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Abstract

In this paper, we investigate the fundamental properties of data gathering in wireless

sensor networks, in terms of both transport capacity and latency. We consider a scenario

in which s(n) out of n total network nodes have to deliver data to a set of d(n) sink nodes

at a constant rate λ(n, s(n), d(n)). The goal is to characterize the maximum achievable

rate, and the latency in data delivery. We present a simple data gathering scheme that

achieves asymptotically optimal data gathering capacity and latency with arbitrary net-

work deployments when d(n) = 1, and for most scaling regimes of s(n) and d(n) when

d(n) > 1 in case of square grid and random node deployments. Differently from most

previous work, our results and the presented data gathering scheme do not sacrifice en-

ergy efficiency to the need of maximizing capacity and minimizing latency. Finally, we

consider the effects of a simple form of data aggregation on data gathering performance,

and show that capacity can be increased of a factor f(n) with respect to the case of no

data aggregation, where f(n) is the node density. To the best of our knowledge, the

ones presented in this paper are the first results showing that asymptotically optimal data

gathering capacity and latency can be achieved in arbitrary networks in an energy efficient

way.

Index terms: Wireless sensor networks, data gathering capacity, data gathering latency,

physical interference model.



1 Introduction

After several years of intensive research and technological development, wireless sensor networks

are becoming increasingly deployed in a wide range of application scenarios, and will likely be

part of our everyday life in a few years. Despite that, our understanding of fundamental prop-

erties of wireless sensor networks – the so-called scaling laws –, which can help the network

designer understanding what can and cannot be done in such networks, is still limited. In par-

ticular, network transport capacity and communication latency are two fundamental properties

of a wireless sensor network: the former can help characterizing the overall amount of data that

can be transported within the network, while the latter can help understanding, for instance,

whether the network can be effectively used for real-time event detection. When a wireless

sensor network is to be used for, e.g., environmental monitoring, in which an extensive set of

sensor readings has to be collected at one or few data collection sites (sinks), the combined

characterization of network capacity and communication latency scaling laws is fundamental

to understanding feasibility of a large scale network deployment.

Starting from the seminal Gupta and Kumar’s work on transport capacity [6] for unicast

transmissions, fundamental properties of general wireless multihop networks have been exten-

sively studied in the literature in the last few years (see Section 2 for details). These studies have

shown a considerable influence of the network topology and traffic patterns on the achievable

network capacity and latency limits. For instance, in [6] it has been shown that while the per-

node transport capacity in a network composed of n nodes degrades as O
(

1√
n

)
when n grows

to infinity in arbitrary networks, it degrades at a faster pace (as O
(

1√
n logn

)
) if nodes are ran-

domly deployed. The above results hold under the assumption that traffic source/destination

pairs are randomly chosen. However, if communications are localized (i.e., the destination of a

packet is randomly chosen amongst one of the source’s immediate neighbors), the situation is

drastically different, and per-node throughput actually remains constant as n grows to infinity.

Another example of the influence of the traffic pattern on network capacity and communication

latency can be derived by comparing the findings of [12], which show that asymptotically op-
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timal capacity and latency cannot be simultaneously achieved for unicast transmissions, with

those of [14], which show that asymptotically optimal capacity and latency can indeed be

simultaneously achieved for broadcast communications.

Given the above discussion, it is clear that characterizing the capacity and latency scaling

laws of a wireless sensor network requires taking into account the typical traffic patterns of

this type of networks. In this paper, we consider one such typical pattern – the data gathering

pattern –, in which many (or all) the sensor nodes have to regularly deliver data to one (or

few) sink node(s). The data gathering network capacity has been recently investigated in a few

papers [2, 3, 10, 11] (see Section 2 for a detailed discussion), which, however, are based on quite

strict assumptions for what concerns network topology, properties of the observed random field,

and/or PHY layer capabilities. When simultaneous transmissions are allowed in the network

[2, 10, 11], radio interference is modeled using a relatively inaccurate interference model (the

protocol interference model [6]). Furthermore, the effects of data aggregation strategies on

the achievable network capacity have only be partially considered. Most importantly, none of

the existing works is concerned with energy efficiency of the communications, nor considers

latency in data communication. There is no need to comment on the importance of energy

efficient communication in wireless sensor networks. As for latency, we stress that latency is a

fundamental property in many wireless sensor network application scenarios, for instance when

the network is used for real-time event detection.

The main findings of this paper, which are extensively described at the end of Section

2, are that asymptotically optimal data gathering capacity and latency can be simultaneously

achieved in arbitrary and random networks in an energy efficent manner, as long as the network

deployment satisfies a property which we call minimal cell connectivity. The data gathering

capacity is limited by the number of sink nodes in the network, and can thus be improved (up

to a certain point) by increasing the number of data collection sites. Another way of improving

the data gathering capacity is by exploiting a very simple form of data aggregation, which

increases network capacity of an O(f(n)) factor, where f(n) is the node density.

The rest of this paper is organized as follows. In Section 2, we discuss related work and
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extensively describe this paper’s contributions to the state-of-the-art. In Section 3, we introduce

the network model used in the rest of the paper. In Section 4, we consider the case of single

sink networks, and present a data gathering scheme that provides asymptotically optimal data

gathering capacity and latency. In Section 5, we extend the data gathering scheme to the

case of multiple sink networks, and characterize conditions under which asymptotically optimal

data gathering capacity can be achieved. Finally, Section 6 summarizes the main results of the

paper and discuss their implication for the design of wireless sensor network data gathering

applications.

2 Related work and contributions

The investigation of fundamental wireless network properties has been subject of intensive

research since the seminal Gupta and Kumar’s work [6]. In [6], the authors lay down the

foundations of wireless multihop networking, showing that short-range communications have

to be preferred to long-range communications if the objective is to maximize network capacity.

This is due to the fact that short-range communications minimize the interference level in the

network, allowing for a degree of spatial reuse (i.e., simultaneous transmissions) that is sufficient

to outweigh the relay burden caused by multi-hop communications. However, this relay burden

considerably limits per-node network capacity, which is shown to converge to 0 as the number

n of network nodes grows to infinity. In [5], Grossglauser and Tse show that the Gupta and

Kumar’s capacity limit does not apply in mobile networks: the main idea is to exploit node

mobility, rather than multihop forwarding, to deliver packets to the destinations. This way, per-

node capacity can be optimized (i.e., Ω(W ) per-node capacity can be achieved, where W is the

channel capacity), at the price of considerably increasing communication latency. The tradeoff

between network capacity and latency in packet delivery is investigated, e.g., in [12], where the

authors show that the achievable per-node capacity is upper bounded by O
(
D
n

)
, where D is the

average packet delay. This result implies that Ω(W ) per-node capacity can be achieved only

by allowing O(n) latency, which is not optimal in most two-dimensional deployment scenarios.
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The above results refer to the unicast communication pattern, in which n/2 unicast flows

between source/destination pairs are simultaneously active in the network. Other traffic pat-

terns have been recently investigated, such as multicast [9, 17] and broadcast [7, 8, 14, 15, 19].

We briefly comment on the results concerning broadcast communications, which are indeed

relevant to wireless sensor networks (think about a sink node broadcasting a query in the net-

work, downloading new software to the nodes, etc.). In [19], Zheng investigates the broadcast

capacity of random networks with single broadcast source, and presents a broadcast scheme

providing asymptotically optimal capacity. The author also studies the information diffusion

rate, which is closely related to latency. However, broadcast capacity and information diffusion

rate are not jointly considered, i.e., the capacity-achieving broadcast scheme does not optimize

diffusion rate, and vice-versa. In [7, 8], the authors consider a more general network model,

in which arbitrary node positions and arbitrary number of broadcast sources are allowed. The

results of [7, 8] essentially confirm the finding on broadcast capacity reported in [19] in the

more general model. In [14], we consider a network model similar to that of [8] (but assuming a

single broadcast source), and show that asymptotically optimal broadcast capacity and latency

can be achieved, subject to a (not very restrictive) condition on network topology. This result

has been recently generalized to the case of arbitrary number of sources in [15].

The data gathering capacity of wireless networks has been investigated in a few recent pa-

pers. In [11], the authors consider a model in which nodes are evenly spaced in a circular area.

Nodes monitor a random, spatially-correlated field, and the goal is to deliver snapshots of this

random field to a sink, located in the center of the area. As the node density increases, corre-

lation of the sensed data increases, as well as the demand of traffic directed to the sink. Since

correlated data can be compressed, the question addressed in [11] is whether data compression

can be exploited to deliver accurate snapshots of the random field (with an upper bounded

MSE) to the sink. The authors essentially prove a negative result, showing that the benefits

of data compression are not sufficient to outweigh the capacity bottleneck of at the sink node,

which implies that the per-source available capacity is O
(
W
n

)
. In [2], the authors consider the

case of an 802.11-like sensor network, and empirically show that the capacity limit at the sink
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node is even tighter than the theoretical upper bound of W . In [3], El Gamal shows how to go

beyond this per-node capacity limit achieving O
(
W logn

n

)
per-source capacity, which is proved

to be sufficient to guarantee delivery of accurate snapshots of a Gaussian, bandwidth-limited

random field. The main idea to improve capacity is exploiting advanced PHY layer techniques,

namely cooperative communication: every node distributes its sampled value to neighboring

nodes, and then all these nodes cooperatively transmit the information to the sink node, re-

alizing distributed beamforming. Thus, owing to the beamforming gain, capacity at the sink

node can be increased of a logarithmic factor. Although interesting from a theoretical point of

view, El Gamal’s result is hard to apply in a practical scenario, due to the many assumptions

on which it is based: nodes are evenly spaced on a sphere, with the sink node located in the

center of the sphere; at the PHY layer, nodes are assumed to perform transmit power control,

to know the radio signal phase shifts between all possible pairs of nodes, to be able to perform

cooperative communication, etc.; finally, the joint distribution of the random field observed at

the various nodes is assumed to be known to all sensor nodes.

The work that is more closely related to ours is [10], in which the authors investigate the data

gathering capacity of a randomly deployed network in which s(n) out of the n nodes act as data

sources, d(n) nodes are data sinks, and each source node is randomly mapped to a sink node.

In this model, the authors identify two different asymptotic regimes: if d(n) = O

(√
n

logn

)
,

performance is constrained by the aggregate sink reception capacity, and per-source capacity

is upper bounded by O
(
W ·d(n)
s(n)

)
; if d(n) �

√
n

logn
, performance is constrained by network

transport capacity, and per-source capacity saturates to O

(
W ·
√
n/ logn

s(n)

)
independently of the

number d(n) of sink nodes. The authors also present a scheduling/routing algorithm to con-

structively lower bound capacity, and prove that the proposed construction indeed achieves

asymptotically optimal data gathering capacity for most scaling regimes of s(n) and d(n).

In this paper, we consider a traffic model similar to [10], in which s(n) nodes are data sources

and d(n) nodes are data sinks. However, differently from [10], we assume that source/sink

mapping obeys a locality criterion. In this model, we provide the following contributions:
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a) for the many-to-one case (i.e., d(n) = 1), we present a data gathering scheme that achieves

asymptotically optimal data gathering capacity for arbitrary network deployments. To

the best of our knowledge, ours is the first capacity-achieving construction for arbitrary

network deployments. Furthermore, we show that, if a certain topological property that

we call minimal cell connectivity is satisfied, the presented scheme achieves not only

asymptotically optimal capacity, but also asymptotically optimal latency in data gather-

ing.

b) for the many-to-many case with arbitrary s(n) and d(n), we consider both square grid and

random network deployments, and present an extension of the data gathering scheme for

single source networks that achieves asymptotically optimal data gathering latency. Fur-

thermore, for most scaling regimes of s(n) and d(n), the presented construction achieves

also asymptotically optimal per-source data gathering capacity. In particular, the results

for random network deployments show that per-source capacity can exceed the bounds

established in [10] when
√

n
logn
� d(n) = O

(
n

logn

)
. This is due to the different rule used

to map data source to sinks: random in [10], locality-based in our study.

c) finally, we consider the effect of a simple form of data aggregation based on a notion of

sensing granularity, and show that per-source capacity can be increased of a factor f(n)

with respect to the case of no data aggregation, where f(n) is node density.

Notably, and differently most previous works, the presented results and data gathering

scheme do not sacrifices energy efficiency to the need of maximizing capacity and minimizing

latency. Furthermore, we want to stress that, differently from previous work on data gathering

capacity, the results in this paper are derived using an accurate, SINR-based interference model,

the physical interference model of [6].
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3 Network model and preliminaries

We consider a wireless sensor network composed of n nodes, where s(n) ≤ n − 1 nodes act as

data sources, d(n) ≤ n − s(n) nodes act as data collection points (sinks), and the remaining

n − s(n) − d(n) nodes may be used to relay data to the sinks. When multiple sink nodes are

present in the network, the mapping between data sources and sinks obeys a locality criterion,

which will be detailed in the following.

We assume nodes communicate through a common wireless channel of a certain, constant

capacity W , and that the nodes transmission power is fixed to some constant value P . Correct-

ness of packet reception is governed by a condition on SINR, according to the so-called physical

interference model [6]. More specifically, when a node u transmits a packet to another node v,

the packet is correctly received (at constant rate W ) if and only if

SINR(v) =
Pv(u)

N +
∑

i∈T Pv(i)
≥ β ,

where N is the background noise, β is the capture threshold, T is the set of nodes transmitting

concurrently with node u, and Pv(x) is the received power at node v of the signal transmitted

by node x. We make the standard assumption that radio signal propagation obeys the log-

distance path loss model [13], according to which the received signal strength at distance d

from the transmitter (for sufficiently large d, say, d ≥ 1) equals P · d−α, where α is the path

loss exponent. In the following, we make the standard assumption that α > 2, which is often

the case in practice. Up to straightforward technical details, our results can be generalized to

the cost-based radio propagation model of [16], which is shown to closely resemble log-normal

shadowing propagation.

For given values of P , β, α, and N , we define the transmission range rmax of a node as

the maximum distance up to which a receiver can successfully receive a message in absence of

interference. From the definition of physical interference model, we have rmax = α
√
P/(βN).

The communication graph, denoted G = (V , E), represents the set of all possible communi-

cation links in the network, i.e., V is the set of the n nodes, and (undirected) edge (u, v) ∈ E if

and only if d(u, v) ≤ rmax.
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The per-source data gathering capacity of a network with n nodes, s(n) data sources, and

d(n) sinks is defined as the maximum rate λ(n, s(n), d(n)) at which each source node can send

its data, with the property that the data sent by a source at time t is received by a sink node

within time t+T , with T <∞. The data gathering latency is the minimal time T (n, s(n), d(n))

such that T ≤ T (n, s(n), d(n)), for each data source. Note that, when d(n) = 1, the definitions

of data gathering capacity and latency are meaningful only if graph G is connected. When

d(n) > 1, it is indeed possible to have non-zero per-source capacity and finite latency also in

partitioned networks. However, in order to be able to compare different data gathering scenarios

on the same network topology, we will keep the assumption of connected communication graph

also when d(n) > 1.

We consider two types of network deployment in this paper. In the arbitrary deploy-

ment, nodes are arbitrarily deployed in a two-dimensional region of arbitrary shape. In the

random deployment, nodes are distributed uniformly at random in a square region of side

(rmax/j) ·
√
n/ log n, where j > 8 is an arbitrary constant. Note that in the random deploy-

ment scenario we can set the region side to be an arbitrary constant (e.g., 1), which implies

that the transmission range rmax can be expressed as

rmax = rmax(n) = j ·
√

log n

n
,

i.e., it is asymptotically vanishing with n. Thus, the random deployment scenario under the

additional assumption that the side of the deployment region is a constant corresponds to the

so called dense random network scenario, considered, for instance, in [10].

Similarly to [14], we assume the deployment region (in both arbitrary and random deploy-

ments) is partitioned into a lattice of square cells of side l, with l = rmax
2h
√

2
, and h > 1 an arbitrary

constant. The step of the lattice ensures that, in absence of interference, a node located in a

cell is able to communicate with all nodes in adjacent cells (horizontal, vertical, and diagonal

adjacency). For a given node u, C(u) denotes the cell to which node u belongs. Given any

two nodes u, v, the cell distance between u and v, denoted cd(u, v), is the minimum number of

adjacent cells that must be traversed to reach C(v) starting from C(u) (or viceversa). Given a
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path P in graph G, we say that P is a cell path if and only if consecutive nodes in P belongs

to adjacent (non-empty) cells. Given any two nodes u, v, let P(u, v) denote a minimal-length

cell path between nodes u and v. We say that the network is minimally cell connected if and

only if, for each source node u, len(P(u, v)) = cd(u, v), where v is a sink node of minimal cell

distance from node u1, and len(P) denotes the length of path P . The notions of cell distance,

cell path, and minimal cell connectivity are pictorially described in Figure 1. Observe that the

notion of minimal cell connectivity, which we show to be sufficient to achieve asymptotically

optimal data gathering latency, is closely related to the notion of backward connectivity, which

is shown in [14] to be sufficient to achieve asymptotically optimal broadcast latency.

In the following, we assume that a simple form of data aggregation can be used to reduce

the amount of data traffic circulating in the network. In our study, data aggregation is based

on the notion of sensing granularity, which refers to the spatial resolution used for acquiring

data from the sensed field. More specifically, we assume the network designer can specify a

parameter sg defining sensing granularity, which is used to partition the network deployment

region into non-overlapping square cells of side sg. When data aggregation is used, we assume

that only one sensor data reading per sensing cell (if available) is to be returned to a sink node,

independently of the actual number of nodes present in the sensing cell. Although very simple,

this notion of data aggregation (which is based on the implicit assumption that the sensed field

displays a high degree of spatial correlation) is of practical relevance, and fits well with sleep

scheduling techniques used to extend sensor network lifetime without significantly impacting

observation accuracy (see, e.g., [1, 18]). Note that the sensing cell partitioning is independent

of the cell lattice used to define the notion of minimal cell connectivity and to design the data

gathering scheme. To avoid confusion in terminology, in the following we use the term “cell”

to refer to the cell used in the definition of the data gathering scheme, and the term “sensing

cell” to refer to the cell used to aggregate data to be delivered to the sink(s).

We conclude this section with two known properties of the random network deployment,

1Minimal cell connectivity is trivially satisfied if both the source and the sink node reside in the same (or in

adjacent) cell(s).
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which will be useful in the remainder of this paper.

Proposition 1. (from [4]) In the dense random deployment scenario, the critical transmission

range for connectivity2 is:

ctr(n) =
rmax(n)

j
.

Proposition 1 is important since it states that, up to a constant factor, the transmission

range as defined in the dense random deployment scenario is the minimum possible to maintain

the network connected w.h.p., i.e., it is energy efficient. Thus, the results derived in the following

will not sacrifice energy efficiency to the needs of data gathering capacity and latency. This is

not the case in some relevant related work on data gathering. For instance, in [3] the cooperative

transmission scheme requires using very high transmit power values at the neighboring nodes

to achieve an Ω(W log n) capacity at the sink node. In [11], the lower bound on the per-source

data gathering capacity is of the form

λ(n, n− 1, 1) ≥ W

n
· c1r

2
max − c2

c3r2
max + c4rmax + c5

, (1)

with the cis positive constants. The above lower bound is Ω(W
n

), i.e., asymptotically optimal,

if rmax does not depend on n. However, in [11] the authors consider a dense network scenario

in which an increasingly large number of nodes is deployed in a fixed area. Hence, an energy

efficient setting of the transmission range would require rmax → 0 as n→∞, to take advantage

of the increasing node density. However, the capacity lower bound reduces to the trivial lower

bound λ(n, n − 1, 1) ≥ 0 when rmax → 0, since the right hand side of (1) converges to a

negative constant when rmax → 0. Thus, the optimal capacity lower bound must be traded off

with energy efficiency in [11], which is not the case for the results presented in this paper.

Proposition 2. (from [14]) In the random deployment scenario, each square cell as defined

above contains at least one node w.h.p.

2The critical transmission range for connectivity is defined as the minimum value of the transmission range

such that the resulting communication graph is connected with high probability, i.e., with probability approach-

ing 1 as n grows to infinity.
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A straightforward consequence of Proposition 2 is that a randomly deployed network satisfies

minimal cell connectivity w.h.p.

4 Single sink networks

We first consider the case of single sink networks, i.e., throughout this section we assume

d(n) = 1. Differently from most existing works on data gathering capacity, our results hold

independently of the location of the sink node within the network.

We start by stating the upper bounds on data gathering capacity and latency, which hold

for both arbitrary and random network deployments.

Proposition 3. The per-source data gathering capacity of a single sink network with s(n) data

sources is O
(

W
s(n)

)
, where W is the capacity of the wireless link. The data gathering latency is

Ω
(
D(n)
rmax

)
, where D(n) is the network diameter.

The upper bound on capacity follows by observing, similarly to [2, 10, 11], that the sink

node can receive data from at most one node at any instant of time, that the channel data rate

is W , and that sink reception capacity must be shared amongst s(n) sources. We thus do not

consider use of advanced PHY layer techniques to exceed the O(W ) receiving capacity limit at

the sink node, as proposed in [3]. The upper bound on latency is based on the observation that,

under our network model, a packet can travel at most distance rmax towards the sink node at

each communication round.

We now present the capacity and latency achieving data gathering scheme. We assume

that each node v is aware of the cell C(v) to which it belongs, and that a spatial TDMA

approach is used at the MAC layer. Furthermore, we assume that cells are colored according to

a two-dimensional coloring scheme (see Figure 2), similar to those used, e.g., in [7, 14]. More

specifically, the color of a cell (and of all the nodes belonging to that cell) is a tuple (i, j), with

i the horizontal color and j the vertical color. A total of k2 colors, for some constant k > 0,

are used, i.e., both the horizontal and vertical colors take values in {0, . . . , k−1}. The coloring

scheme is used in an obvious way to form the transmission schedule, i.e., time is subdivided
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into slots of equal time duration, which are numbered in a cyclical fashion between 0 and k2−1;

each color is assigned a transmission opportunity at each communication round composed of k2

consecutive transmission slots. When the slot corresponding to color (i, j) is active, only links

whose transmitter is in a cell of color (i, j) can be scheduled for transmission.

The following lemma, proved in [14], is a fundamental building block of our construction:

Lemma 1. Assume a cell partitioning as defined in Section 3, and assume that at most one

node per cell with the same color transmits. If

k ≥ k̄ =
⌈
2 + 2

3
2

+ 4
α (βζ(α− 1)hα/(hα − 1))

1
α

⌉
,

where ζ is the Riemann’s zeta function, then the packet sent by a node is correctly received by

all nodes in adjacent cells.

The lemma states that a constant degree of spatial separation (number of colors) is sufficient

to achieve successful packet reception in neighboring cells, under the assumption that at most

one node per cell with the same color is simultaneously transmitting. Thus, a constant degree

of spatial separation is sufficient to achieve Ω(rmax) (recall that the size of the cell is Θ(rmax))

progress of a packet towards the sink (if minimal cell connectivity is satisfied).

The data gathering scheme is reported in Figure 3. Depending on its role, each network

node is classified as either sink, source node, or relay node. The sink node is the only data

collector in the network. Source nodes generate new data packets to be delivered to the sink;

furthermore, they can act as data forwarders if they are not sending their own data. Relay

nodes can act only as forwarders of data generated by source nodes. Non-sink nodes (either

source or relay nodes) can be selected as leader nodes in their cell. There is a unique leader

node in each non-empty cell, which is selected according to some rule, such as at random,

remaining battery level, etc. Leader nodes act as forwarders of data towards the sink. Note

that only relay nodes that are cell leaders participate in forwarding the collected data to the

sink. Non-leader relay nodes actually do not take part in the data gathering scheme, and can

be considered as non-active nodes (and possibly put into sleep mode to save energy).
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The data gathering scheme is very simple. Non-sink nodes are allowed to transmit only if

the current slot color corresponds to the node color. If the node is a source, a further condition

must be satisfied in order to enable transmission of a new packet. This condition, which is

verified by function MyTurn() at step 2., ensures that data generated by the various sources

do not conflict at intermediate nodes in their route to the sink. In the following, we show the

constructive technique used to calculate function MyTurn() for each source node, and prove its

correctness. If transmission of a new data packet is not allowed, the node can act as forwarder

of data generated by other sources if it is a leader node (step 3.). If the current slot color does

not correspond to the node color, the node actively participates in the data gathering scheme

only if it is a leader. In this case, it checks whether a new packet is received at the current

time slot, and stores the new packet in the buffer. The data gathering algorithm for the sink

node is straightforward.

To ensure collision-free delivery of data to the sink and optimal latency (in case minimal

cell connectivity is satisfied), data is conveyed to the sink through a cell-based shortest path

tree, called the data gathering tree, where the transmission time (slot) for each data source

is appropriately computed3. An example of data gathering tree is reported in Figure 4: for

each source node v, a minimal length cell path to sink node s, denoted P(v, s), is randomly

selected as data forwarding path4. Note that, without loss of generality, we can assume that

P(v, s)−{v, s} is composed only of leader nodes. The composition of all these minimal length

cell paths (one for each source) forms the data gathering tree.

Starting from the data gathering tree, a simplified gathering tree, called cell tree, is con-

structed as follows. A cell-node is associated with each cell with at least one node in the data

gathering tree. With a slight abuse of notation, in the following we use C(T ) to denote the

cell corresponding to cell-node T in the cell tree. An edge is present between cell-nodes T and

U if and only if there is at least one edge between a node in C(T ) and a node in C(U) in the

3A similar construction and transmission time computation has been used in the broadcast scheme for

arbitrary number of sources presented in [15].
4The choice of the actual minimal length cell path used to deliver data to the sink, which determines the

tree topology, has no influence on the data gathering capacity and latency achieved by our scheme.
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data gathering tree. Each cell-node is assigned with a weight equal to the number of source

nodes present in the corresponding cell. The cell tree corresponding to the data gathering tree

of Figure 4 is reported in Figure 5.

The main idea of the data gathering scheme is to have the sink node receiving a new packet

from a different data source at each communication round. Since the communication round

is composed of a constant number k̄2 of transmission slots, and the total number of sources

is s(n), we have that each source delivers packets to the sink with a rate of W
k̄2·s(n)

= Ω( W
s(n)

),

which is asymptotically optimal. Furthermore, data source transmission times are set in such a

way that conflict at intermediate nodes of the cell tree are avoided, which ensures that a packet

transmitted by source v during communication round t is received by sink s at communication

round t+ cd(v, s). As we shall see, this property implies asymptotically optimal data gathering

latency when minimal cell connectivity of the network is satisfied.

The transmission time for each source node in the network is recursively computed as follows,

starting from the root of the cell tree, which corresponds to the cell containing the sink node.

Communications rounds (each composed of k̄2 transmission slots) are cyclically numbered from

0 to s(n)− 1. In the following, all the mathematics is modulo s(n).

Let T1, . . . , Th be the children of the root node R in the cell tree, and let sw(Ti) be the sum

of the weights of all cell-nodes belonging to the subtree rooted at Ti. Furthermore, denote by

w(T ) the weight of cell-node T . It is easy to see that

w(R) +
h∑
i=1

sw(Ti) = s(n) .

Without loss of generality, we let the communication rounds {0, . . . , w(R)− 1} be assigned

to the w(R) sources in the same cell as the sink (if any), and communication rounds{
Li = w(R) +

j−1∑
i=1

sw(Ti), . . . , w(R) +

j∑
i=1

sw(Ti)− 1 = Ui

}
be assigned to the sources that gather their data to the sink via cell-node Ti, with i = 1, . . . , h.

We can now compute function MyTurn() for source nodes in C(s) by randomly ordering them,

and letting MyTurn(v) return true for a source node v in C(s) and order position i if and only

if the current communication round is i− 1.
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Let us now consider one of the children nodes Ti. If w(Ti) > 0, i.e., if at least one data

source is located in C(Ti), then the first w(Ti) rounds of the [Li, Ui] interval are assigned to

sources in C(Ti), and function MyTurn() for these sources can be computed as above. The

remaining rounds are recursively assigned to the children T i1, . . . , T
i
l of cell-node Ti in the tree,

using an interval-based round assignment as above. However, we have to consider that node Ti

must be able to transmit a new packet during each of its assigned rounds. Hence, the packets

coming from a particular children T ij , which must be transmitted by the leader node of cell

C(Ti) during interval [Lij, U
i
j ], must be received by Ti in an earlier time window. In order to

preserve optimality of data gathering latency and single buffering at the nodes, we set the time

window used by cell-node T ij to transmit its data to cell-node Ti to be [Lij − 1, U i
j − 1]. In

other words, the data transmitted by the leader node in cell C(T ij ) at round t is received by

the leader node in cell C(Ti) during the same round, and transmitted to the parent cell-node

during round t+ 1.

By repeatedly applying the above construction, the transmission times of all data sources

in the network can be computed, and used to define the respective myTurn() functions. The

result of the transmission time computation for the data gathering tree reported in Figure 4

is reported in Figure 6. Note that it is perfectly possible that, as a consequence of schedule

computation, several nodes simultaneously transmit packets within the cell tree. However, the

data gathering scheme ensures that at most one node per cell is allowed to transmit in each

transmission slot which, by Lemma 1, implies that each simultaneously transmitted packet can

be successfully received by nodes in neighboring cells as long as k ≥ k̄.

We are now ready to prove that our data gathering scheme provides asymptotically optimal

capacity.

Theorem 1. The data gathering scheme of Figure 3 achieves Ω
(

W
s(n)

)
per-source capacity.

Proof. The proof follows easily by observing that: i) the transmission schedule is built in

such a way that packets generated by any source are delivered to the sink once every s(n)

communications rounds; ii) the link communication rate is W ; and iii) each communication
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round is composed of a constant number k̄2 of fixed length transmission slots, where the value

of k̄ is defined in Lemma 1.

The following Lemma provides an upper bound to data gathering latency as a function of

the cell distance to the sink, under the assumption that the network is minimally cell connected.

Lemma 2. Assume the network is minimally cell connected. The packet sent by source node v

during communication round t is received by the sink s during communication round t+cd(v, s).

Proof. The transmission schedule is built in such a way that every generated data packets

traverses one edge of the cell tree at each communication round. Hence, the packet generated

at round t by source node v such that the corresponding cell-node is at distance h from the

root of the cell tree is received by the sink node at round t + h. The cell tree is built starting

from the data gathering tree, which is in turn constructed by joining minimal cell paths for

each data source. Given minimal cell connectivity, we have that, for each source, the minimal

cell path to the sink has length equal to cd(v, s). Hence, it must be h = cd(v, s), and the lemma

is proved.

Theorem 2. Assume the network is minimally cell connected. The data gathering scheme of

Figure 3 achieves O
(
D(n)
rmax

)
data gathering latency.

Proof. We observe that, since k̄ is a constant and the duration of a transmission slot is fixed,

the duration of a communication round does not depend on n. This implies also that the actual

transmission slot during which the packet is transmitted by the source (or received by the sink

node), which can add at most an additional factor equal to the duration of a communication

round to latency, is O(1). By Lemma 2, and by the above observation, the data gathering

latency for source v is O(cd(v, s)). We next observe that, by definition of network diameter,

the Euclidean distance between any source node v and the sink s is upper bounded by D(n).

The proof of the theorem follows by observing that the cell size is Θ(rmax), which implies that

cd(v, s) = O
(
D(n)
rmax

)
.

Combining Proposition 3 and theorems 1 and 2, we can conclude the following:
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Theorem 3. The data gathering scheme of Figure 3 achieves asymptotically optimal data

gathering capacity and latency. This result holds for arbitrary network deployments, subject to

the condition that minimal cell connectivity is satisfied.

We now consider the effects of data aggregation on data gathering performance. To this

purpose, we assume the deployment region is divided into square sensing cells of side sg. The

data gathering scheme is modified as follows. If more than one data sources are present in a

sensing cell, only one of them is selected as active source (an arbitrary criterion can be used to

select active sources); the data gathering scheme remains unchanged, with the difference that

only active sources are allowed to transmit and used to build the data gathering tree.

It is immediate to see that data gathering latency is not impacted by data aggregation. To

evaluate the effects of data aggregation on data gathering capacity, we need to determine the

relationship between sg and the area of the deployment region. It is in fact immediate to see

that per-source data gathering capacity in presence of data aggregation becomes

Ω

(
W

as(n)

)
,

where as(n) is the number of active sources in the network. In turn as(n) is upper bounded

by the number of sensing cells in the network, which can be determined only if the relationship

between sg and the area of the deployment region is fixed. To this purpose, we consider two

deployment scenarios, similar to those considered in previous works on the data gathering

capacity [3, 10, 11]. In the square grid scenario, the n nodes are distributed in a square lattice

of step Θ(rmax); thus, the deployment region is a square of side L = Θ(
√
n · rmax) = Θ(

√
n).

Defining the density of a deployment as the average number of nodes within a node transmission

range, it is easy to see that square grid deployment is a minimal density scenario that maintains

the network connected. The other considered scenario is the random deployment scenario

described in Section 3. We recall that, under this scenario, n nodes are distributed uniformly

at random in a square region of side L = (rmax/j) ·
√
n/ log n. As shown in Section 3, the

random deployment scenario is a minimal density scenario for achieving connectivity w.h.p.

with random uniform node deployment. Note that, due to random node distribution, this
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minimal density is Θ(log n), which is larger than the Θ(1) density of the square grid scenario.

Let us first consider the square grid deployment; in this case, the number of sensing cells is

Θ

((√
n

sg

)2
)

= Θ(n) ,

under the reasonable assumption that the sensing granularity does not depend on the number

of nodes. Thus, in the square grid deployment, owing to the low node density, data aggregation

provides no significant gain in per-source data gathering capacity, which remains Ω
(
W
n

)
.

Let us now consider the random deployment; in this case, the number of sensing cells is

Θ

((√
n

log n
· 1

sg

)2
)

= Θ

(
n

log n

)
,

which implies that the per-source data gathering capacity is increased of a Θ(log n) factor over

the case of no data aggregation. It is easy to generalize the above reasoning, and conclude that,

under the assumption that the density of node deployment is Θ(f(n)), for some f(n) = O(n),

the per-source data gathering capacity is increased of a f(n) factor.

We can then conclude this section with the following theorem:

Theorem 4. Assume a network is deployed with Θ(f(n)) density; furthermore, assume that

the network is minimally cell connected, and that the sensing granularity does not depend on

n. Then, our data gathering scheme combined with data aggregation achieves optimal data

gathering latency, and Ω
(
W ·f(n)

n

)
per-source data gathering capacity.

5 Multiple sink networks

We now consider the more general case of multiple sink networks, where d(n) > 1 nodes in

the network act as data collector. When multiple sinks are present in the network, a relevant

question is how to map data source to sinks. In [10], the authors assume this mapping is random.

This assumption, which eases the theoretical analysis developed in [10], clearly leads to sub-

optimal data gathering performance, since the number of re-transmissions (which negatively

impact per-source data gathering capacity) needed to deliver a data packet increases with the
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distance to the sink. Driven by this observation, in this section we make the assumption that

source nodes send their data to a sink at short cell distance. Furthermore, we assume that sink

nodes are not randomly located (as in the model of [10]), but they can be properly selected

amongst the network nodes, as it is typically the case in a wireless sensor network scenario.

On the other hand, source nodes are assumed to be randomly chosen amongst the remaining

n− d(n) nodes.

We first state the capacity upper bound and latency lower bound in presence of s(n) source

nodes and d(n) sinks.

Proposition 4. The per-source data gathering capacity of a network with d(n) sinks and s(n)

sources is O
(
W ·d(n)
s(n)

)
. The data gathering latency is Ω

(
D(n)

rmax·
√
d(n)

)
.

The capacity bound follows by observing that, with d(n) sink nodes, the aggregate sink

reception capacity is increased of a factor at most d(n) with respect to the single source case.

The lower bound on latency is obtained under the optimistic assumption that sink nodes are

evenly spread in the network, so that the distance of a source to the closest sink can be reduced

of a factor O(
√
d(n)).

In the remainder of this section, we consider two possible network deployments, namely the

square grid deployment described at the end of Section 4 and the random deployment.

Assume square grid node deployment. The deployment region is divided into d(n) square

sub-regions of approximately equal size5, and one node is selected as sink node within each sub-

region (note that at least one node is contained in each sub-region). Source nodes belonging

to a certain sub-region R send their data towards the only sink node within R (see Figure 7).

The data gathering scheme described in the previous section is independently applied in each

sub-region, i.e., a data gathering and cell tree is built in each sub-region, and the data gathering

process goes on in parallel along all the data gathering trees. We now characterize the data

gathering capacity and latency achieved by this data gathering approach:

5To simplify presentation, in the following we assume that each cell as defined in Section 4 is entirely

contained in a single sub-region. This assumption might entail some rounding on the actual size of sub-regions.
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Theorem 5. Assume square grid node deployment. The multiple sink data gathering scheme

described above achieves Ω
(

W
M(s(n),d(n))

)
per-source data gathering capacity, where M(s(n), d(n))

denotes the maximum number of source nodes in a sub-region, and O

(
D(n)

rmax·
√
d(n)

)
(i.e., asymp-

totically optimal) data gathering latency.

Proof. We first observe that, even if data gathering on the different trees goes on in parallel,

transmissions in the different trees do not corrupt each other. In fact, since each cell is entirely

contained in a single sub-region, the property that at most one node per cell with the same color

is simultaneously transmitting holds also when multiple, spatially separated data gathering

processes are active. Thus, Lemma 1 is satisfied, and source nodes in sub-region R can transmit

their data to the respective sink with rate W
s(R)

, where s(R) is the number of sources in sub-

regionR. It is then clear that per-source data gathering capacity is lower bounded by W
M(s(n),d(n))

,

where M(s(n), d(n)) is the maximum number of sources in a sub-region. The upper bound on

data gathering latency follows immediately by construction of the data gathering trees, and by

the observation that the square grid deployment satisfies minimal cell connectivity.

The value of M(s(n), d(n)), and thus the achievable per-source capacity, depends on the

relative magnitude of s(n) and d(n), and is characterized in Lemma 1 of [10]. In particular,

if s(n) � d(n) log(d(n)) (e.g., s(n) = na and d(n) = nb, with 0 < b < a < 1), we have

M(s(n), d(n)) = Θ
(
s(n)
d(n)

)
, which implies that our scheme achieves asymptotically optimal

Ω
(
W ·d(n)
s(n)

)
per-node capacity. Another relevant scenario is when s(n) = d(n) = Θ(n), i.e.,

when the order of the number of sources is the highest possible, and a comparable number of

sinks is used. In this case, we have M(s(n), d(n)) = Θ
(

logn
log logn

)
, and the achieved per-node

capacity is Ω
(
W log logn

logn

)
, which is a factor logn

log logn
below optimal. The sub-optimal behavior of

our data gathering scheme is due to unbalanced distribution of source nodes in the sub-regions.

Consider now the case of random node deployment. Similarly to the previous case, we

subdivide the deployment region into d(n) sub-regions of approximately equal side. However,

we add the further constraint that sub-regions must be larger than a cell, as defined in Section

4. This is to ensure that, in accordance with Proposition 2, each sub-region contains at least
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one node w.h.p., so that a sink node can be selected within each sub-region w.h.p. Note

that this constraint imposes an upper bound on the number of admissible sink nodes, namely

d(n) = O
(

n
logn

)
.

The data gathering scheme is the same as in the case of square grid deployment: one node

is selected as sink in each of the d(n) sub-regions; all source nodes in sub-region R send their

data to the sink node belonging to R; data gathering along the d(n) data gathering trees runs

in parallel. The following theorem can be proved along the same lines as Theorem 5:

Theorem 6. Assume random node deployment, and that d(n) = O
(

n
logn

)
. The multiple

sink data gathering scheme described above achieves Ω
(

W
M(s(n),d(n))

)
per-source data gathering

capacity, where M(s(n), d(n)) denotes the maximum number of source nodes in a sub-region,

and O

(
D(n)

rmax·
√
d(n)

)
(i.e., asymptotically optimal) data gathering latency.

We observe that when d(n) = Θ
(

n
logn

)
and s(n) = Θ(n), we have M(s(n), d(n)) = s(n)

d(n)
,

which implies that the per-source capacity Ω
(
W ·d(n)
s(n)

)
= Ω

(
W

logn

)
achieved by our scheme is

optimal. It is interesting to compare this result with the findings of [10], which also assume

random network deployment. In [10], the authors show that per-source capacity is upper

bounded by O
(
W ·d(n)
s(n)

)
when d(n) = O

(√
n

logn

)
, while it is upper bounded by O

(
W ·
√
n/ logn

s(n)

)
for larger values of d(n). Conversely, our results have shown that O

(
W ·d(n)
s(n)

)
per-source capacity

can be achieved even when d(n) �
√

n
logn

, as long as d(n) = O
(

n
logn

)
. This different scaling

law in per-source capacity, which is depicted in Figure 8, is due to the different strategies used to

map source node to sinks: random in [10], locality-based in our work. Thus, the advantages of

the locality criterion used for data gathering becomes tangible in terms of achievable capacity.

Before ending this section, we observe that data aggregation can be used also in presence of

multiple sink to increase per-source capacity of a factor of f(n), where f(n) is the node density.
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6 Discussion and final considerations

In this paper, we have investigated the capacity and latency scaling laws of data gathering in

wireless sensor networks where s(n) sources have to send their data to one of the d(n) sinks.

Our main finding is that a simple gathering scheme can be used to obtain optimal or near

optimal data gathering capacity for most scaling regimes of s(n) and d(n). Furthermore, the

same gathering scheme achieves optimal data gathering latency under the condition that the

network is minimally cell connected, a condition which is satisfied, for instance, in case of

square grid and random network deployment. We have also characterized the capacity increase

achieved by a form of data aggregation based on the notion of sensing granularity, increase

which is shown to be proportional to the node density f(n). Although simple, this form of

data aggregation is of practical relevance, and fits well with sleep scheduling strategies aimed

at extending network lifetime.

Before ending this paper, we comment on the following two questions: i) what are the design

guidelines that can be derived from our theoretical results? and ii) is the characterized data

gathering capacity sufficient to guarantee observability of the region monitored by a wireless

sensor network?

Concerning i), we observe that the capacity and latency achieving data gathering scheme

presented in this paper is fully distributed and very easy to implement in a real network. How-

ever, it is based on a set of assumptions, which might not always hold in a wireless sensor

network. More specifically, it is assumed that spatial TDMA is used at the MAC layer (which

requires time synchronization), a weak form of location-awareness (nodes must know the cell to

which they belong), and that leader nodes are selected in each cell. Indeed, time synchroniza-

tion, location-awareness, and leader election mechanisms are quite typical building blocks of a

wireless sensor network used, e.g., for environmental monitoring, so we believe that the pro-

posed data gathering scheme can potentially be implemented in several wireless sensor network

application scenarios.

As for ii), we observe that the optimal per-source capacity without data aggregation is at
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most O
(
W ·d(n)
s(n)

)
, i.e., asymptotically vanishing unless d(n) = Ω(s(n)). Thus, the only way

of achieving non-vanishing per-source capacity is to have a number of sinks comparable to

the number of sources, which might entail a prohibitive cost in many application scenarios.

However, if the observed field is spatially correlated, data aggregation can be used to increase

per-source capacity by selecting a number of available sources to report their data, and having a

large set of nearby sources to remain silent. The advantage of data aggregation over the case of

no aggregation clearly depends on the (source) node density: the higher the density, the higher

capacity increase can be achieved. It is interesting to observe that in random deployments, the

minimal density necessary to guarantee network connectivity w.h.p., which is Ω(log n), achieves

the same O(log n) capacity increase (in the single sink scenario) that has been achieved in

[3] through sophisticated PHY layer and data encoding techniques. The resulting per-source

capacity has been shown in [3] to be sufficient to guarantee observability of a random Gaussian

field. Although this does not directly imply that the same observability property holds also in

our setting (in fact, nodes are evenly spaced on a sphere in the model of [3], while they are

randomly deployed in a square in our case), the above observation seems to indicate that a

simple form of data aggregation has the potential to guarantee observability of a random field

also in presence of a single sink.

It is also worth observing that our results and the presented data gathering scheme are fully

compatible with an energy efficient network design in which, for instance, the transmission

range is set to the minimum possible value that keeps the network connected, a subset of the

nodes are put in sleep mode to save energy, and so on.

Finally, we want to outline that the results presented in this paper are relevant also to other

types of wireless multihop networks where the many-to-one or many-to-many traffic pattern is

likely to arise, such as wireless mesh networks where most of the traffic is directed towards few

gateway nodes.
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u

v

P P’

Figure 1: The notion of minimal cell connectivity: without the gray node, the network is not

minimally cell connected, since the length of minimal cell path P between source u and sink v

is 5, and is greater than cd(u, v) = 2. With the gray node, the network becomes minimally cell

connected, as len(P ′) = 2.
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Figure 2: Two-dimensional coloring scheme used in the data gathering scheme with k = 3.

Cells with the same color (0, 0) are shaded.
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Algorithm for a generic non-sink node v:

Let i be the color of the current time slot

Node v has a single position packet buffer

1. if color(v) = i then

2. if (source(v) and MyTurn(v)) then

generate and transmit new packet

3. else if cellLeader(v) then

4. if buffer(v) is not empty then

5. transmit packet and empty buffer

6. else // color(v) 6= i

7. if cellLeader(v) then

8. listen to the channel

9. if new packet arrive then

10. receive the packet and store in transmit buffer

Algorithm for the sink node:

1s. At each time slot:

2s. listen to the channel

3s. if new packet arrive then

4s. receive the packet and deliver to user application

Figure 3: The data gathering scheme with single sink node.
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Figure 4: The data gathering tree.

1

1

1 1

2
1

1

11

1

3

Figure 5: The cell tree corresponding to the data gathering tree of Figure 4. Only positive

cell-node weights are shown.
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Figure 6: Transmission scheduling for the cell tree of Figure 5.
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Figure 7: Data gathering scheme with multiple sinks in square grid deployments.
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Figure 8: Data gathering capacity scaling laws with random network deployment.
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