitz matrix

(3) and b(0) = b. The three blocks are renamed as follows

H
(0)
0 = Ĥ

(0)
0 = B0, H

(0)
1 = B1, H

(0)
−1 = B−1. (17)

For i = 0, . . . , p − 1, the matrices

H
(i+1)
0 = H

(i)
0 − H

(i)
−1H

(i)
0

−1
H

(i)
1 − H

(i)
1 H

(i)
0

−1
H

(i)
−1,

H
(i+1)
1 = −H

(i)
1 H

(i)
0

−1
H

(i)
1 ,

H
(i+1)
−1 = −H

(i)
−1H

(i)
0

−1
H

(i)
−1,

Ĥ(i+1) = Ĥ(i) − H
(i)
−1H

(i)
0

−1
H

(i)
1 ,

(18)

are computed. In [3] it is proved that all these matrices are Toeplitz-like, with

d-rank equal to 4 for H
(i)
0 , to 2 for H

(i)
1 and H

(i)
−1, to 3 for Ĥ(i) when i > 0.

Moreover H
(i)
0 , H

(i)
1 , H

(i)
−1 are persymmetric and H

(i)
−1 has nonzero elements only

in a lower left square block R(i) of size m. Hence it can be written as

H
(i)
−1 = FR(i)F

T
,

where

R(0) = R and R(i+1) = −R(i)F
T
H

(i)
0

−1
FR(i).
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The cyclic reduction is based on the sequence of systems

A(i)x(i) = b
(i), for i = 1, . . . , p, (19)

of order 2p−in, recursively obtained in this way:

1. let Πi be the even/odd block permutation matrix of order 2p−i, with blocks
of order n. Problem (19) is equivalent to

Ã(i)x̃
(i) = b̃

(i)
, Ã(i) = ΠiA

(i)Π T
i , x̃

(i) = Πix
(i), b̃

(i)
= Πib

(i). (20)

2. Partition vectors x̃
(i) and b̃

(i)
into two halves, as follows

x̃
(i) =

[
x

(i)
+

x
(i)
−

]
, b̃

(i)
=

[
b
(i)
+

b
(i)
−

]
.

3. Apply one step of the block Gaussian elimination to (20) seen as a 2 × 2
block system, obtaining a problem of the form

[
D(i) U (i)

O A(i+1)

] [
x

(i)
+

x(i+1)

]
=

[
b
(i)
+

b(i+1)

]
,

where
(a) D(i) and U (i) are block Toeplitz matrices of order 2p−i−1, D(i) being a

block diagonal matrix with blocks H
(i)
0 on the diagonal and U (i) being an upper

block bidiagonal matrix with blocks H
(i)
1 on the diagonal and H

(i)
−1 on the upper

parallel.
(b) A(i+1) is a block tridiagonal matrix of order 2p−i−1. It has still a block

Toeplitz structure except for the northwest corner block which is Ĥ(i+1). The

other blocks are H
(i+1)
0 on the diagonal, H

(i+1)
1 on the lower parallel and H

(i+1)
−1

on the upper parallel.
(c) b(i+1), i = 0, . . . , p − 1, is the vector whose jth subvector of size n is

b
(i+1)
j = b

(i)
2j−1 − H

(i)
1 H

(i)
0

−1
b
(i)
2j−2 − H

(i)
−1H

(i)
0

−1
b
(i)
2j , j = 1, . . . , 2p−i−1, (21)

with b
(i)
j = 0 for j = 0.

Once the vector x(i+1) has been obtained by solving the system A(i+1)x(i+1) =
b(i+1), the subvectors of x(i), i = p − 1, . . . , 0, are given by





x

(i)
2j−1 = x

(i+1)
j ,

x
(i)
2j = H

(i)
0

−1(
b
(i)
2j − H

(i)
1 x

(i+1)
j − H

(i)
−1x

(i+1)
j+1

)
,

for j = 1, . . . , 2p−i−1,

(22)

with x
(i+1)
j+1 = 0 for j = 2p−i−1.
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After p steps of reduction, system (19) has order n and is

Ĥ(p)x
(p)
1 = b

(p)
1 . (23)

Now x
(p)
1 can be computed directly. Then p − 1 backward steps are performed

with (22), computing x
(i)
j for i = p− 1, . . . , 0, until x(0) = x is obtained. Hence

method cr appears to consist of two phases: a transformation phase where the

matrices H
(i)
0 , H

(i)
1 , H

(i)
−1 and Ĥ(i) are constructed, and a substitution phase

where the vectors b
(i)
j are constructed in a forward way and the vectors x

(i)
j are

constructed in a backward way.

Remark 5.1 Algorithm cr can be seen as a block Gaussian elimination ap-
plied to a suitable permuted matrix Ã. In fact, let Γi be the matrix obtained
by replacing in the identity matrix of order N the last principal block of order
2p−i with Πi. Defining

Ω = Γp−1 . . .Γ1Γ0,

the given system (1) is equivalent to

Ã x̃ = b̃, Ã = Ω AΩT , x̃ = Ω x, b̃ = Ω b.

Applying block Gaussian elimination we see that

Ã = L U,

where L is lower block triangular and U is upper block triangular. Matrix L

has identity principal blocks and one or two blocks of the form H
(i)
1 H

(i)
0

−1
and

H
(i)
−1H

(i)
0

−1
in the columns of the lower part (exactly elements with index i

stay on 2p−i−1 consecutive columns). Matrix U has principal blocks equal to

H
(i)
0 (exactly blocks with index i stay on 2p−i−1 consecutive places) and a last

principal block equal to Ĥ
(p)
0 and blocks equal to H

(i)
−1 or H

(i)
1 in the upper part.

5.1 Sketchy implementation

The algorithm can be implemented in the following way. All the computations
are carried out by using the d-descriptions of the involved matrices.

Function cr (A, N, b)

1. let H
(0)
0 , H

(0)
1 , H

(0)
−1 and Ĥ(0) be defined as in (17)

2. compute H
(0)
0

−1
,

3. for i = 0, . . . , p − 1 compute H
(i+1)
0 , H

(i+1)
1 , H

(i+1)
−1 , Ĥ(i+1)

by applying (18) and compute H
(i+1)
0

−1
,

4. for i = 0, . . . , p − 1, for j = 1, . . . 2p−i−1

compute b
(i+1)
j by applying (21),
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5. compute Ĥ(p)−1,

6. compute x
(p)
1 = Ĥ(p)−1b

(p)
1 ,

7. for i = p − 1, . . . , 0, for j = 1, . . . 2p−i

compute x
(i)
j by applying (22).

5.2 D-description of the matrices

For the d-description of the matrices of algorithm cr we need the vectors of
length n

h
(i)
0 = H

(i)
0 e1 is the first column of H

(i)
0 ,

v
(i)
0 =

1

an
H

(i)
1 e1 is the first column of

1

an
H

(i)
1 ,

ĥ
(i)

= Ĥ(i)e1 is the first column of Ĥ(i),

t(i) = JĤ(i)T en, i.e. t(i)T is the reversed last row of Ĥ(i),

and the vector of length m

r(i) = R(i)e1 is the first column of R(i).

The following recursive relations hold

h
(i+1)
0 = h

(i)
0 − anH

(i)
−1H

(i)−1
0 v

(i)
0 − H

(i)
1 H

(i)−1
0 F r(i), h

(0)
0 = f0,

v
(i+1)
0 = −H

(i)
1 H

(i)−1
0 v

(i)
0 , v

(0)
0 = e1,

ĥ
(i+1)

= ĥ
(i) − anH

(i)
−1H

(i)−1
0 v

(i)
0 , ĥ

(0)
= f0,

t(i+1) = t(i) − H
(i)
1 H

(i)−1
0 F r(i), t(0) = f0,

r(i+1) = −R(i)F
T
H

(i)−1
0 F r(i), r(0) = FT f−1.

For simplicity sake we introduce also the vector of length m

v
(i)
1 =

1

an
FT

(
h

(i)
0 − t(i)

)
,

which satisfies the recursion

v
(i+1)
1 = v

(i)
1 − R(i)F

T
H

(i)−1
0 v

(i)
0 , v

(0)
1 = 0. (24)

It is easy to show that h
(i)
0 and t(i) have the first n − m entries in common.

Hence, if t(i) and v
(i)
1 are known, there is no need to compute h

(i)
0 using its

recursive relation because it can be recovered in this way

h
(i)
0 = t(i) + anF v

(i)
1 . (25)
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The d-description of H
(i)
0 , H

(i)
1 , H

(i)
−1 and Ĥ(i) can be easily proved by in-

duction or derived from [3].

Matrix H
(i)
0 size n × n d-rank=4 (d-rank=2 if i = 0)

∆(H
(i)
0 ) = −F r(i)v

(i)T
0 J − h

(i)
0 v

(i)T
1 FT J + F v

(i)
1 h

(i)T
0 J + v

(i)
0 r(i)T FT J.

The first column of H
(i)
0 is the d-vector h

(i)
0 . The d-representation of this matrix

is not shown here because it is not needed in the following.

Matrix H
(i)
1 size n × n d-rank=2

∆(H
(i)
1 ) = −t(i)v

(i)T
0 J + v

(i)
0 t(i)T J.

The first column of H
(i)
1 is the d-vector anv

(i)
0 . The d-representation of H

(i)
1

has the form

−

@
@

@
@

@
@

@
@

@
@

@
@

+

@
@

@
@

@
@

@
@

@
@

@
@

L(t(i)) LT (ZJv
(i)
0 ) L(v

(i)
0 ) anI + LT (ZJt(i))

Matrix R(i) size m × m d-rank=2

∆(R(i)) = −r(i)v
(i)T
1 J + v

(i)
1 r(i)T J.

The first column of R(i) is the d-vector r(i). The d-representation of R(i) has
the form

−
@

@
@

@
@

@
+

@
@

@

@
@

@

L(r(i)) −I + LT (ZJv
(i)
1 ) L(v

(i)
1 ) LT (ZJr(i))

Matrix Ĥ(i) size n × n d-rank=3 (d-rank=2 if i = 0)

∆(Ĥ(i)) = e1f
T
−1J − F r(i)v

(i)T
0 J + F v

(i)
1 t(i)T J.
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The first column of Ĥ(i) is ĥ
(i)

and is different from the other vectors of the
d-description. Matrix Ĥ(i) never enters into a multiplication. Hence the d-
description of this matrix is not shown. Only the last one Ĥ(p) is used in (23).

Matrix H
(i)
0

−1
size n × n d-rank=4 (d-rank=2 if i = 0)

∆(H
(i)
0

−1
) = r̃

(i)
ṽ

(i)T
0 J + e1 ṽ

(i)T
1 J − ṽ

(i)
1 eT

n − ṽ
(i)
0 r̃

(i)T J,

where

r̃
(i) = H

(i)
0

−1
F r(i), ṽ

(i)
0 = H

(i)
0

−1
v

(i)
0 , ṽ

(i)
1 = H

(i)
0

−1
F v

(i)
1 .

The first column of H
(i)
0

−1
is h̃

(i)
= H

(i)
0

−1
e1 and is different from the other

vectors of the d-description. The d-representation of H
(i)
0

−1
has the form

@
@

@
@

@
@

+

@
@

@
@

@
@

+

@
@

@
@

@
@

@
@

@
@

@
@

−

@
@

@
@

@
@

@
@

@
@

@
@

L(h̃
(i)

) LT (ZJ ṽ
(i)
1 ) L(r̃(i)) LT (ZJ ṽ

(i)
0 ) L(ṽ

(i)
0 ) LT (ZJ r̃

(i))

5.3 Cost of matrix by vector product

Table 2 lists the cost of computing matrix by vector products, for the matrices
used in algorithm cr. As already said, this cost does not include the cost for
the transformation of the vectors of the d-description of the matrix itself and
the cost of transforming the input vector.

matrix cost

H
(i)
0

−1
5πn

H
(i)
1 5πn

R(i) 5πm

Table 2: Cost of computing matrix by vector products for algorithm cr.

5.4 Cost of algorithm cr

5.4.1 Transformation phase

(a) Initially we set

h
(0)
0 = ĥ

(0)
= t(0) = f0, v

(0)
0 = e1, r(0) = FT f−1, v

(0)
1 = 0.
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(b) We assume that at the ith step, i = 1, . . . , p, the vectors v
(i−1)
0 , r(i−1),

v
(i−1)
1 and t(i−1) have already been computed and transformed, while vectors

h
(i−1)
0 and ĥ

(i−1)
have been computed but not transformed, since their trans-

formations are not needed.

First the vectors

h̃
(i−1)

= H
(i−1)
0

−1
e1, r̃

(i−1) = H
(i−1)
0

−1
F r(i−1),

ṽ
(i−1)
0 = H

(i−1)
0

−1
v

(i−1)
0 , ṽ

(i−1)
1 = H

(i−1)
0

−1
F v

(i−1)
1 ,

are computed by solving four systems with the same matrix H
(i−1)
0 , whose

complete d-description is available. The corresponding cost is σn,4(4). Now we

have the d-representation of H
(i−1)
0

−1
. The four vectors are transformed with

cost 4πn.

Then the vectors

v
(i)
0 = −H

(i−1)
1 ṽ

(i−1)
0 , z1 = H

(i−1)
1 r̃

(i−1),

z2 = R(i−1)F
T
ṽ

(i−1)
0 , r(i) = −R(i−1)F

T
r̃

(i−1),

are computed by multiplication. The input vectors of length n have already
been transformed, those of length m have not yet been transformed. Hence the

products by H
(i−1)
1 cost 5πn each and the products by R(i−1) cost 6πm each.

We get

t(i) = t(i−1) − z1, v
(i)
1 = v

(i−1)
1 − z2, ĥ

(i)
= ĥ

(i−1) − an F z2.

Vectors v
(i)
0 and t(i) are transformed with cost 2πn, vectors r(i) and v

(i)
1 are

transformed with cost 2πm.

Vector h
(i)
0 is computed using (25).

5.4.2 Substitution phase

At the ith step first the vectors

w
(i)
j = H

(i)
0

−1
b
(i)
2j

are computed for j = 1, . . . , 2p−i−1. The input vectors have not yet been trans-
formed. Hence the cost is 6πn for each j.

Then the vectors

b
(i+1)
j = b

(i)
2j−1 − H

(i)
1 w

(i)
j−1 − F R(i)F

T
w

(i)
j

are computed. The input vectors have not yet been transformed. Hence the

product by H
(i)
1 costs 6πn and the product by R(i) costs 6πm, i.e. the cost is

6πn + 6πm for each j.
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The same cost holds for the computation of

x
(i)
2j = H

(i)
0

−1(
b
(i)
2j − H

(i)
1 x

(i+1)
j − F R(i)F

T
x

(i+1)
j+1

)
.

At the first step x
(i)
1 is computed by solving system (23) with matrix Ĥ(p) whose

d-description is available. The corresponding cost is not considered.

5.4.3 Overall cost

For the transformation phase the cost of the ith step is

ti = 16πn + 14πm + σn,4(4) (26)

and must be multiplied by log N . For the substitution phase the cost is

s = (24πn + 12πm)N.

According to (10) we assume σn,4(4) = 14.5n2. We have

ccr = ti log N + s = (16πn + 14πm + 14.5n2) log N + (24πn + 12πm)N. (27)

6 Algorithm mcr

It is evident that the main part of the computational cost of the transformation

phase of algorithm cr lies in the computation of H
(i)
0

−1
. This cost can be

reduced if we exploit the fact that each matrix H
(i+1)
0 differs from H

(i)
0 by a

correction of low rank (at most 2m). Using SMW formula, as suggested in [17],
we propose the following modification.

Let us consider the matrices

U
(i)
1 = H

(i)
1 H

(i)
0

−1
FR(i) and V

(i)
1 = R(i)F

T
H

(i)
0

−1
H

(i)
1 ,

and the matrices

U (i) =
[

F
∣∣ U

(i)
1

]
, and V (i) =

[
V

(i)
1

F
T

]
.

Then we can write
H

(i+1)
0 = H

(i)
0 − U (i)V (i),

and by SMW formula we have

H
(i+1)
0

−1
= H

(i)
0

−1
+ H

(i)
0

−1
U (i)P (i)−1

V (i)H
(i)
0

−1
,

where

P (i) = I − V (i)H
(i)
0

−1
U (i). (28)

In this way the computation of the inverse of the n×n matrix H
(i+1)
0 is replaced

by the computation of the inverse of the 2m×2m matrix P (i). This modification
of algorithm cr will be called mcr.
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6.1 D-description of the matrices

Matrix U
(i)
1 = H

(i)
1 H

(i)
0

−1
FR(i) size n × m d-rank=4

∆(U
(i)
1 ) =

[
t(i+1)v

(i+1)T
1 − v

(i+1)
0 r(i+1)T + v

(i)
0 r(i)T − t(i)v

(i)T
1

]
J.

The first column of U
(i)
1 is

U
(i)
1 e1 = t(i) − t(i+1)

and is not a d-vector, but both t(i) and t(i+1) are d-vectors, and this fact can

be exploited for the d-representation of U
(i)
1 which has the form

@
@

@
@

@
@ @

@
@ @

@
@

−

@
@

@
@

@
@ @

@
@ @

@
@

L(t(i+1)) LT (ZJv
(i+1)
1 ) − I L(v

(i+1)
0 ) LT (ZJr(i+1))

+

@
@

@
@

@
@ @

@
@ @

@
@

−

@
@

@
@

@
@ @

@
@ @

@
@

L(v
(i)
0 ) LT (ZJr(i)) L(t(i)) LT (ZJv

(i)
1 ) − I

Matrix V
(i)
1 = R(i)F

T
H

(i)
0

−1
H

(i)
1 = JU

(i)T
1 J size m × n d-rank=4

∆(V
(i)
1 ) = −J

[
∆(U

(i)
1 )

]T
J =

[
−v

(i+1)
1 t(i+1)T +r(i+1)v

(i+1)T
0 −r(i)v

(i)T
0 +v

(i)
1 t(i)T

]
J.

From (24) it follows that the first column of V
(i)
1 is

V
(i)
1 e1 = R(i)F

T
H

(i)
0

−1
H

(i)
1 e1 = an

(
v

(i)
1 − v

(i+1)
1

)
.

It is not a d-vector, but both v
(i)
1 and v

(i+1)
1 are d-vectors, and this fact can be

exploited for the d-representation of V
(i)
1 which has the form
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−
@

@
@ @

@
@

@
@

@
@

@
@

+
@

@
@ @

@
@

@
@

@
@

@
@

L(v
(i+1)
1 ) anI + LT (ZJt(i+1)) L(r(i+1)) LT (ZJv

(i+1)
0 )

−
@

@
@ @

@
@

@
@

@
@

@
@

+
@

@
@ @

@
@

@
@

@
@

@
@

L(r(i)) LT (ZJv
(i)
0 ) L(v

(i)
1 ) anI + LT (ZJt(i))

Matrix P (i) = I − V (i)H
(i)
0

−1
U (i) size 2m × 2m d-rank=8 (d-rank=6 if

i = 0).
For i > 0 we have

∆(P (i)) =

8∑

j=1

p
(i)
j q

(i)T
j ,

where

p
(i)
1 = −V (i)H

(i)
0

−1
v

(i+1)
0 , q

(i)T
1 = p

(i)T
2 J,

p
(i)
2 = −F 2mr(i+1), q

(i)T
2 = −p

(i)T
1 J,

p
(i)
3 = −V (i)ṽ

(i)
0 , q

(i)T
3 = p

(i)T
4 J,

p
(i)
4 = F 2mr(i) − V (i)r̃

(i), q
(i)T
4 = −p

(i)T
3 J,

p
(i)
5 = −V (i)H

(i)
0

−1
H

(i)
1 r̃

(i), q
(i)T
5 = p

(i)T
6 J,

p
(i)
6 = −F 2mv

(i+1)
1 + F 2me1, q

(i)T
6 = −p

(i)T
5 J,

p
(i)
7 = F 2m

(
v

(i+1)
1 − v

(i)
1

)
+ V (i)ṽ

(i)
1 , q

(i)T
7 = p

(i)T
8 J,

p
(i)
8 = F 2me1, q

(i)T
8 = −p

(i)T
7 J.

The first column of P (i) is P (i)F 2me1 = F 2me1−V (i)H
(i)
0

−1
en−m+1 and is not

a d-vector.

For i = 0 the last four pairs of vectors are replaced by

p
(0)
5 = −V (0)H

(0)
0

−1
H

(0)
1 r̃

(0) + F 2me1, q
(0)T
5 = −p

(0)T
6 J,

p
(0)
6 = −F 2mv

(1)
1 + F 2me1, q

(0)T
6 = p

(0)T
5 J.
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6.2 Cost of algorithm mcr

Table 3 lists the cost of computing matrix by vector products, for the matrices
used in algorithm mcr which were not introduced for algorithm cr. As already
said, this cost does not include the cost for the transformation of the vectors
of the d-description of the matrix itself and the cost of transforming the input
vector.

matrix cost

U (i) 5πn + 4πm

V (i) 4πn + 5πm

Table 3: Cost of computing matrix by vector products for algorithm mcr.

The cost of the ith step of algorithm mcr is the same as for cr, except for what

concerns the computation of the d-description of H
(i)
0

−1
, which in algorithm cr

is directly computed by solving four systems of order n with cost σn,4(4), while
here is computed by using SMW formula. Hence to find the cost of algorithm
mcr we have to estimate the cost of this formula.

No computation is required to find the d-description of U (i−1) and of V (i−1).

The vectors v
(i−1)
0 , v

(i)
0 , t(i−1), t(i), v

(i−1)
1 , v

(i)
1 , r(i−1) and r(i) have already

been transformed.

The d-description of P (i−1) is computed as follows. The resulting vectors
are not transformed, since Levinson algorithm does not require them.

For p
(i−1)
1 = −V (i−1)H

(i−1)
0

−1
v

(i)
0 , one product by H

(i−1)
0

−1
and one product

by V (i−1) are required. For the first product the input vector has already
been transformed. The costs are 5πn and 5πn + 5πm.

For p
(i−1)
3 = −V (i−1)ṽ

(i−1)
0 , the product by V (i−1) of a vector already trans-

formed costs 4πn + 5πm.

For p
(i−1)
4 = F 2mr(i−1) − V (i−1)r̃

(i−1), as above, the cost is 4πn + 5πm.

For p
(i−1)
5 = −V (i−1)H

(i−1)
0

−1
H

(i−1)
1 r̃

(i−1). The vector z1 = H
(i−1)
1 r̃

(i−1) has
already been computed in cr, hence only two products are required: one

by H
(i−1)
0

−1
and one by V (i−1). No input vector has yet been transformed.

The costs are 6πn and 5πn + 5πm.

For p
(i−1)
7 = F 2m

(
v

(i)
1 − v

(i−1)
1

)
+ V (i−1)ṽ

(i−1)
1 , the product by V (i−1) of a

vector already transformed costs 4πn + 5πm.

For P (i−1)F 2me1 = F 2me1−V (i−1)H
(i−1)
0

−1
en−m+1, one product by H

(i−1)
0

−1

and one product by V (i−1) are required. For the first product the input
vector has already been transformed. The costs are 5πn and 5πn + 5πm.
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Hence the cost required for computing the d-vectors of P (i−1) is cP = 43πn +
30πm.

To find the representation of H
(i)
0

−1
, we compute by SMW formula the expres-

sion

H
(i)
0

−1
z = H

(i−1)
0

−1
z + H

(i−1)
0

−1
U (i−1)P (i−1)−1

V (i−1)H
(i−1)
0

−1
z (29)

for selected vectors z. We compute first z1 = H
(i−1)
0

−1
z. If z has already

been transformed, it costs 5πn. Then we compute z2 = V (i−1)z1 as previously

explained, with cost 5πn + 5πm. The vector z3 = P (i−1)−1
z2 is obtained by

solving a system of order 2m applying Levinson algorithm. Now the product
U (i−1)z3 is computed as follows

z4 = U (i−1)z3 =
[

F
∣∣ U

(i−1)
1

]
z3 = FF

T

2mz3 + U
(i−1)
1 FT

2mz3.

The product U
(i−1)
1 FT

2mz3 has cost 5πn + 5πm. Finally vector z4 is multiplied

by H
(i−1)
0

−1
with cost 6πn. The total cost for the computation of (29) is ct =

21πn + 10πm, plus the cost of Levinson algorithm.

To obtain the d-description of H
(i)
0

−1
expression (29) is computed for the vectors

z = Fr(i), z = v
(i)
0 , z = Fv

(i)
1 and z = e1. The vectors z = Fr(i) and

z = Fv
(i)
1 are transformed with cost 2πn. Then the cost of this step is

cS = 4ct + 2πn + σ2m,9(4) = 86πn + 40πm + σ2m,9(4) = 86πn + 40πm + 108m2.

The sum cS + cP = 129πn +70πm +108m2 is the quantity we have to substitute
to σn,4(4) into formula (26) to get the cost of algorithm mcr, which turns out
to be

cmcr = (145πn + 84πm + 108m2) log N + (24πn + 12πm)N. (30)

7 Algorithm st

The last method, which will be called st, is based on a doubling algorithm
devised by Stewart for solving block Hessenberg systems. It has been modified
in [2] for matrices with Toeplitz structure, in order to lower its computational
cost. Our goal is to show that a further decrease of the cost can be achieved
with band matrices. The basic idea is the following.

Let N = 2p, with p ≥ 2. For i = 0, . . . , p, let ni = 2in and denote by Ai the
ni × ni leading principal submatrix of A. We consider the sequence

A0 = B0, Ai+1 =

[
Ai Ri

Ui Ai

]
, Ap = A,

with
Ui = EB1E

T , Ri = EB−1E
T

= EFRF
T
E

T
.

27



At the ith level of recursion we put into relation the solution of the linear system

Ai+1z = t, with z =

[
z′

z′′

]
, t =

[
t′

t′′

]
, (31)

(where ′ and ′′ indicate the first half and the second half (resp.) of the vector)
with the solution of the system

[
Ai O

Ui Ai

] [
y′

y′′

]
=

[
t′

t′′

]
.

We have {
y′ = A−1

i t′

y′′ = A−1
i

(
t′′ − Ui y′

) (32)

and {
z′ = y′ − A−1

i Ri z′′

z′′ = T−1
i y′′

(33)

with
Ti = I − A−1

i Ui A−1
i Ri = I − GiE

T HiF
T
E

T
,

where
Gi = A−1

i EB1 and Hi = A−1
i EFR.

Due to the band structure of matrix Ai+1, matrix GiE
T HiF

T
E

T
is a low rank

(exactly m) correction to the ni dimensional identity. We can exploit this fact
by using the SMW formula. So we have

T−1
i = I + GiE

T HiP
−1
i F

T
E

T
, (34)

where matrix
Pi = I − F

T
E

T
GiE

T Hi

has size m. In this way the inverse of the ni × ni matrix Ti is obtained by
inverting the m×m matrix Pi. Replacing (34) into (33) we see that the solution
of system (31) of size ni+1 can be expressed as an additive correction of the two
solutions (32) of size ni in the following way

[
z′

z′′

]
=

[
y′

y′′

]
+


 −HiP

−1
i F

T
E

T
y′′

GiE
T HiP

−1
i F

T
E

T
y′′


 . (35)

The method st is based on the recursive application of this procedure. At the
highest level the solution of the system Apx = b leads to solving two systems
with half sized matrix Ap−1 and suitable right hand-sides. Each of these two
systems recursively leads to other two systems, and so on, until N elementary
sized systems, all having matrix B0, are obtained. They are solved and the
successive application of (35) allows the reconstruction of x.

To turn this outlined procedure into a really efficient method, we need a
compact notation of the matrices which appear in (35) and formulas to compute
them recursively. Their computation is the object of the transformation phase.
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7.1 Transformation phase

We consider the upper and lower blocks (called angle blocks) of the matrices Gi

and Hi

Gi = F
T
E

T
Gi, Gi = ET Gi, Hi = F

T
E

T
Hi, Hi = ET Hi.

The sizes are m× n for Gi, n× n for Gi, m× m for Hi and n× m for Hi. For
the index i = 0 we have

G0 = G0 = B−1
0 B1, G0 = F

T
G0,

H0 = H0 = B−1
0 FR, H0 = F

T
H0.

(36)

Then

A−1
i+1 =




(I + A−1

i RiT
−1
i A−1

i Ui)A
−1
i −A−1

i RiT
−1
i A−1

i

−T−1
i A−1

i UiA
−1
i T−1

i A−1
i





=




(I + HiP
−1
i GiE

T )A−1
i −HiP

−1
i F

T
E

T
A−1

i

−Gi(I + HiP
−1
i Gi)E

T A−1
i (I + GiHiP

−1
i F

T
E

T
)A−1

i


 ,

where
Pi = I − F

T
E

T
GiHi = I − Gi Hi. (37)

We have now the recursive relations for Gi and Hi

Gi+1 = A−1
i+1

[
E

O

]
B1 =

[
Gi + HiP

−1
i GiGi

−Gi(Gi + HiP
−1
i GiGi)

]
,

Hi+1 = A−1
i+1

[
O

E

]
F R =

[
−HiP

−1
i Hi

GiHiP
−1
i Hi + Hi

]
.

(38)

From (38) we get the recursive relations for the angle blocks

Gi+1 = Gi + HiP
−1
i GiGi, Hi+1 = −HiP

−1
i Hi,

Gi+1 = −Gi(Gi + HiP
−1
i GiGi), Hi+1 = GiHiP

−1
i Hi + Hi.

(39)

In the substitution phase we use also the matrices

Mi = GiHiP
−1
i , Ki = P−1

i Hi and Li = P−1
i GiGi. (40)

In the following the “over” and “under” line notation is used also for vectors.

Given a vector v of any size, we denote by v = F
T
E

T
v and v = ET v the

subvectors of the first m components and of the last n components of v (resp.).
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7.2 Substitution phase

For i = 0, . . . , p and j = 1, . . . , 2p−i let b
(i)
j be the jth subvector of size ni of b.

Then
b
(i+1)
j

′
= b

(i)
2j−1, b

(i+1)
j

′′
= b

(i)
2j .

We define now recursively a sequence of vectors y
(i)
j of size ni by means of the

systems

Aiy
(i)
j = t

(i)
j , for i = p, . . . , 0, and j = 1, . . . , 2p−i, (41)

where t
(p)
1 = b and

t
(i)
2j−1 = t

(i+1)
j

′
, t

(i)
2j = t

(i+1)
j

′′
− UiA

−1
i t

(i+1)
j

′
. (42)

Hence
y

(i)
2j−1 = A−1

i t
(i)
2j−1 = A−1

i t
(i+1)
j

′

and
y

(i)
2j = A−1

i t
(i)
2j = A−1

i

(
t
(i+1)
j

′′
− Ui y

(i)
2j−1

)
.

From (35) we have

y
(i+1)
j = A−1

i+1


 t

(i+1)
j

′

t
(i+1)
j

′′


 =

[
y

(i)
2j−1 − Hi P−1

i y
(i)
2j

y
(i)
2j + GiHi P−1

i y
(i)
2j

]
.

Then the vectors of the first m components and of the last n components of

y
(i+1)
j are given by

y
(i+1)
j = y

(i)
2j−1 − Hi P−1

i y
(i)
2j , y(i+1)

j
= y(i)

2j
+ GiHi P−1

i y
(i)
2j . (43)

The vectors y
(i+1)
j and y(i+1)

j
are constructed in the forward substitution phase.

They can be computed recursively, but we prefer to give the equivalent iterative
version in the next sketchy implementation.

Due to the structure of Ui, the vector t
(i)
j differs from b

(i)
j only in the first n

components. More precisely, we show recursively that

t
(i)
1 = b

(i)
1 , t

(i)
2j−1 = b

(i)
2j−1 − EB1y

(i+h)
k , for j > 1,

t
(i)
2j = b

(i)
2j − EB1y

(i)
2j−1

,
(44)

where h and k are defined by the relation

2j = 2 + 2h · k, with k odd. (45)

In fact, in the even case we have

t
(i)
2j = b

(i+1)
j

′′
− UiA

−1
i t

(i)
2j−1 = b

(i)
2j − Ui y

(i)
2j−1 = b

(i)
2j − EB1 y(i)

2j−1
.
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In the odd case we have

t
(i)
1 = t

(i+1)
1

′
= b

(i+1)
1

′
= b

(i)
1

and, if j is even

t
(i)
2j−1 = t

(i+1)
j

′
= b

(i+1)
j

′
− EB1 y(i+1)

j−1
= b

(i)
2j−1 − EB1 y(i+h)

k
,

with k = j − 1, h = 1 since 2j − 1 = 1 + 2(j − 1), and if j is odd

t
(i)
2j−1 = t

(i+1)
j

′
= b

(i+1)
j

′
− EB1 y(i+1+h)

k
= b

(i)
2j−1 − EB1 y(i+1+h)

k
,

with j = 1 + 2h · k, k odd. Hence 2j − 1 = 1 + 2h+1 · k.

In the backward substitution phase the solution x is reconstructed from the

vectors y
(i)
2j and y(i)

2j
. For i = 0, . . . , p and j = 1, . . . , 2p−i let x

(i)
j be the jth

subvector of size ni of x. The computation starts with

x
(p)
1 = x = A−1b = A−1

p t
(p)
1 = y

(p)
1 ,

i.e.
x

(p)
1 = y

(p)
1 and x

(p)
1 = y(p)

1
,

and proceeds with x
(i)
j and x

(i)
j for i = p − 1, . . . , 0 and j = 1, . . . , 2p−i. As a

matter of fact, only x
(0)
j are of interest at the last recursion level.

The even components x
(i)
2j and the odd components x

(i)
2j−1 are immediately

given by

x
(i)
2j = x

(i+1)
j , x

(i)
2j−1 = x

(i+1)
j , (46)

but of course we need also a rule for the other components. We have also

x
(i)
2j−2 = x

(i+h)
k , (47)

where h and k are defined in (45).

From the block tridiagonal structure of A we have

Ui x
(i)
j−1 + Ai x

(i)
j + Ri x

(i)
j+1 = b

(i)
j , for j = 1, . . . , J, J = 2p−i,

with x
(i)
0 = x

(i)
J+1 = 0. Then for the odd rows, except the first one, we have

Ai x
(i)
2j−1 = b

(i)
2j−1 − EB1 x

(i)
2j−2 − E FR x

(i)
2j ,

and from (47)

Ai x
(i)
2j−1 = b

(i)
2j−1 − EB1 x

(i+h)
k − E FR x

(i)
2j .
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Replacing b
(i)
2j−1 from (44) and using (41) we have

Ai

(
x

(i)
2j−1 − y

(i)
2j−1

)
= −EB1

(
x

(i+h)
k − y(i+h)

k

)
− E FR x

(i)
2j ,

hence
x

(i)
2j−1 = y(i)

2j−1
− Gi

(
x

(i+h)
k − y(i+h)

k

)
− Hi x

(i)
2j . (48)

Proceeding in a similar way we get

x
(i)
2j = y

(i)
2j − Gi

(
x

(i)
2j−1 − y(i)

2j−1

)
− Hi x

(i+1)
j+1 . (49)

Relations (48) and (49) form a linear system from which x
(i)
2j−1 and x

(i)
2j can be

computed. In fact, replacing x
(i)
2j−1 from (48) into (49) we get

Pix
(i)
2j = y

(i)
2j + GiGi

(
x

(i+h)
k − y(i+h)

k

)
− Hi x

(i+1)
j+1 ,

and finally

x
(i)
2j = P−1

i y
(i)
2j + P−1

i GiGi

(
x

(i+h)
k − y(i+h)

k

)
− P−1

i Hi x
(i+1)
j+1 . (50)

Hence we compute x
(i)
2j by applying (50) and x

(i)
2j−1 by applying (48).

Special subvectors are given by

x
(i)
1 = y(i)

1
− Hix

(i)
2 , x

(i)
2 = z

(i)
2 − P−1

i Hi x
(i+1)
2 ,

x
(i)
J = P−1

i y
(i)
J + P−1

i GiGi

(
x

(i+1)
J/2−1 − y

(i+1)
J/2−1

)
.

(51)

At the last recursive level the vectors x
(0)
2j need not be computed, because x

(0)
2j =

F
T
x

(0)
2j = F

T
x

(1)
j and (48) can be applied directly in the following way

x
(0)
1 = y(0)

1
− H0 F

T
x

(1)
1 ,

x
(0)
2j−1 = y(0)

2j−1
− G0

(
x

(h)
k − y

(h)
k

)
− H0 F

T
x

(1)
j , for j = 2, . . . , N/2.

(52)

7.3 Sketchy implementation

All the computations are carried out by using the d-descriptions of the involved
matrices. A first function blocks computes the angle blocks and Pi from (37)
for any i, starting with the initial positions (36) and using (39).

Function blocks (A)

1. compute B−1
0 ,

2. compute G0, G0, H0 and H0 from (36),

3. for i = 0, . . . , p − 1
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4. compute Pi from (37),

5. compute P−1
i ,

6. compute Mi, Ki and Li from (40),

7. compute Gi+1, Gi+1, Hi+1 and Hi+1 from (39).

The function forward computes iteratively the vectors needed in the last back-
ward phase by exploiting (43). It makes use of a function takem (u) which take
the first m components of a vector u, and of the logical function even (r) which
returns True if r is even.

Function forward (b)

1. c = 0,

2. for k = 1, . . . , N

3. c = y
(0)
k = B−1

0 (b
(0)
k − B1c), y

(0)
k = takem (c),

4. if even (k) then

5. j = k, i = 0,

6. while even(j)

7. j = j/2,

8. z
(i)
2j = P−1

i y
(i)
2j ,

9. y
(i+1)
j = y

(i)
2j−1 − Hiz

(i)
2j ,

10. c = y(i+1)
j

= y(i)
2j

+ Miy
(i)
2j ,

11. i = i + 1.

Now function st implements the whole method.

Function st (A, N, b)

1. call blocks (A),

2. call forward(b) to compute the vectors y
(i)
j , y(i)

j
and z

(i)
2j ,

3. let x
(p)
1 = y

(p)
1 , x

(p)
1 = y(p)

1
,

4. for i = p − 1, . . . , 1, for j = 1, . . . , 2p−i−1,

5. set x
(i)
2j = x

(i+1)
j and x

(i)
2j−1 = x

(i+1)
j ,

6. compute x
(i)
2j and x

(i)
2j−1 by applying (50), (51) and (48),

7. for j = N/2, . . . , 1 compute x
(0)
2j and x

(0)
2j−1 by applying (46) and (52).
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7.4 Useful vectors

To give the d-description of the matrices of algorithm st we must introduce
some new vectors and give some formulas connecting them.

ẽj is the jth canonical vector of size ni,

rT = eT
nR is the last row of R,

xi = Hie1 is the first column of Hi,

xi = Hie1 is the first column of Hi,

uT
i = rT Gi is the last row of RGi,

uT
i = eT

nGi is the last row of Gi,

vT
i = rT Hi is the last row of RHi,

vT
i = eT

n Hi is the last row of Hi,

ℓi = F
T
E T A−1

i ẽ1 is the vector of the first m entries of the first column of A−1
i ,

ℓi = ET A−1
i ẽ1 is the vector of the last n entries of the first column of A−1

i ,

gT
i = ẽ

T
ni−nGi is the (ni − n)th row of Gi for i ≥ 1,

hT
i = ẽ

T
ni−nHi is the (ni − n)th row of Hi for i ≥ 1,

wi = Jf0 − ui.

From (39) we get

xi+1 = −HiP
−1
i Hie1 = −HiP

−1
i xi, x0 = F

T
f̂1,

xi+1 = (Hi + GiHiP
−1
i Hi)e1 = xi + GiHiP

−1
i xi, x0 = f̂1,

uT
i+1 = uT

i + rT HiP
−1
i GiGi = uT

i + vT
i P−1

i GiGi, uT
0 = f̂

T

1 JB1,

uT
i+1 = −eT

n

(
G2

i + GiHiP
−1
i GiGi

)
= −uT

i Gi − uT
i HiP

−1
i GiGi, uT

0 = f̂
T

2 JB1,

vT
i+1 = −rT HiP

−1
i Hi = −vT

i P−1
i Hi, vT

0 = f̂
T

1 JFR,

vT
i+1 = vT

i + eT
nGiHiP

−1
i Hi = vT

i + uT
i HiP

−1
i Hi, vT

0 = f̂
T

2 JFR,

ℓi+1 = −Gi(I + HiP
−1
i Gi)ℓi, ℓ0 = f̂2,

ℓi+1 = ℓi + HiP
−1
i Giℓi, ℓ0 = F

T
ℓ0,

gT
i+1 = −gT

i

(
Gi + HiP

−1
i GiGi

)
, gT

0 = −eT
n

h
T
i+1 = h

T
i + gT

i HiP
−1
i Hi, h

T
0 = 0T .
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From B1e1 = ane1 it follows that

Gie1 = anℓi, Gie1 = anℓi.

From
fT

0 JET + ẽT
ni−nan =

[
0, . . . , 0, an, an−1, . . . , a0

]
= ẽT

ni
Ai,

it follows that

(fT
0 JET + ẽ

T
ni−nan)A−1

i EFR = ẽni
EFR = eT

nFR = rT ,

hence
wT

i Hi + anh
T
i = (fT

0 J − rT Gi)Hi + anh
T
i = rT Pi,

and analogously
fT

0 JGi + angT
i = 0T .

7.5 D-description of the matrices

Matrix R size m × m d-rank=0.

∆(R) = O.

Matrix Ai

∆(Ai) =
(
Ee1

) (
eT

nB−1E
T
)
−

(
EB−1e1

) (
eT

nET
)
.

Matrix Gi = A−1
i EB1 size ni × n d-rank=3

∆(Gi) = −A−1
i ∆(Ai)A

−1
i EB1 + A−1

i ∆(E)B1 + A−1
i E∆(B1)

= −A−1
i

[(
Ee1

) (
eT

n B−1E
T
)
−

(
EB−1e1

) (
eT

nET
)]

Gi − A−1
i ẽn+1e

T
nB1

+A−1
i E

(
e1e

T
nB0 − B0e1e

T
n

)

=
(
A−1

i EB−1e1

) (
eT

nET Gi

)
+

(
A−1

i Ee1

) (
eT

n (B0 − B−1E
T
Gi)

)

−A−1
i

(
an ẽn+1 + EB0e1

)
eT

n

=
(
A−1

i EB−1e1

)(
eT

nGi

)
+

(
A−1

i E e1

)(
fT

0 J − rT Gi

)
− ẽ1e

T
n ,

since eT
nB1 = aneT

n and anẽn+1 + EB0e1 = Aiẽ1.

Matrix Gi = F
T
E T Gi size m × n d-rank=3

∆(Gi) = F
T
E T ∆(Gi)

=
(
F

T
E T A−1

i EB−1e1

)(
eT

n Gi

)
+

(
F

T
E T A−1

i E e1

) (
fT

0 J − rT Gi

)
− F

T
e1e

T
n

=
(
HiF

T
e1

)(
eT

nGi

)
+ ℓi

(
fT

0 J − rT Gi

)
− e1e

T
n

= xi uT
i + ℓi wT

i − e1 eT
n .

The first column of Gi is the d-vector anℓi. The d-representation of Gi has the
form
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@
@

@ @
@

@

@
@

@
@

@
@

+ @
@

@ @
@

@

@
@

@
@

@
@

L(xi) LT (Zui) L(ℓi) anI + LT (Zwi)

Matrix Gi = ET Gi size n × n d-rank=3 (since ET ẽ1 = 0)

∆(Gi) = ET ∆(Gi) + ∆(ET )Gi

=
(
ET A−1

i EB−1e1

)(
eT

n Gi

)
+

(
ET A−1

i Ee1

) (
fT

0 J − rT Gi

)

−ET ẽ1e
T
n +

(
e1ẽ

T
ni−n

)
Gi

= xi uT
i + ℓi wT

i + e1 gT
i .

The first column of Gi is the d-vector anℓi. The d-representation of Gi has the
form

@
@

@
@

@
@

@
@

@
@

@
@

+

@
@

@
@

@
@

@
@

@
@

@
@

+

@
@

@
@

@
@

L(xi) LT (Zui) L(ℓi) anI + LT (Zwi) LT (Zgi)

Matrix Hi = A−1
i EFR size ni × m

∆(Hi) = −A−1
i ∆(Ai)A

−1
i EFR

=
(
− A−1

i Ee1

) (
eT

n B−1E
T Hi

)
+

(
A−1

i EB−1e1

) (
eT

nET Hi

)

=
(
A−1

i EB−1e1

) (
eT

nHi

)
−

(
A−1

i Ee1

) (
rT Hi

)
.

Matrix Hi = F
T
E T Hi size m × m d-rank=2

∆(Hi) = F
T
E T ∆(Hi)

=
(
F

T
E T A−1

i EB−1e1

) (
eT

nHi

)
−

(
F

T
E T A−1

i Ee1

) (
rT Hi

)

=
(
HiF

T
e1

) (
eT

nHi

)
− ℓi

(
rT Hi

)

= xi vT
i − ℓi vT

i ,

The first column of Hi is the d-vector xi. The d-representation of Hi has the
form
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@
@

@

@
@

@
−

@
@

@

@
@

@

L(xi) I + LT (Zvi) L(ℓi) LT (Zvi)

Matrix Hi = ET Hi size n × m d-rank=3 (d-rank=2 for i = 0)

∆(H i) = ET ∆(Hi) + ∆(ET )Hi

=
(
ET A−1

i EB−1e1

) (
eT

nHi

)
−

(
ET A−1

i Ee1

) (
rT Hi

)
+ e1ẽ

T
ni−nHi

=
(
HiF

T
e1

) (
eT

nHi

)
− ℓi

(
rT Hi

)
+ e1h

T
i

= xi vT
i − ℓi vT

i + e1 hT
i .

The first column of Hi is the d-vector xi. The d-representation of Hi has the
form

@
@

@
@

@
@ @

@
@ @

@
@

−

@
@

@
@

@
@ @

@
@ @

@
@

+

@
@

@ @
@

@

L(xi) I + LT (Zvi) L(ℓi) LT (Zvi) LT (Zhi)

Matrix Pi = I − GiHi size m × m d-rank=4

∆(Pi) = ∆(I) − ∆(Gi)Hi − Gi∆(Hi) = −∆(Gi)Hi − Gi∆(Hi)

= −xi uT
i Hi − ℓi wT

i Hi + e1 eT
n Hi

−Gixi vT
i + Giℓi vT

i − Gie1 hT
i

= −xi uT
i Hi − ℓi

(
wT

i Hi + anhT
i

)
+ Giℓi vT

i +
(
e1 − Gixi

)
vT

i

= −xi qT
i
− ℓi qT

i + pi vT
i + p

i
vT

i ,

where
qT

i
= uT

i Hi, qT
i = rT Pi = rT − uT

i Hi,

pi = Giℓi, p
i
= Pi e1 = e1 − Gixi.

The first column of Pi is the d-vector p
i
. The d-representation of Pi has the

form
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−
@

@
@

@
@

@
−

@
@

@

@
@

@
+

@
@

@

@
@

@
+

@
@

@

@
@

@

L(xi) LT (Zq
i
) L(ℓi) LT (Zqi) L(pi) LT (Zvi) L(p

i
) I + LT (Zvi)

Matrix P−1
i size m × m d-rank=4

∆(P−1
i ) = −P−1

i ∆(P−1
i )P−1

i

=
(
P−1

i xi

) (
qT

i
P−1

i

)
+

(
P−1

i ℓi

)
rT −

(
P−1

i pi

) (
vT

i P−1
i

)
− e1

(
vT

i P−1
i

)

= p̃
(1)
i q̃

(1)T
i + p̃

(2)
i rT − p̃

(3)
i q̃

(2)T
i − e1 q̃

(3)T
i ,

where
p̃

(1)
i = P−1

i xi, q̃
(1)T
i = qT

i
P−1

i ,

p̃
(2)
i = P−1

i ℓi, q̃
(2)T
i = vT

i P−1
i ,

p̃
(3)
i = P−1

i pi, q̃
(3)T
i = vT

i P−1
i .

The first column of P−1
i is p̃i = P−1

i e1 and is not a d-vector. The d-representation
of P−1

i has the form

@
@

@
+

@
@

@

@
@

@
+

@
@

@

@
@

@
−

@
@

@

@
@

@
−

@
@

@

L(p̃i) L(p̃
(1)
i ) LT (Zq̃

(1)
i ) L(p̃

(2)
i ) LT (Zr) L(p̃

(3)
i ) LT (Zq̃

(2)
i ) LT (Zq̃

(3)
i )

Matrix Mi = GiHiP
−1
i size n × m d-rank=4

∆(Mi) = ∆(Gi)HiP
−1
i + Gi∆(H i)P

−1
i + GiHi∆(P−1

i )

=
(
xi uT

i + ℓi wT
i + e1 gT

i

)
HiP

−1
i + Gi

(
xi vT

i − ℓi vT
i + e1 hT

i

)
P−1

i

+GiHi

(
p̃

(1)
i q̃

(1)T
i + p̃

(2)
i rT − p̃

(3)
i q̃

(2)T
i − e1 q̃

(3)T
i ).
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Since

xi uT
i HiP

−1
i + GiHip̃

(1)
i q̃

(1)T
i = xi+1 q̃

(1)T
i ,

ℓi wT
i HiP

−1
i + Gie1 hT

i P−1
i + GiHi p̃

(2)
i rT =

(
ℓi + GiHi p̃

(2)
i

)
rT ,

−Giℓi vT
i P−1

i − GiHi p̃
(3)
i q̃

(2)T
i = ℓi+1 q̃

(2)T
i ,

Gixi vT
i P−1

i − GiHie1 q̃
(3)T
i = 0,

we have

∆(Mi) = xi+1 q̃
(1)T
i + m

(1)
i rT + ℓi+1 q̃

(2)T
i + e1 m

(2)T
i ,

where
m

(1)
i = ℓi + GiHi p̃

(2)
i , m

(2)T
i = gT

i HiP
−1
i .

The first column of Mi is mi = GiHip̃i and is not a d-vector. The d-representation
of Mi has the form

@
@

@
@

@
@ @

@
@ +

@
@

@
@

@
@ @

@
@ @

@
@

+

L(mi) L(xi+1) LT (Zq̃
(1)
i )

@
@

@
@

@
@ @

@
@ @

@
@

+

@
@

@
@

@
@ @

@
@ @

@
@

+

@
@

@ @
@

@

L(m
(1)
i ) LT (Zr) L(ℓi+1) LT (Zq̃

(2)
i ) LT (Zm

(2)
i )

Note that the first three right d-vectors of Mi coincide with the first three right
d-vectors of P−1

i .

Matrix Ki = P−1
i Hi size m × m d-rank=3

∆(Ki) = ∆(P−1
i )Hi + P−1

i ∆(Hi)

=
(
p̃

(1)
i q̃

(1)T
i + p̃

(2)
i rT − p̃

(3)
i q̃

(2)T
i − e1 q̃

(3)T
i

)
Hi + P−1

i

(
xi vT

i − ℓi vT
i

)
.
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Since
p̃

(1)
i q̃

(1)T
i Hi + P−1

i xi vT
i = p̃

(1)
i vT

i+1,

p̃
(2)
i rT Hi − P−1

i ℓi vT
i = 0,

−p̃
(3)
i q̃

(2)T
i Hi = p̃

(3)
i vT

i+1,

we have

∆(Ki) = p̃
(1)
i vT

i+1 + p̃
(3)
i vT

i+1 − e1k
T
i , where kT

i = q̃
(3)T
i Hi.

The first column of Ki is the d-vector P−1
i xi = p̃

(1)
i . The d-representation of

Ki has the form

@
@

@

@
@

@
+

@
@

@

@
@

@
−

@
@

@

L(p̃
(1)
i ) I + LT (Zvi+1) L(p̃

(3)
i ) LT (Zvi+1

)
LT (Zki)

Note that the first two right d-vectors of Ki coincide with the two right d-vectors
of Hi+1.

Matrix Li = P−1
i GiGi size m × n d-rank=3

∆(Li) = ∆(P−1
i )GiGi + P−1

i ∆(Gi)Gi + P−1
i Gi∆(Gi)

=
(
p̃

(1)
i q̃

(1)T
i + p̃

(2)
i rT − p̃

(3)
i q̃

(2)T
i − e1 q̃

(3)T
i

)
GiGi

+P−1
i

(
xi uT

i + ℓi wT
i − e1 eT

n

)
Gi + P−1

i Gi

(
xi uT

i + ℓi wT
i + e1 gT

i

)
.

Since

p̃
(1)
i q̃

(1)T
i GiGi + P−1

i xi uT
i Gi = −p̃

(1)
i uT

i+1,

p̃
(2)
i rT GiGi + P−1

i ℓi wT
i Gi + P−1

i Gie1 gT
i = 0,

−p̃
(3)
i q̃

(2)T
i GiGi + P−1

i Giℓi wT
i = p̃

(3)
i wT

i+1,

−e1 q̃
(3)T
i GiGi − P−1

i e1 eT
nGi + P−1

i Gi xi uT
i = −e1

(
uT

i + q̃
(3)T
i GiGi

)
,

we have

∆(Li) = −p̃
(1)
i uT

i+1 + p̃
(3)
i wT

i+1 − e1

(
uT

i + k
T

i

)
, where k

T

i = q̃
(3)T
i GiGi.

The first column of Li is the d-vector

P−1
i GiGie1 = anP−1

i Giℓi = anP−1
i pi = anp̃

(3)
i .

The d-representation of Li has the form
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@

@
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@

@
@

@
@

@
@

+
@

@
@ @

@
@

@
@

@
@

@
@

L(p̃
(1)
i ) LT (Zui+1) L(p̃

(3)
i ) anI + LT (Z(wi+1))

−
@

@
@

@
@

@
@

@
@

LT (Z(ui + ki)

Note that the first two right d-vectors of Li coincide with the first two right
d-vectors of Gi+1.

7.6 Cost of matrix by vector product

Table 4 lists the cost of computing matrix by vector products, for the matrices
used in algorithm st. As already said, this cost does not include the cost for
the transformation of the vectors of the d-description of the matrix itself and
the cost of transforming the input vector.

matrix cost

Gi 2πn + 3πm

G
T

i 3πn + 2πm

Gi 5πn

Hi 5πm

Hi 3πn + 3πm

HT
i 2πn + 4πm

P−1
i 7πm

Mi 5πn + 4πm

Ki 5πm

Li 3πn + 3πm

Table 4: Cost of computing matrix by vector products for algorithm st.
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We observe that frequently in the recursive relations of the vectors we have to
compute the products T1z and T2z of two different matrices by the same input
vector z. If T1 and T2 have some right d-vectors in common, for the product
which is made after we can exploit some intermediate results of the product
which is made before. For example, if T1 and T2 have two right d-vectors in
common and the length of z is n, the cost of the second product decreases by
2πn. An analogous decrease holds for the products zT T1 and zT T2 if T1 and T2

have some left d-vectors in common.

7.7 Cost of algorithm st

7.7.1 Transformation phase

(a) Initially the d-description of matrix B−1
0 is computed by solving two sys-

tems with matrix B0

f̂1 = B−1
0 f−1, f̂2 = B−1

0 e1.

Hence the vectors x0 = F
T
f̂1, x0 = f̂1, ℓ0 = s2, ℓ0 = F

T
f̂2, gT

0 = −eT
n and

hT
0 = 0T are available. The vectors uT

0 = f̂
T

1 JB1, uT
0 = f̂

T

2 JB1, vT
0 = sT

1 JFR,
vT

0 = sT
2 JFR are computed. All these vectors are transformed. The cost of

this initialization is not considered, since we are interested into the cost of the
general ith step of the algorithm.

(b) Now the ith step begins, for i = 0, . . . , p−1. First matrices Pi = I−GiHi

and P−1
i are computed:

1. for the vector pi = Giℓi, the product by matrix Gi of an input vector
already transformed costs 2πn + 3πm.

2. for the vector p
i
= F

T
e1 − Gixi, as above, the cost is 2πn + 3πm.

3. for the vector qT
i

= uT
i Hi, one product by matrix HT

i and input vector
already transformed, so the cost is 2πn + 4πm.

4. for the vector qT
i = rT − uT

i Hi, as above, the cost is 2πn + 4πm.

5. for the vector gT
i

= gT
i Hi, as above, the cost is 2πn + 4πm.

6. The vectors p̃
(1)
i = P−1

i xi, p̃
(2)
i = P−1

i ℓi, p̃
(3)
i = P−1

i pi, p̃i = P−1
i e1,

q̃
(1)T
i = qT

i
P−1

i , q̃
(2)T
i = vT

i P−1
i , q̃

(3)T
i = vT

i P−1
i , m

(2)T
i = gT

i
P−1

i

(actually this last vector belongs to the d-description of Mi) are computed
by solving four systems with matrix Pi and four systems with matrix PT

i .
The cost is 2σm,4(4). The vectors are then transformed with cost 8πm.

Now the vectors which enter into the d-description of Gi+1, Gi+1, Hi+1, Hi+1,
Ki and Li are computed.
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Cost of the pair

xi+1 = −HiP
−1
i xi = −Hip̃

(1)
i ,

xi+1 = xi + GiHiP
−1
i xi = xi + GiHip̃

(1)
i .

The input vector p̃
(1)
i has already been transformed. Matrices Hi and Hi have

two right d-vectors in common, so the cost of the second product decreases by

2πm. The result of Hip̃
(1)
i must be transformed, then the product by Gi is

performed. All this procedure costs 9πn + 6πm.

The same cost holds for the pair

ℓi+1 = ℓi + HiP
−1
i Giℓi = ℓi + Hip̃

(3)
i ,

ℓi+1 = −Giℓi − GiHiP
−1
i Giℓi = −Gi

(
ℓi + Hip̃

(3)
i

)
.

Cost of the pair

uT
i+1 = −uT

i Gi − uT
i HiP

−1
i GiGi = −

(
uT

i + q̃
(1)T
i Gi

)
Gi,

vT
i+1 = vT

i + uT
i HiP

−1
i Hi = vT

i + q̃
(1)T
i Hi,

The input vector q̃
(1)
i has already been transformed. Matrices Gi and Hi have

two left d-vectors in common, so the cost of the second product decreases by

2πm. The result of q̃
(1)T
i Gi must be transformed, then the product by Gi is

performed. All this procedure costs 9πn + 5πm.

The same cost holds for the pair

uT
i+1 = uT

i + vT
i P−1

i GiGi = uT
i + q̃

(2)T
i GiGi,

vT
i+1 = −vT

i P−1
i Hi = −q̃

(2)T
i Hi,

for the pair

gT
i+1 = −gT

i Gi − gT
i HiP

−1
i GiGi = −

(
gT

i + m
(2)T
i Gi

)
Gi,

hT
i+1 = hT

i + gT
i HiP

−1
i Hi = hT

i + m
(2)T
i Hi,

and for the pair

k
T

i = q̃
(3)T
i GiGi and kT

i = q̃
(3)T
i Hi.

The transformation of the 12 output vectors so computed costs 6πn + 6πm.

For matrix Mi we have still to compute

m
(1)
i = ℓi + GiHi p̃

(2)
i and mi = GiHip̃i.

Both input vectors have already been transformed, so the two multiplications
by Hi and by Gi and the transformations of the results cost 20πn + 6πm.

No cost is required for vector wi+1.
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7.7.2 Substitution phase

For the forward phase

1. y(0)
i

= B−1
0 (b

(0)
i − B1c) two products are required, by B1 and by B−1

0 ,
both input vectors have not yet been transformed, so the cost is 2πn and
6πn. For i = 1, . . . , N the cost is 8πnN .

2. z
(i)
2j = P−1

i y
(i)
2j , the product by matrix P−1

i of an input vector not yet

transformed costs 8πm. Vector z
(i)
2j is then transformed with cost πm. For

the N vectors to be computed the cost is 9πmN .

3. Cost of the pair

y
(i+1)
j = y

(i)
2j−1 − Hi z

(i)
2j and y(i+1)

j
= y(i)

2j
+ Mi y

(i)
2j .

The product by Hi of an already transformed vector costs 5πm. The
product by Mi costs 5πn + πm, since Mi has three right d-vectors in
common with P−1

i and the product of P−1
i with the same input vector has

just been made. For the N pairs to be computed the cost is (5πn+6πm)N .

For the backward phase

1. When they are computed, the input vectors x
(i)
k −y

(i)
k , with i = p−1, . . . , 1,

must be transformed for all odd indices k and x
(i)
2j must be transformed

for all even indices 2j. Moreover F
T
x

(1)
j must be transformed for j =

1, . . . , N/2. The cost is (πn/2 + πm)N .

2. By (48) and (52) the N vectors x
(i)
2j−1 for i = p − 1, . . . , 1 are computed

performing products by Gi and by Hi. All input vectors have already
been transformed. By the linearity, the last backtransformation can be
counted only once. Hence the cost for all these vectors is (7πn + 3πm)N .

3. By (50) the N/2 vectors x
(i)
2j = z

(i)
2j + Li

(
x

(i+h)
k − y

(i+h)
k

)
− Ki x

(i+1)
j+1

are computed performing products by Li and by Ki. We take into ac-

count that the products Ki x
(i+1)
j+1 for odd indices j correspond to products

Hi+1 x
(i+1)
2j already considered for formula (48). Since Ki and Hi+1 have

two right d-vectors in common, the cost of Ki x
(i+1)
j+1 with j odd is 3πm.

The other half of the products by Ki corresponding to even indices have
full cost 5πm. The same argument holds for Li. Hence half of the products
cost πn + 3πm and the other half cost 3πn + 3πm. As in the previous item
2. by the linearity, the last backtransformation can be counted only once.
Hence the cost for all the vectors to be computed by (50) is (πn +3πm)N .
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7.7.3 Overall cost

For the transformation phase the cost of the ith step is

ti = 90πn + 70πm + 2σm,4(4)

and must be multiplied by log N . For the substitution phase the cost is

s = (21.5πn + 22πm)N.

Since 2σm,4(4) = 29m2, we have

cst = ti log N + s = (90πn + 70πm + 29m2) log N + (21.5πn + 22πm)N. (53)

8 Analysis of stability

Even if our primary interest in studying the behaviour of the introduced algo-
rithms concerns the computational costs, the stability issue is also briefly taken
into consideration. We do not perform here a detailed stability analysis of the
single methods and refer to known results presented in the literature.

1. For algorithm ge we refer to the discussion presented in [14]. The hypothesis
of block diagonal dominance, expressed in our case as

‖B−1
0 ‖−1 ≥ ‖B1‖ + ‖B−1‖, (54)

guarantees that block Gaussian elimination is stable, i.e. that the matrix L̂i

effectively computed in place of B1S
−1
i satisfies

L̂iSi = B1 + Ei, with ‖Ei‖ ≤ c(n, i) ǫ ‖L̂i‖ ‖Si‖,

where ǫ is the machine precision and c(n, i) is a slowly increasing function of the
size n and the recursive index i. In practice, this means that the stability of ge
is guaranteed if the Schur complement S−1

i defined in (9) is well computed for
any i. However, also the simpler point diagonal dominance by columns (in our
case the detail ”by columns” can be dropped) guarantees that block Gaussian
elimination is stable.

2. For algorithms cr and mcr we refer to [24], where the stability of the cyclic
reduction applied to block tridiagonal systems is studied under the assumption
that the matrix is block diagonally dominant, expressed in our case as

s = β + γ ≤ 1, where β = ‖B1B
−1
0 ‖ and γ = ‖B−1B

−1
0 ‖, (55)

for some multiplicative norm. By forward error analysis the following result is
shown in [24]:

‖x̃ − x‖
‖x‖ ≤ f(n, N)κ ǫ,
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where ‖ ‖ is an infinite block norm, κ = ‖B−1
0 ‖(‖B0‖‖x‖ + ‖b‖)/‖x‖ depends

on the condition number of B0, x̃ is the computed solution, and

f(n, N) =

{
cnN2 log N if s = 1,
cng(s) log N if s < 1,

cn being a constant depending linearly on n and g(s) being a fast increasing
function of s alone. If s is too close to 1, then g(s) should be replaced by N2.
For example, if s = 0.9 we have g(s) ∼ 100 and the first bound should be taken
for N ≤ 10, while for s = 0.99 we have g(s) ∼ 10000 and the first bound should
be taken for N ≤ 100.

3. For algorithm st we refer to [18], which analyzes the stability of the divide-
and-conquer algorithm described by Stewart in [22] and gives an upper bound
to the residual. More precisely, the general case of the system AX = B is
considered and the computed X is shown to satisfy AX = B + ∆B, with
‖∆B‖ ≤ η‖A‖ ‖X‖, η being a small multiple of ǫ. In the case where the right-
hand side B is a vector, this residual stability is the same as the backward
stability. Two important classes of matrices, i.e. the block diagonally domi-
nant matrices (satisfying (54)) and the M-matrices, are identified for which the
residual stability is guaranteed.

All the previous results are obtained under the hypothesis that the rounding
errors which arise in multiplying and inverting matrices at block size are under
control. Then our attention on the stability issue is shifted to the techniques
used for computing the inverse matrices, i.e. to the SMW formula, used for
reducing the size of matrices to be inverted, and to the exploitation of the
Toeplitz structure for computing products.

Regarding SMW formula, its stability depends on the conditioning of the
matrix effectively inverted [25] (examined separately for each algorithm in the
next subsection) and on the stability of the method actually used for the inver-
sion at block size. As already said, we suggest for this inversion a generalization
[19] of Levinson algorithm for Toeplitz like matrices. The stability of Levinson
algorithm has been analyzed in many papers (see for example [6], [10]). It has
been proved that the algorithm is stable for positive definite Toeplitz matrices.
There are variants of Levinson algorithm which embed look-ahead techniques
and guarantee weak stability even in the nonsymmetric case [7]. Anyway, our
numerical experiments have shown that if all the matrices to be inverted enjoy
some diagonally dominance property, the errors arising during the computations
remain of the order of the machine precision.

8.1 Conditioning of the Sherman-Morrison-Woodbury ma-

trix

We investigate now the conditioning κ(P ) = ‖P‖ ‖P−1‖ of the matrix P in-
verted at block size when the SMW formula is applied by the different methods.
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SMW formula updates the inverse of the matrix

T = B − UV

in terms of the inverse of B

T−1 = B−1 + B−1UP−1V B−1, where P = I − V B−1U.

In the following we use also the relation

P−1 = I + V T−1U.

Since SMW formula is just an intermediate step in a larger algorithm whose
stability cannot be expected unless some dominance property holds, we will
restrict our analysis to the case of point diagonal dominance. Our aim is to
estimate the growth of κ(P ) with respect to κ(A). The norm ‖ ‖ used will be
determined for each method by simplicity consideration.

To this aim, we need some upper bounds on norms which can be derived
considering suitable block factorizations. Let M be a partitioned matrix of the
form

M =

[
M11 M12

M21 M22

]
.

Let S0 = M11 and S1 = M22 − M21M
−1
11 M12 (the Schur complement of M11).

The following properties are useful for stability analysis.

1. If M is point diagonally dominant by columns, then

‖M21M
−1
11 ‖1 ≤ 1.

2. If M is point diagonally dominant by rows, then

‖M−1
11 M12‖∞ ≤ 1.

These bounds follow (see [14], probl. 12.5 p. 258) from the two factorizations
(the first one is the block LU decomposition of M and the second one is the
transpose of the block LU decomposition of MT )

M =

[
I O

M21M
−1
11 I

] [
M11 M12

O S1

]
,

M =

[
M11 O
M21 S1

] [
I M−1

11 M12

O I

]
.

In both cases S1 maintains the same diagonal dominance of M . In the case of
a Toeplitz matrix, which is persymmetric, both bounds hold and we have also
‖M12M

−1
11 ‖1 ≤ 1 and ‖M−1

11 M21‖∞ ≤ 1.

Analogous bounds can be derived if we apply a block factorization procedure
to a block tridiagonal matrix M . Then matrix L of its LU decomposition is lower
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block bidiagonal with identity principal blocks and subdiagonal blocks having
1-norm upper bounded by 1, while matrix U is upper block bidiagonal with
principal blocks equal to the Schur complements Si. The Schur complements
Si maintain the same dominance of M .

Since U−1 = M−1L, we have

‖S−1
i ‖ ≤ ‖U−1‖ ≤ ‖M−1‖ ‖L‖. (56)

8.1.1 Algorithm ge

For algorithm ge we consider the matrix defined in (15)

Pi = I − V Ui, where V = RF
T
B−1

0 , Ui = B1S
−1
i F ,

and we have

Si+1 = (I − UiV )B0, S−1
i+1 = B−1

0 (I + UiP
−1
i V ), P−1

i = I + V B0S
−1
i+1Ui.

The norm used in this case is the 1-norm.

Under the hypothesis of point diagonal dominance for the Toeplitz matrix
A, applying block LU factorization to A or AT from the considerations made
above it follows that both block matrices B1S

−1
i and B−1S

−1
i have 1-norm

upper bounded by 1. Then we have

‖Ui‖1 = ‖B1S
−1
i F‖1 ≤ ‖B1S

−1
i ‖1 ≤ 1.

and
‖V ‖1 = ‖RF

T
B−1

0 ‖1 ≤ ‖B−1B
−1
0 ‖1 ≤ 1,

hence
‖Pi‖1 ≤ 1 + ‖V ‖1 ‖Ui‖1 ≤ 2.

Now

‖P−1
i ‖1 ≤ 1 + ‖V B0S

−1
i+1Ui‖1 ≤ 1 + ‖V ‖1 ‖B0‖1 ‖S−1

i+1‖1 ‖Ui‖1.

From (56) we have

‖S−1
i+1‖1 ≤ ‖A−1 ‖1 (1 + ‖B1S

−1
i ‖1) ≤ 2 ‖A−1‖1.

Then
‖P−1

i ‖1 ≤ 1 + 2 ‖A‖1 ‖A−1‖1

and
κ1(Pi) ≤ 2 + 4 κ1(A).

We conclude that the conditioning of Pi is not worse than the conditioning of A.
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8.1.2 Algorithm mcr

For algorithm mcr we consider the matrix defined in (28)

P (i) = I − V (i)H
(i)
0

−1
U (i), where V (i) =

[
V

(i)
1

F
T

]
, U (i) =

[
F

∣∣ U
(i)
1

]

and

V
(i)
1 = FT H

(i)
−1 H

(i)
0

−1
H

(i)
1 , and U

(i)
1 = H

(i)
1 H

(i)
0

−1
H

(i)
−1 F .

We have

H
(i+1)
0 = H

(i)
0 − U (i)V (i), H

(i+1)
0

−1
= H

(i)
0

−1
+ H

(i)
0

−1
U (i)P

(i)
i

−1
V (i)H

(i)
0

−1

and

P (i)−1
= I + V (i)H

(i+1)
0

−1
U (i).

The norm used in this case is the 1-norm and for simplicity we assume that
‖A‖1 ≥ 1.

As already noted in Remark 5.1, matrices H
(i)
−1 H

(i)
0

−1
and H

(i)
1 H

(i)
0

−1
ap-

pear as blocks of the lower triangular factor L of the block LU factorization

of the matrix Ã = Ω AΩT and matrices H
(i)
0 appear as diagonal blocks of the

upper triangular factor U . Under the hypothesis of point diagonal dominance
for A also Ã is point diagonally dominant and we have

τ
(i)
−1 = ‖H(i)

−1 H
(i)
0

−1
‖1 ≤ 1 and τ

(i)
1 = ‖H(i)

1 H
(i)
0

−1
‖1 ≤ 1.

Moreover matrices H
(i)
−1 and H

(i)
1 appear as blocks of the upper triangular factor

U of the block LU factorization and we have

‖H(i)
−1‖1 ≤ ‖U‖1 ≤ ‖L−1|‖1 ‖Ã‖1 = ‖L−1|‖1 ‖A‖1 ≤ 2 ‖A‖1,

and analogously

‖H(i)
1 ‖1 ≤ 2 ‖A‖1.

Replacing the expression of V (i) and U (i) into P (i) we get

P (i) = I − FT H−1 GH F,

where

F =

[
F O

O F

]
, H =

[
I O

O H
(i)
0

]

and

G =



 H
(i)
−1H

(i)
0

−1
H

(i)
1 H

(i)
0

−1

I




[

I

∣∣∣∣ H
(i)
1 H

(i)
0

−1
H

(i)
−1H

(i)
0

−1
]
.
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Now we have

‖G‖1 ≤
(
1 + τ

(i)
−1 τ

(i)
1

)
max

{
1, τ

(i)
1 τ

(i)
−1

}
≤ 2,

‖P (i)‖1 ≤ 1 + ‖H−1 GH‖1 ≤ 1 +
√

2n ‖H−1 GH‖2 = 1 +
√

2n ‖G‖2

≤ 1 + 2n ‖G‖1 ≤ 1 + 4n.

For what concerns P (i)−1
, we have

‖P (i)−1‖1 ≤ 1 + ‖V (i)‖1 ‖H(i+1)
0

−1
‖1 ‖U (i)‖1,

‖V (i)‖1 ≤ 1 + ‖H(i)
−1 H

(i)
0

−1
H

(i)
1 ‖1 ≤ 1 + τ

(i)
−1 ‖H(i)

1 ‖1 ≤ 1 + 2 ‖A‖1,

‖U (i)‖1 ≤ max
{
1, ‖H(i)

1 H
(i)
0

−1
H

(i)
−1‖1

}
≤ max

{
1, τ

(i)
1 ‖H(i)

−1‖1

}
≤ 2 ‖A‖1

and

‖H(i+1)
0

−1
‖1 ≤ ‖A−1‖1 ‖L‖1 ≤ 2 ‖A−1‖1.

Hence
κ1(P

(i)) ≤ (1 + 4n)
(
1 + 4(1 + 2 ‖A‖1)κ1(A)

)
≤ c κ1(A),

where c is a slowly increasing function of n and ‖A‖1. We conclude that the
conditioning of Pi is not worse than the conditioning of A.

8.1.3 Algorithm st

For algorithm st we consider the matrix defined in (37)

Pi = I − Gi Hi, Gi = F
T
E

T
A−1

i UiE, Hi = ET A−1
i RiEF.

The norm used in this case is the ∞-norm.

From the block LU factorization of AT
i+1 we get

Ai+1 =

[
Ai Ri

Ui Ai

]
=

[
Ai O

Ui AiQi

] [
I A−1

i Ri

O I

]
, (57)

where
Qi = I − A−1

i UiA
−1
i Ri.

It is easy to verify that Pi is the leading principal minor of order m of Qi, i.e.

Pi = F
T
E

T
QiEF,

and that Qi is block lower triangular. Under the hypothesis of point diagonal
dominance for the Toeplitz matrix A (hence of Ai+1), we have

‖A−1
i Ri‖∞ ≤ 1 and ‖A−1

i Ui‖∞ ≤ 1,
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and
‖Pi‖∞ ≤ ‖Qi‖∞ ≤ 1 + ‖A−1

i Ui‖∞ ‖A−1
i Ri‖∞ ≤ 2.

For what concerns P (i)−1
, from (57) we have that the right lower block of A−1

i+1

is Q−1
i A−1

i . Hence

‖P−1
i ‖∞ ≤ ‖Q−1

i ‖∞ ≤ ‖Q−1
i A−1

i ‖∞‖Ai‖∞ ≤ ‖A−1
i+1‖∞‖A‖∞.

To put into relation the norm of A−1
i+1 with that of A−1 we consider the decom-

position

A =

[
Ai+1 Ri+1

U i+1 B

]
= L U, L =

[
Ai+1 O

U i+1 S

]
, U =

[
I A−1

i+1Ri+1

O I

]
,

where B and S are suitable matrices. We see that A−1
i+1 is the leading principal

minor of order ni+1 of L
−1

. Hence

‖A−1
i+1‖∞ ≤ ‖L −1‖∞ ≤ ‖U‖∞ ‖A−1‖∞ ≤ 2 ‖A−1‖∞,

and
κ∞(Pi) ≤ 2 ‖A−1

i+1‖∞‖A‖∞ ≤ 4 κ∞(A).

We conclude that the conditioning of Pi is not worse than the conditioning of
A.

8.2 Stability of the computation of products

The product of Toeplitz-like matrices by vectors is performed by multiplying
lower and upper triangular Toeplitz matrices by means of discrete Fourier trans-
forms, as described in Section 3.2. We have then to find error bounds for the
operations listed in (9).

Let fl(·) denote the result of a floating point computation with machine
precision ǫ. In a first order analysis of the error we have for the multiplication

fl(x̃ · ỹ) ∼ x y + δ(x, y), where δ(x, y) = x y ǫ̃ + y δ(x) + x δ(y), (58)

where x and y are two complex numbers, x̃ and ỹ their machine approximations,
δ(x) = x̃−x and δ(y) = ỹ−y their errors, and ǫ̃ is the local error of the complex
multiplication, with |ǫ̃ | < c1 ǫ, for a small constant c1.

For the FFT we use a componentwise error bound given in [1]: for a vector
x of length n (power of 2) we have

|δ(F(x)j)| = |fl
(
F(x)j

)
−F(x)j | ≤ c2

√
n ǫ ‖F(x)‖∞ (59)

where c2 is a constant. A similar bound holds for the inverse transformation.
Referring to (9) we have from (58) and (59)

|δ(wj)| ≤ c2

√
2n ǫ ‖w‖∞, |δ(gj)| ≤ c2

√
2n ǫ ‖g‖∞,
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h̃j = fl
(
g̃j · w̃j

)
∼ hj + δ(hj), where δ(hj) = hj ǫ̃j + wj δ(gj) + gj δ(wj).

Since |gj| ≤ ‖g‖∞ ≤ ‖s‖1 (and similarly |wj | ≤ ‖w‖∞ ≤ ‖v‖1) we have

|hj| ≤ ‖s‖1‖v‖1,

|δ(hj)| ≤ c1|hj | ǫ + |wj | |δ(gj)| + |gj | δ|(wj)| ≤ (c1 + 2c2

√
2n) ǫ ‖s‖1‖v‖1,

|h̃j| ≤
[
1 + (c1 + 2c2

√
2n) ǫ

]
‖s‖1‖v‖1.

Now
|δ(zj)| = |fl

(
F−1(h̃)j

)
−F−1(h)j |

≤ |fl
(
F−1(h̃)j

)
−F−1(h̃)j | + |F−1(h̃)j −F−1(h)j |

≤ c2

√
2n ǫ ‖F−1(h̃)‖∞ + |F−1(h̃ − h)j |

≤ c2

√
2n ǫ ‖h̃‖∞ + ‖F−1(h̃ − h)‖∞,

but

‖F−1(h̃ − h)‖∞ ≤ ‖h̃ − h‖∞ = max
j

|δ(hj)| ≤ (c1 + 2c2

√
2n) ǫ ‖s‖1‖v‖1,

hence
|δ(zj)| ≤ c2

√
2n ǫ ‖h̃‖∞ + (c1 + 2c2

√
2n) ǫ ‖s‖1‖v‖1.

In the first order analysis of the error we have

|δ(zj)| ≤ c2

√
2n ǫ ‖h‖∞+(c1+2c2

√
2n) ǫ ‖s‖1‖v‖1 ≤ (c1+3c2

√
2n) ǫ ‖s‖1‖v‖1.

This means that the computed components of z are affected by an error slowly
increasing with the size of the problem. It follows that the procedure for mul-
tiplying Toeplitz-like matrices by vectors is stable.

9 Analysis of the costs

In this section the multiplicative costs (16), (27), (30) and (53) are compared.
Without loss of generality the bandwidths n and m are taken as powers of 2.
To simplify the discussion we rewrite these theoretical costs in the form

ck = αk log N + βk N,

where k indicates the method and its coefficients αk and βk are functions of n
and m. It is evident that method cr outperforms the others when m is equal
to n, but we are interested in comparing the costs for values of n greater than
m, i.e. when the bandwidths are unbalanced.

We must note that values of n and N too ”small” are not of interest, since
the corresponding computational costs are not significant. Two other reasons
suggest not to accept unquestioningly the conclusions we can draw from the
analysis of the theoretical costs: first, the approximations made for πn, which
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method k αk βk

ge 1 0 105 πn + 50πm + 27m2

cr 2 16πn + 14πm + 14.5 n2 24πn + 12πm

mcr 3 145πn + 84πm + 108 m2 24πn + 12πm

st 4 90πn + 70πm + 29 m2 21.5πn + 22πm

Table 5: Theoretical costs.

take into consideration only the terms in n log n and neglect the terms in n,
hold only for large n, and second, the influence of the difference between the
cost of the first step and the other steps of the transformation phase, lowers
with increasing N .

Asymptotically with N , the cost depends mainly on βk. Hence method ge

has the greatest cost (even in the order as a function of m). For this reason it
will be ignored in the following discussion.

Let ρ = n/m be the ratio between the bandwidths. We expect that for finite
fixed value of N the cost of cr, seen as a function of ρ, is a more steep function
than the cost of both mcr and st, due to the presence in α2 of a term in n2,
compared with terms in m2 for the other two methods. We consider the cases
ρ = 2, ρ = 4 and ρ ≥ 8. For each case a figure shows the graphs of the costs of
cr, mcr and st as functions of m, for the fixed value N = 28.

ρ = 2, mildly unbalanced (Figure 1): in this case we have β2 = β3 < β4 and
α2 < α3 for any m. Then we expect cr to outperform mcr for any m. A
crossing between the graphs of cr and st (solid and dashed lines) suggests
that the two methods have a different behaviour for small and large values
of m and that st may outperform cr for large values of m.

ρ = 4, moderately unbalanced (Figure 2): in this case we have β2 = β3 > β4

for large m and α4 < α3 for any m. The closeness of the graphs of cr
and mcr (solid and dotted lines) suggests a substantial equivalence of the
two methods, at least for small values of m. Moreover we expect st to
outperforms both cr and mcr for large values of m.

ρ ≥ 8, severely unbalanced (Figure 3): in this case we have β2 = β3 > β4 and
α4 < α3 < α2 for any m. We expect st to outperform both cr and mcr

for any m.

Asymptotically with N, methods cr and mcr have a common behaviour. For
ρ = 2 st is outperformed by cr and mcr, for ρ = 4 the three methods have the
same behaviour, for ρ ≥ 8 st slightly outperforms cr and mcr.

Summarizing, we expect that when the bandwidths are at least moderately
unbalanced, the use of SMW formula leads to an improvement of the perfor-
mance, i.e. mcr and st outperform cr for m sufficiently large. Moreover, in
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Figure 1: Graphs of the cost c2 (method cr, solid line), c3 (method mcr, dotted
line), c4 (method st, dashed line), for ρ = 2 and N = 28.
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Figure 2: Graphs of the cost c2 (method cr, solid line), c3 (method mcr, dotted
line), c4 (method st, dashed line), for ρ = 4 and N = 28.
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Figure 3: Graphs of the cost c2 (method cr, solid line), c3 (method mcr, dotted
line), c4 (method st, dashed line), for ρ = 8 and N = 28.

this case st appears to be always better than mcr. Also in the case of mildly
unbalanced bandwidths st appears to be better than cr for m sufficiently large.
However, there are cases where cr appears to be better than st for small values
of m and this region shrinks for increasing values of ρ.
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In next section an experimentation is carried out on methods cr, mcr and
st to validate the previous results, investigating the costs also for small values
of the parameters. This is interesting, since the approximations used to derive
the theoretical multiplicative costs neglect terms linear in the dimensions and
this approach may lead to inaccurate measures, especially in the case of small
values of the parameters.

10 Numerical experiments

The experiments, conducted on a Intel Core Duo @ 3 GHz, 2GB RAM, have
two aims: (1) to measure the errors affecting the computed solution, in order
to analyze the stability properties of the algorithms, and (2) to compare the
effective costs, in order to test if their behaviour agrees with the theoretical
costs given in Section 9.

10.1 Stability tests

Different matrices of the form (2) have been considered:

1. entries generated by specific rules enforcing a decay behaviour of the diago-
nals,

2. positive entries randomly generated,

3. entries randomly generated, with mixed sign.

The left hand-side vector b has been computed from a randomly generated
solution, to which the computed solution is compared.

For each bandwidth ratio ρ = 2, ρ = 4 and ρ = 8 the data depend on the
following parameters:

1. the upper bandwidths m,

2. the number N of blocks,

3. the diagonal dominance factor δ = |a0|
/ ∑

i6=0 |ai| which varies in the range
[0.2, 1.2]. For δ > 1 matrix A has point diagonal dominance (both by rows and
columns).

For δ > 1, when A has point diagonal dominance, most of the matrices of
the first and second class satisfy block condition (55) in 1-norm, while for the
matrices of the third class the condition is nearly never satisfied. For δ < 1
some matrices of the first and second class still satisfy condition (55).

The conditioning of A depends heavily on δ. On average for the matrices of
the first and second class, the growth of the condition number for increasing size
is not significant when δ > 0.8 and is slow when δ ∈ [0.4, 0.8]. When δ < 0.4
the matrix may become badly conditioned. The situation is much worse for
the matrices of the third class, where the growth with increasing size of the
condition number is slow for δ > 1, but can be very high for δ < 0.8. In the
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latter case the matrix may be so badly conditioned that no method (even the
best software Gaussian elimination) can give an acceptable solution.

The stability tests have been performed on all the four methods and, for
comparison, on a simple Gaussian elimination without any pivoting strategy.
The latter test is particularly significant, because none of the four methods,
which are intrinsically recursive, can implement a pivoting strategy.

The results of the tests depend on the diagonal dominance properties.

1. For δ > 1 all the methods are stable and produce a solution affected by an
error of the same magnitude of the machine precision ǫ of the arithmetic
which is used.

2. For δ ≤ 1 we expect the error of the solution to increase with the condition
number κ(A) and with the parameter s, which measures the block diagonal
dominance, defined in (55). We observe the following error behaviours
corresponding to the three classes of problems.

2.a The tests on matrices of the first and second class not having point diagonal
dominance show that the methods continue to be stable in regions δ ∈
[δ, 1], for suitable δ < 1, and that this happens also when there is not
a block diagonally dominance. It is important to remark that the value
of δ for each problem is the same for all the method, included Gaussian
elimination without pivoting, showing that the methods enjoy the same
stability properties. In most cases the interval [δ , 1] stretches to [0.6 , 1]
and in some cases even to [0.4 , 1].

2.b The tests on matrices of the third class not having point diagonal domi-
nance show that all the methods produce solutions affected by errors much
greater than the machine precision ǫ, suggesting instability, but we must
note that in general these matrices have condition number κ(A) > 1/ǫ.

10.2 Comparison of the effective costs

The effective cost of a method is measured in terms of the total number ω
of operations performed, which reasonably represents the running time under
the assumption that multiplications and additions consume roughly the same
amount of CPU time. Due to the results of Section 9, method ge has not been
considered in this part of the experimentation. Figures 4, 5 and 6 show the cost
ω of cr (line with the + mark), of mcr (line with the ∗ mark) and of st (line
with the • mark) for N = 28.

These figures are to be compared with Figures 1-3, taking into account that
ω measures, in addition to the higher order terms in multiplicative operations
(which are considered in the theoretical costs) also the lower order terms in mul-
tiplicative operations and the additive operations (neglected in the theoretical
costs). We point out that ω does not count the cost of the inversion of matrix
B0, initial step common to all the algorithms.

56



++++++
+

+

+

+

******
*
*

*

*

200 400 600 800 1000

5.´108

1.´109

1.5´109

2.´109

2.5´109

m

Figure 4: Graphs of the effective cost ω of cr (line with the + mark), of mcr
(line with the ∗ mark) and of st (line with the • mark) for ρ = 2 and N = 28.
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Figure 5: Graphs of the effective cost ω of cr (line with the + mark), of mcr
(line with the ∗ mark) and of st (line with the • mark) for ρ = 4 and N = 28.
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Figure 6: Graphs of the effective cost ω of cr (line with the + mark), of mcr
(line with the ∗ mark) and of st (line with the • mark) for ρ = 8 and N = 28.

It is evident that considering the effective cost ω does not alter significantly
the ranking of the methods derived from the theoretical estimates for large m.
By a more accurate analysis of Figure 4-6 we list the ranking of the methods
for small values of m and N = 28.
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For ρ = 2 we have

ωcr < ωst < ωmcr, for m ≤ 28,

ωst < ωcr < ωmcr, for m ≥ 29.

For ρ = 4 we have

ωcr < ωst < ωmcr, for m ≤ 25,

ωst < ωcr < ωmcr, for 26 ≤ m ≤ 27,

ωst < ωmcr < ωcr, for m ≥ 28.

For ρ = 8 we have

ωcr < ωst < ωmcr, for m ≤ 22,

ωst < ωcr < ωmcr, for 23 ≤ m ≤ 25,

ωst < ωmcr < ωcr, for m ≥ 26.

For ρ > 8 the methods keep the same ranking as for ρ = 8, but with a shift
toward left of the intersection points. For asymptotically large values of N ,
when the cost of the substitution phase dominates, methods cr and mcr have
the same behaviour and st has a slightly better behaviour only for ρ ≥ 8.

11 Conclusions

The three methods cr, mcr and st (having excluded ge for its higher cost) have
shown to be effective from the point of view of both the computational costs
and the stability properties. Their running times confirm the rankings predicted
from the theoretical cost measures, pointing out the efficacy of the employment
of SMW formula in the case of unbalanced bandwidths.

The costs we have compared depend on the particular implementation of the
algorithms. Other implementations may give different results, and the ranking
may be altered for finite values of the parameters. But substantially the ranking
depends on two issues:

1. the cost of the substitution phase can be considered equivalent for small
values of ρ and favorable to st for high values of ρ,

2. the cost of the recursive phase depends mainly on the sizes of the matri-
ces to be inverted and the ranking advantages st which inverts m sized
matrices, followed by mcr which inverts 2m sized matrices, followed by
cr which inverts n sized matrices. A higher number of matrix by vector
products may alter the ranking only for small sizes.
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