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Abstract. In this work we represent the Optimal Stable Marriage problem as
a Soft Constraint Satisfaction Problem. In addition, we extend this problem
from couples of individuals to coalitions of generic agents, in order to
define new coalition-formation principles and stability conditions. In the
coalition case, we suppose the preference value as a trust score, since trust
can describe a nodes belief in another nodes capabilities, honesty and
reliability. Soft constraints represent a general and expressive framework
that is able to deal with distinct concepts of optimality by only changing the
related c-semiring structure, instead of using different ad-hoc algorithms.
At last, we propose an implementation of the classical OSM problem by
using Integer Linear Programming tools.

1 Introduction

The Stable Marriage (SM) problem [12, 18] and its many variants [15] have been
widely studied in the literature, because of the inherent appeal of the problem
and the important practical applications. A classical instance of the problem
comprises a bipartite set of n men and n women, and each person has a prefer-
ence list in which they rank all members of the opposite sex in a total strict order.
Then, a match MT is simply a bijection between men and women. A man mi and
a woman w j form a blocking pair for MT if mi prefers w j to his partner in MT and
w j prefers mi to her partner in MT. A matching that admits no blocking pair is
said to be stable, otherwise the matching is unstable. Even if the SM problem has
its roots as a combinatorial problem, it has also been studied in Game Theory
and Economics and in Operations Research [9].

However, in this paper we mainly concentrate on its optimization version,
the Optimal Stable Marriage (OSM) problem [18, 15], which tries to find a match
that is not only stable, but also “good” according to some criteria based on
the preferences of all the individuals. Classical solutions deal instead only with



men-optimal or women-optimal marriages, in which every man, or respectively
woman, gets his best possible partner.

We propose soft constraints as a very expressive framework where it is
possible to cast different kinds of optimization criteria by only modifying the
c-semiring [4, 1] structure on which the corresponding Soft Constraint Satisfac-
tion Problem (SCSP) [1] is based. In this sense, soft constraints prove to be a
more general solving framework w.r.t. the other ad-hoc algorithms presented in
literature for each different optimization problem [15]. In fact, we can deal also
with problem extensions as incomplete preference lists and ties in the same list.
Therefore, in this paper we build a bridge between the OSM and SCSP problems,
as previously done between SM and (crisp) CSP problems [9, 21]. Since many
variants of the OSM problems are NP-hard [15], in this way we can benefit from
SCSP solving techniques.

Moreover, use Integer Linear Programming (ILP) as a general method to prac-
tically solve this classical problem. It is worth to notice that such ILP techniques
are here applied to the OSM problem for the first time.

The second main result provided in the paper consists in extending the
stable marriage definition from pairs of individuals to coalitions of agents. A
coalition can be defined as a temporary alliance among agents, during which
they cooperate in joint action for a common task [13]. Moreover, we use trust
scores instead of plain preferences in order to evaluate the relationships among
agents. Therefore, the notion of SM stability is translated to coalitions, and the
problem is still solved by the optimization point of view: the final set of coalitions
is stable and is the most trustworthy w.r.t. the used trust metric, represented by
a c-semiring [5, 2, 20]. Even for this coalition extension we use soft constraints
to naturally model the problem.

The classical SM problem (thus, the non-optimal version of the problem) has
been already studied and solved by using crisp constraints in [9, 21]. In [9] the
authors present two different encodings of an instance of SM as an instance of a
Constraint Satisfaction Problem (CSP). Moreover, they show that Arc Consistency
propagation achieves the same results as the classical Extended Gale/Shapley
(EGS) algorithm, thus easily deriving the men/women-optimal solution [9]. Ad-
hoc algorithms for the OSM problem (not using a constraint formalization) are
instead presented in Sec. 3.

In Sec. 2 we summarize the background on soft constraints, while Sec. 3 does
the same for the OSM problem. In Sec. 4 we represent the OSM problem with
soft constraints and we solve it with ILP. Section 5 extends the OSM problem
to coalitions, still representing the problem with soft constraints. At last, Sec. 6
draws the final conclusions.

2 Soft Constraints

A c-semiring [4, 1] S (or simply semiring in the following) is a tuple 〈A,+,×, 0, 1〉
where A is a set with two special elements (0, 1 ∈ A) and with two operations
+ and × that satisfy certain properties: + is defined over (possibly infinite) sets



of elements of A and thus is commutative, associative, idempotent, it is closed
and 0 is its unit element and 1 is its absorbing element; × is closed, associative,
commutative, distributes over +, 1 is its unit element, and 0 is its absorbing
element (for the exhaustive definition, please refer to [4]). The + operation
defines a partial order ≤S over A such that a ≤S b iff a + b = b; we say that a ≤S b
if b represents a value better than a. Other properties related to the two operations
are that + and × are monotone on ≤S, 0 is its minimum and 1 its maximum,
〈A,≤S〉 is a complete lattice and + is its lub. Finally, if × is idempotent, then +
distributes over ×, 〈A,≤S〉 is a complete distributive lattice and × its glb.

Soft Constraints. A soft constraint [4, 1] may be seen as a constraint where each in-
stantiation of its variables has an associated preference. Given S = 〈A,+,×, 0, 1〉
and an ordered set of variables V over a finite domain D, a soft constraint is
a function which, given an assignment η : V → D of the variables, returns a
value of the semiring. Using this notation C = η → A is the set of all possible
constraints that can be built starting from S, D and V.

Any function in C involves all the variables in V, but we impose that it
depends on the assignment of only a finite subset of them. So, for instance, a
binary constraint cx,y over variables x and y, is a function cx,y : V → D → A,
but it depends only on the assignment of variables {x, y} ⊆ V (the support of
the constraint, or scope). Note that cη[v := d1] means cη′ where η′ is η modified
with the assignment v := d1. Note also that cη is the application of a constraint
function c : V → D→ A to a function η : V → D; what we obtain, is a semiring
value cη = a. 0̄ and 1̄ respectively represent the constraint functions associating
0 and 1 to all assignments of domain values; in general, the ā function returns
the semiring value a.

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η (see also [4, 1]). Informally, performing the ⊗ or between
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying
the elements associated by the original constraints to the appropriate sub-tuples.
The partial order≤S overC can be easily extended among constraints by defining
c1 v c2 ⇐⇒ c1η ≤ c2η. Consider the set C and the partial order v. Then an
entailment relation `⊆ ℘(C) × C is defined s.t. for each C ∈ ℘(C) and c ∈ C, we
have C ` c ⇐⇒

⊗
C v c (see also [1]).

Given a constraint c ∈ C and a variable v ∈ V, the projection [4, 1, 3] of c over
V − {v}, written c ⇓(V\{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d]. Informally,

projecting means eliminating some variables from the support.
A SCSP [1] defined as P = 〈C, con〉 (C is the set of constraints and con ⊆ V, i.e.

a subset the problem variables). A problem P is α-consistent if blevel(P) = α [1]; P
is instead simply “consistent” iff there existsα >S 0 such that P isα-consistent [1].
P is inconsistent if it is not consistent. The best level of consistency notion defined
as blevel(P) = Sol(P) ⇓∅, where Sol(P) = (

⊗
C) ⇓con [1].



3 The Optimal Stable Marriage Problem

An instance of the classical SM problem (SM) [8] comprises n men and n women,
and each person has a preference list in which all members of the opposite sex
are ranked in a total strict order. All men and women must be matched together
in a couple such that no element x of couple a prefers an element y of different
couple b that also prefers x (i.e. the stability condition of the pairing). If such
(x, y) exists in the match, then it is defined as blocking; a match is stable if no
blocking pairs exist.

The problem was first studied by Gale and Shapley [8]. They showed that
there always exists at least a stable matching in any instance and they also
proposed a O(n2)-time algorithm to find one, i.e. the so-called Gale-Shapley (GS)
algorithm. An extended version of the GS algorithm, i.e. the EGS algorithm [12],
avoids some unnecessary steps by deleting from the preference lists certain
(man, woman) pairs that cannot belong to a stable matching. Notice that, in
the man-oriented version of the EGS algorithm, each man has the best partner
(according to his ranking) that he could obtain, whilst each woman has the worst
partner that she can accept. Similar considerations hold for the woman-oriented
version of EGS, where men have the worst possible partner.

For this reason, the classical problem has been extended [8] in order to find
a SM under a more equitable measure of optimality, thus obtaining an Op-
timal SM problem [18, 15, 14, 11]. For example, in [14] the authors maximize
the total satisfaction of a SM by simply summing together the preferences of
both men (e.g. pM(mi,w j)) and women (e.g. pW(mi,wi)) in the SM given by
MT = {(mi,w j), . . . , (mk,wz)}. This sum needs to be minimized since pM(mi,w j)
represents the rank of w j in mi’s list of preferences, where a low rank position
stands for a higher preference, i.e. 1 belongs to the most preferred partner;
similar considerations hold for the preferences of women, i.e. pW(mi,w j) which
represents the rank of mi in wi’s list of preferences. Therefore, we need to mini-
mize this egalitarian cost [14]:

min


∑

(mi,w j)∈MT

pM(mi,w j) +
∑

(mi,w j)∈MT

pW(mi,w j)

 (1)

This optimization problem was originally posed by Knuth [14]. Other opti-
mization criteria are represented by minimizing the regret cost [11] as in (2), or
by minimizing the sex-equalness cost [16] as in (3):

min max
(mi,w j)∈MT

max{pM(mi,w j)pW(mi,w j)} (2)

min

∣∣∣∣∣∣∣∣

∑

(mi,w j)∈MT

pM(mi,wi) −
∑

(mi,w j)∈MT

pW(mi,w j)

∣∣∣∣∣∣∣∣
(3)



Even if the number of stable matchings for one instance grows exponentially
in general [15], (1) and (2) have been already solved in polynomial time with ad-
hoc algorithms (respectively in [14] and [11]), by exploiting a lattice structure
that condense the information about all the matchings. On the contrary, (3)
is an NP-hard problem for which only approximation algorithms have been
given [16].

In the following, we consider the preference as a more general weight (taken
from a proper semiring), instead of a plain position in the preference’s list of
an individual; thus, we suppose to have weighted preference lists [14]. A different
but compatible (w.r.t. OSM) variant of the SM problem shows incomplete pref-
erence’s lists, i.e. the SMI (SM with incomplete lists), if a person can exclude a
partner whom she/he does not want to be matched with [15]. Another extension
is represented by preference lists that allow ties, i.e. in which it is possible to
express the same preference for more than one possible partner: the problem is
usually named as SM with ties, i.e. SMT [15]. In this case, three stability notions
can be proposed [15]: given any two couples (mi,w j) and (mk,wz) belonging to
a match MT, then MT is i) super stable if pM(mi,w j) > pM(mi,wz) ∧ pW(mi,w j) >
pW(mi,wz), ii) strongly stable if pM(mi,w j) ≥ pM(mi,wz) ∧ pW(mi,w j) > pW(mi,wz)
or iii) weakly stable if pM(mi,w j) ≥ pM(mi,wz)∧ pW(mi,w j) ≥ pW(mi,wz). Hence, if
a match is super stable then it is strongly stable, and if it is strongly stable then
it is weakly stable [15].

Allowing ties in preferences means that the (1), (2) and (3) problems above
becomes hard even to approximate [15]. By joining together these two exten-
sions, we obtain the SMTI problem: SM with Ties and Incomplete lists [15]. The
preferences of men and women can respectively be represented with two ma-
trices M and W, as in Fig. 1.

4 Representing the classical ST Problem with Soft Constraints

In order to define an encoding of an OSM instance I as a SCSP problem instance
P (see Sec. 2), we introduce the set V of variables: m1,m2, . . . ,mn corresponding
to men, and w1,w2, . . . ,wn corresponding to women. The domain D of mi or w j
is [1,n]. For each i, j (1 ≤ i, j ≤ n), then η : V → D (as defined in Sec. 2) denotes
the value of variable mi and w j respectively, i.e., the partner associated with the
match. For example, η(m1) = 3 means that m1 is matched with w3.

We need three different set of soft constraints to describe a OSM problem,
according to each of the relationships we need to represent:

1. Preference constraints. These unary constraints represent the preferences of
men and women: for each of the values in the variable domain, i.e. for
each possible partner, they associate the relative preference. For example,
cmi (mi = j) = a represents the fact that the man mi has a degree of preference
value a for the woman w j (when the variable mi is instantiated to j); on the
other hand, cw j (w j = i) = b means that the same woman (w j) has a preference
for the same man (mi) equal to b; a and b are elements of the chosen semiring
set. We need 2n unary constraints: one for each man and woman.



2. Marriage constraints. This set constrains the marriage relationships: if mi
is married with w j (i.e. η(mi) = j), then w j must be married with mi (i.e.
η(w j) = i). Formally, it can be defined by cm(mi,w j) = 0 if η(mi) = h∧ η(w j) =
k ∧ (h , j ∨ k , i). We need n2 marriage constraints, one for each possible
man-woman couple.

3. Stability constraints. This set of 4-ary constraints avoids the presence of
blocking couples in the set of matches: cs(mi,mk,w j,wz) = 0 if mi and w j are
married (i.e. η(mi) = j and η(w j) = i) and if there exists a different matched
couple (mk,wz) (i.e. k , i, z , j and η(mk) = z and η(wz) = k) such that
cmi (mi = j) <S cmi (mi = z)∧ cwz (wz = k) <S cwz (wz = i), where S represents the
chosen semiring (see Sec. 2). In this case we use the ≤S since we are looking
for a weakly stable marriage (see Sec. 3), otherwise we should define the
stability constraints by using <S for super and strong stabilities (see Sec. 3).
Therefore, we need n4 stability constraints of this kind.

Given this encoding, the set of consistent solutions of P is equivalent to the
set of solutions of I (i.e. a OSM problem instance). Therefore, unsatisfying the
marriage or stability constraints makes P inconsistent (see Sec. 2). By using this
formalization it is now possible to easily maximize the global satisfaction of all
the couples, and thus finding a solution for the OSM problem. In practice it is
possible to obtain the best possible solution of the considered SCSP problem by
exploiting the properties of the chosen semiring operators, i.e. + and ×.

For example, we could consider the preference as a cost, and the cost of the
complete match could be obtained by summing together the costs of all the
found (non-blocking) pairs. In this case, and if we want to minimize the cost of
the n marriages, we can use the Weighted semiring [1, 4], i.e. 〈R+,min, +̂,+∞, 0〉
(+̂ is the arithmetic sum). Therefore, what we solve is exactly the (1) problem in
Sec. 3.

Otherwise, we can use the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉 [1, 4] to max-
imize the “happiness” of the least sympathetic couple overall: the fuzzy values
in the interval [0, 1] represent an “happiness degree” of the people relationships
and are aggregated with min, but preferred with max. Again, what we solve with
this semiring is exactly the (2) problem in Sec. 3, if we consider the ordering of
the preferences as inverted (i.e. a high preference is better than a lower one);
this is the reason why we use max−min instead of min−max.

As a last example on the expressiveness of our framework, we can use the
Probabilistic semiring 〈[0..1],max, ×̂, 0, 1〉 [1, 4] (×̂ is the arithmetic multiplication)
in order to maximize the probability that the obtained couples will not split.

Moreover, we can represent the SMI extension reported in Sec. 3 by simply
declaring a preference constraint with value corresponding to 0: cmi (mi = j) = 0
if mi has not expressed a preference for w j. Further on, by having the same
value in the same preference list, i.e. cmi (mi = j) = a and cmi (mi = z) = a, we can
represent also the SMT problem defined in Sec. 3. In Sec. 4.1 we consider and
solve the most general problem among those presented in Sec. 3, i.e. the Optimal
SMTI (OSMTI).



Notice that such semiring structures allows us to consider also the prefer-
ences of men and women as partially ordered (see Sec. 2), which is clearly more
generic and expressive w.r.t. the total ordering of the classical problem: Bob
could love/like Alice and Chandra more than Drew, but he could not relate the
first two girls with each other.

4.1 Solving the OSM Problem in ILP

In this section we solve the soft constraint formalization of the OSMTI problem
given with preference, marriage and stability constraints. To achieve this goal,
we represent and solve it in ILP by using AMPL [7]. AMPL is a modeling
language for mathematical programming with a very general and expressive
syntax. It covers a variety of types and operations for the definition of indexing
sets, as well as a range of logical expressions. The solution can be obtained
with different solvers which can interface to AMPL; for our example we use the
CPLEX solver (developed by ILOG) for mathematical programming. The soft
constraints can be represented with AMPL statements.

We consider an instantiation of the (1) problem in Sec. 3, and therefore
the adopted semiring is 〈R+,min, +̂,+∞, 0〉, even if, as said before, we can
solve also other criteria by changing the semiring. The two matrices M and
W in Fig. 1 respectively represent the preference values of n = 6 men (MEN =
{m1,m2,m3,m4,m5,m6}) and n = 6 women (WOMEN = {w1,w2,w3,w4,w5,w6})
taken from the Weighted semiring set. Notice that both M and W are displayed
Fig. 1 with men on rows and women on columns, in order to improve the read-
ibility during a comparison of the two matrices. The lists of preferences of men
are represented by the rows of M, and the preferences of women are instead the
columns of W.

set MEN := m1 m2 m3 m4 m5 m6 ;

set WOMEN := w1 w2 w3 w4 w5 w6 ;

param M:           

          w1  w2  w3  w4  w5  w6 :=  

m1      1     4    Inf    5     5     3  

m2      3     4     6     1     5     2  

m3      1    Inf    4     2     3     5  

m4      6     1     3     4     2     1  

m5      3     1     2     4     5     6  

m6      3     3     1     6     5     4 ;

param W:           

          w1  w2  w3  w4  w5  w6 :=

m1      1     4     6     2    4     2  

m2      5     1     4     5    2     6  

m3      4     5     2     2   Inf    3  

m4      4     2     1     4    5     5  

m5      2     6     5    Inf    6     1  

m6      3    Inf    3     6    3     4 ;

Fig. 1. The data file of our example in AMPL: the sets of MEN and WOMEN and
their respective preference lists (M and W).

Since we want to deal with incomplete lists, the preference value corresponds
to the bottom element of the semiring (in Weighted semiring, it is ∞) if that



preference has not been expressed; Inf in Fig. 1 is a shortcut for a very big value
that we can safely consider as the infinite value (e.g. 10000). For example, in
Fig. 1 M[m1,w3] = ∞means that m1 has no preference for w3. Moreover, we can
deal with ties at the same time, e.g. M[m4,w2] = M[m4,w6] = 1 in Fig. 1.

Notice that this problem could have no solution in general due to the fact
that the preference lists are incomplete and we want to find a perfect match (n
pairs). Moreover, since we have ties and we require a weakly stable matching,
the problem is NP-hard [15].

option solver cplex;

### PARAMETERS ### 
set MEN; 
set WOMEN; 
param M {i in MEN, j in WOMEN}; 
param W {k in MEN, z in WOMEN};

### VARIABLES ### 
var Marriage {i in MEN, j in WOMEN} binary;

### OBJECTIVE ### 
minimize EgalitarianCost:  sum {i in MEN, j in WOMEN} 
      (( Marriage[i,j] * M[i,j] ) + 
      ( Marriage[i,j] * W[i,j] )) ;
 
### CONSTRAINTS ### 
subject to MenMarriages {i in MEN}: 
      sum {j in WOMEN} Marriage[i,j] = 1 ; 
subject to WomenMarriages  {j in WOMEN}: 
      sum {i in MEN} Marriage[i,j] = 1 ;
subject to Stability {i in MEN, k in MEN, j in WOMEN, z in WOMEN:
      ( M[i,z] < M[i,j] ) and 
      ( W[i,z] < W[k,z] )}:
      Marriage[i,j] + Marriage[k,z] <= 1; 

Fig. 2. The file storing the model for our example in AMPL.

A Formalization in ILP. With AMPL we need to create two files storing the data
of the problem (Fig. 1) and its model (Fig. 2). The Marriage variable in Fig. 2
corresponds to the couples representing the best stable marriage, while the
EgalitarianCost is exactly computed as for the problem (1) in Sec. 3 and the goal
is to minimize it. Notice that by changing the mathematical operators of the
OBJECTIVE in Fig. 2, it is possible to solve also problems (2) and (3) of Sec. 3.
The MenMarriages and WomenMarriages constraints respectively state that each
man and each woman must have a partner, that is we require a perfect match.
At last, the Stability constraint prevents blocking pairs.

The three marriages that can be obtained with this formalization are re-
spectively SM1 = {(m1,w1), (m2,w2), (m3,w4), (m4,w6), (m5,w5), (m6,w3)}, SM2 =



{(m1,w1), (m2,w2), (m3,w4), (m4,w3), (m5,w6), (m6,w5)}and, at last, SM3 = {(m1,w1),
(m2,w2), (m3,w4), (m4,w5), (m5,w6), (m6,w3)}. The egalitarian costs for these three
matches are respectively ec(SM1) = 32, ec(SM2) = 30 and ec(SM3) = 29, which is
also the result of the program in Fig. 2 since it corresponds to the lowest possible
cost.

5 Multi-Agent Systems and the Stable Marriage of Coalitions

Cooperating groups, referred to as coalitions, have been thoroughly investigated
in Artificial Intelligence and Games Theory and has proved to be a useful
strategy in both real-world economic scenarios and multi-agent systems [13].

Coalitions in general are task-directed and short-lived, but however last
longer than team organization [13] (for example) and in some cases they have a
long lifetime once created [10]. Given the population of entities E, the problem
of coalition formation consists in selecting the appropriate partition of E, P =
{C1, . . . ,Cn} (|P| = |A| if each entity forms a coalition on its own), s.t. ∀Ci ∈ P,
Ci ⊆ E and Ci ∩ C j = ∅, if i , j. P maximizes the utility (utility against costs)
that each coalition can achieve in the environment. Therefore, agents group
together because an utility can be gained by working in groups, but this growth
is somewhat limited by the costs associated with forming and maintaining such
a structure.

Cooperation involves a degree of risk arising from the uncertainties of in-
teracting with autonomous self-interested agents. Trust [17] describes a nodes
belief in another nodes capabilities, honesty and reliability based on its own di-
rect experiences. Therefore trust metrics have been already adopted to perceive
this risk, by estimating how likely other agents are to fulfill their cooperative
commitments [10, 6]. Since trust is usually associated with a specific scope [17],
we suppose that this scope concerns the task that the coalition must face after its
formation; for example, in electronic marketplaces the agents in the same coali-
tion agree with a specific discount for each transaction executed [6, 19]. Clearly,
an entity can also trust itself in achieving the task, and can form a singleton
coalition.

In the individually oriented approach an agent prefers to be in the same
coalition with the agent with whom it has the best relationship [6]. In the socially
oriented classification the agent instead prefers the coalition in which it has most
summative trust [6]. Alternatively, in this Section we would like to rephrase the
classical notion of stability in SM problems (presented in Sec. 3) as coalition
formation criteria. Moreover, instead of a preference (as in Sec. 3), we need to
consider a trust relationship between two entities, which, inherently expresses
a preference in some sense. To do so, in Def. 1 we formalize how to compute the
trustworthiness of a whole coalition:

Definition 1 Given a coalition C of agents defined by the set {x1, . . . , xn} and a trust
function t defined on ordered couples (i.e. t(xi, xy) is the trust score that xi has collected
on x j), the trustworthiness of C (i.e. T(C)) is defined as the composition (i.e. ◦) of the



C

C

1

2

x
1

x
2

x
3

x
4

x
5

x
6

x
7

r

r

1

2

T (C     x  ) > T (C )1 14

r        (t (x ,x ), t (x ,x ), t(x ,x )) >   (t (x ,x ), t (x ,x ), t(x ,x ))1 r24 4 4 4 4 41 2 3 5 6 7

Fig. 3. A graphical intuition of two blocking coalitions.

1-to-1 trust relationships, i.e. ∀xi, x j ∈ C. ◦ t(xi, x j) (notice that i can be equal to j,
modeling the trust in itself).

The ◦ function has already been defined in [5]; it models the composition
of the 1-to-1 trust relationships. It can be used to consider also subjective rat-
ings [17] (i.e. personal points of view on the composition), even if in this paper we
will consider objective ratings [17] in order to easily represent and compute trust
with a mathematical operator. For instance, some practical instantiations of the
◦ function can be the arithmetic mean or the max operator: ∀xi, x j ∈ C. avg t(xi, x j)
or ∀xi, x j ∈ C.max t(xi, x j). Notice that the ◦ operation is not only a plain “addi-
tion” of the single trust values, but it must take into account also the “added
value” (or “subtracted value”) derived from the combination effect.

As proposed also in Sec. 4 for the classical problem, by changing the se-
miring structure we can represent different trust metrics [5, 20]. Therefore, the
optimization of the set of coalitions can follow different principles, as, for exam-
ple, minimizing a general cost of the aggregation or maximizing “consistency”
evaluation of the included entities, i.e. how much their interests are alike. In or-
der to extend the stability condition of the classical problem, blocking coalitions
are defined in Def. 2:

Definition 2 Two coalitions Cu and Cv are defined as blocking if, an individual
xk ∈ Cv exists such that, ∀xi ∈ Cu, x j ∈ Cv with j , k, ◦xi∈Cu t(xk, xi) > ◦x j∈Cv t(xk, x j)
and T(Cu ∪ xk) > T(Cu) at the same time.

Clearly, a set {C1,C2, . . . ,Cn} of coalitions is stable if no blocking coalitions
exist in the partitioning of the agents. An example of two blocking coalitions is
sketched in Fig. 3: if x4 prefers the coalition C1 (i.e. relationship r1 in Fig. 3) to the
elements in its coalitions C2 (i.e. r2 in Fig. 3), i.e. ◦(t(x4, x1), t(x4, x2), t(x4, x3)) >



◦(t(x4, x5), t(x4, x6), t(x4, x7)), and C1 increases its trust value by having x4 inside
itself, i.e. T(C1 ∪ x4) > T(C1), then C1 and C2 are two blocking coalitions and
the partitioning {C1,C2} is not stable and thus, it is not a feasible solution of our
problem.

We therefore require the stability condition to be satisfied, but at the same
time we want also to optimize the trustworthiness of the partitioning given by
aggregating together all the trustworthiness scores of the obtained coalitions.

5.1 A Formalization of the Problem

As accomplished in Sec. 4 for the classical problem, in this Section we define
the soft constraints needed to represent the coalition-extension problem. As an
example, we adopt the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉 in order to maximize
the minimum trustworthiness of all the obtained coalitions (as proposed also
in [5, 2]). The following definition takes the general ◦ operator (presented in
Sec. 5) as one of its parameters: it can be considered in some sense as a “lower
level” operator with respect to the other two semiring operators (i.e. + and ×).

The variables V of this problem are represented by the maximum number
of possible coalitions: {co1, co2, . . . , con} if we have to partition a set {x1, x2, . . . , xn}
of n elements. The domain D for each of the variables is the powerset of the
element identifiers, i.e.P{1, 2, . . . , n}; for instance, if η(co1) = {1, 3, 5} it means the
the coalition co1 groups the elements x1, x2, x5 together (η : V → D is the variable
assignment function shown in Sec. 1). Clearly, η(coi) = ∅ if the framework finds
less than n coalitions.

1. Trust constraints. As an example from this class of constraint, the soft con-
straint ct(coi = {1, 3, 5}) = a quantifies the trustworthiness of the coalition
formed by {x1, x3, x5} into the semiring value represented by a. According
to Def. 1, this value is obtained by using the ◦ operator and composing all
the 1-to-1 trust relationships inside the coalition. In this way we can find
the best set of coalitions according to the semiring operators. This kind of
constraints resembles the preference constraints given in Sec. 4.

2. Partition constraints. This set of constraints is similar to the Marriage con-
straints proposed in Sec. 4. It is used to enforce that an element belongs
only to one single coalition. For this goal we can use a binary crisp con-
straint between any two coalition, as cp(coi, co j) = 0 if η(coi)∩ η(co j) , ∅, and
cp(coi, co j) = 1 otherwise (with i , j). Moreover, we need to add one crisp
constraint more, in order to check that all the elements are assigned to one
coalition at least: cp(co1, co2, . . . , con) = 0 if |η(co1) ∪ η(co2) ∪ · · · ∪ η(con)| , n,
and cp(co1, co2, . . . , con) = 1 if |η(co1) ∪ η(co2) ∪ · · · ∪ η(con)| = n.

3. Stability constraints. These crisp constraints model the stability condition
extended to coalitions, as proposed in Def. 2. We have several ternary con-
straints for this goal: cs(cov, cou, xk) = 0 if k ∈ η(cov) (i.e. xk belongs to the
cov coalition), ◦i∈η(cou)t(xk, xi) > ◦ j∈η(cov)t(xk, x j) and ct(η(cou) ∪ k) > ct(cou).
Otherwise, cs(cov, cou, xk) = 1.



6 Conclusions

In this paper we have presented a general soft-constraint based framework
where to represent and solve the Optimal Stable Marriage (OSM) problem [14]
and its variants: with incomplete preference lists ad also ties inside the same
list. The optimization criteria depend on the chosen semiring (e.g. Weighted or
Fuzzy) which can be used to solved problems already proposed in literature, as,
for example, to minimize the egalitarian cost (see Sec. 3 and Sec. 4). Therefore,
it is possible to solve all these different optimization problems with the same
general framework, and we do not need an ad-hoc algorithm for each distinct
case (e.g. [14, 11, 16]). One of the aims of this paper is to relate the OSM and the
SCSP problems as done also for the classical SM and (crisp) CSP problems [9,
21]. Since many variants of the OSM problem are NP-hard [15], representing
and solving the problem as a SCSP can be a valuable strategy [9].

Notice also that Integer Linear Programming, i.e. the tool adopted to find a
solution for the related soft constraint problem, is here applied to this kind of
problems for the first time.

Moreover, in this paper we have extended the OSM problem to achieve
stable coalitions of agents/individuals by using trust metrics as way to express
preferences. Thus, we extend the stability conditions from agent-to-agent to
agent-to-coalition (of agents); in this case the marriage is between an agent and
a group of agents. What we obtain is a partition of the set of agents into trusted
coalitions, such that no agent or coalition is interested in breaking the current
relationships and consequently changing the partitioning. As a future work, we
would like to use ILP to solve also the problem extension to coalition formation,
which has been modeled in Sec. 5.1.

In the future, we could try to extend the results of this paper by modeling the
formation and the consequent behaviour of the other organizational paradigms
presented in [13], e.g. Holoarchies, Federations or Teams. To do so, we need
to represent the different grouping relationships among the entities with soft
constraints.

We would like also to further explore the strong links between OSM and
Games Theory, for example by developing even more sophisticated notions of
stability.
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