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Abstract. Genomic sequences in higher eucaryotic organisms contain a substantial amount of (almost)
repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are
originated via phenomena such as replication slippage, are characterized by close spatial contiguity,
and play an important role in several molecular regulatory mechanisms. Certain types of tandem
repeats are highly polymorphic and constitute a fingerprint feature of individuals. Abnormal TRs are
known to be linked to several diseases. Researchers in bio-informatics in the last 20 years have proposed
many formal definitions for the rather loose notion of a Tandem Repeat and have proposed exact or
heuristic algorithms to detect TRs in genomic sequences. The general trend has been to use formal
(implicit or explicit) definitions of TR for which verification of the solution was easy (with complexity
linear, or polynomial in the TR’s length and substitution+indel rates) while the effort was directed
towards identifying efficiently the sub-strings of the input to submit to the verification phase (either
implicitly or explicitly). In this paper we take a step forward: we use a definition of TR for which also
the verification step is difficult (in effect, NP-complete) and we develop new filtering techniques for
coping with high error levels. The resulting heuristic algorithm, christened TRStalker, is approximate
since it cannot guarantee that all NP-Complete Tandem Repeats satisfying the target definition in the
input string will be found. However, in synthetic experiments with 30% of errors allowed, TRStalker has
demonstrated a very high recall (ranging from 100% to 60%, depending on motif length and repetition
number) for the NP-complete TRs. TRStalker has consistently better performance than some state-
of-the-art methods for a large range of parameters on the class of NP-complete Tandem Repeats.
TRStalker aims at improving the capability of TR detection for classes of TRs for which existing
methods do not perform well.

1 Introduction

Tandem Repeats (TRs) are multiple (two or more) duplications of substrings in the DNA that occur con-
tiguously, and may involve some base mutations (such as substitutions, insertions, and deletions). Tandem
Repeats of several forms (satellites, microsatellites, minisatellites, and others) have been studied extensively
because of their role in several biological processes3. In fact, TRs are privileged targets in activities such
as fingerprinting or tracing the evolution of populations [KTCM08,VKN+06]. Several diseases, disorders
and addictive behaviors are linked to specific TRs loci [WCJC+94]. The role of TRs has been studied also
within coding regions [OEPS05] and in relation to gene functions [LPPV07]. Large scale Tandem Repeats
comparative studies of the human genome are described in [DNT+08,WHG+08]. Data Bases of repetitive
elements such as RepBase [JKP+05] and TRDB [GRB07] are now available; and the detection of repetitive
elements via library-based similarity matching, for example by using the tool Repeatmasker4, is a popular
practice. However, tools for ab initio detection of repetitive elements that are not based on prior knowledge
accumulated in data bases, are still important in order to extend our comprehension of the role of TRs in
biological mechanisms. Existing ab initio tools are successful when the TR exhibit a moderate amount of
noise and when the TR is easily certified. However, there is an emerging need for new tools that are able to
cope with higher levels of noise and/or TR computationally more difficult to detect. For example, Boeva et
al. [BRPM06] study so called Fuzzy Tandem Repeats and their role in gene expression, but their technique
is limited since they do not handle insertions/and deletions.

3 As of today, in the PubMed bibliographic database 39214 articles mention the expression “tandem repeat” in their
title or abstract (1270 in their title).

4 http://www.repeatmasker.org/



Some of the most successful ab initio tools, such as TRF [Ben99] and ATRHunter [WYKG05], are based
on a filtering multi-stage approach (see also [PSdL+09]). In the first stage the input sequence is analyzed
so to detect via statistical criteria likely position and length of candidate subsequences. The final stage is
the validation one in which a more expensive validation test is applied to candidate substrings passing the
first stages, so to determine an output matching the implicit definition of TR and the user-defined filtering
parameters.

Our contribution is a novel filtering multi-stage algorithm TRStalker that introduces new techniques in all
stages. For the first stage, where over-represented distances between probes are sought, we employ gapped
q-grams [BK03] in place of the standard q-grams in order to collect evidence on the candidate substrings.
Gapped q-grams have been used before in the context of textual and biological database searching, but less so
in the area of tandem repeats detection (with the exception of the system TEIRESIAS [SGFR99]). Because of
errors due to insertion/deletions the period of a TR is subject to fluctuations, we employ a weighting scheme
with exponential decay so to reinforce the signal even in presence of this smearing effect. Finally we use
ranking instead of thresholds when deciding the substrings to pass to the next phases, in order to concentrate
the computational effort on the zones with candidates with higher weight. For the final validation stage
we employ an NP-complete definition of TR involving the concept of generalized median string under edit
distance [dlHC00,SP03], together with an efficient heuristic for computing such median strings [JABC03].

By extensive experimental comparisons of TRStalker with two state-of-the-art tools, namely TRF and
ATRHunter, we did find out that TRStalker has consistently better performance for a large range of error
and length parameters for the class of NP-complete Tandem Repeats, with a recall ranging from 100% to 60%.
Thus TRStalker improves the capability of TR detection for classes of TRs for which existing methods do not
perform well. Tests performed on standard TRs definitions (verifiable in polynomial time) also show recall
performance close to 100%. Incidentally, this result confirms of the power of the new techniques developed
for the initial filtering phase.

The paper is organized as follows: in Section 2 we describe some basic definitions of TRs; in Section 3 we
survey the state of the art; in Section 4 we describe in detail the algorithmic principles of TRStalker; in
Section 5 we describe the outcome of the experimental validation. Preliminary experiments with biological
data are under way.

2 Basic Definitions

A Tandem Repeat in a DNA sequence is the repetition of two or more contiguous exact or approximate
copies of a substring (called the motif) of the tandem repeat.
Exact TR. Formally, given an alphabet Σ, and a set of strings xi ∈ Σ∗, consider the concatenation
X = x1x2..xt. The string X is a exact tandem repeat (ETR) of period k and repeat number t, when |xi| = k
and xi = x1, for each i ∈ [1, ..t]. In general we may suppose there is a longer string Y of which X is a
substring. The string x1 that is repeated exactly is called the motif of the ETR. A TR X is called maximal
if it cannot be extended in Y while still being a TR.

Exact tandem repeats are sometimes found in biological sequences, but they tell us only part of the
story, thus several notions of an approximate tandem repeat have been developed. Denote with DH(a, b) the
hamming distance of two strings with equal length. If the length of a and b is different we consider the
smallest possible mismatch in an alignment of the two strings without gaps. Denote with DE(a, b) the edit
distance of the two strings a and b.
Approximate TR (ATR). Several different definitions of Approximate Tandem Repeats proposed in the
literature differ by the choices made along a few dimensional axes. The most important are the following:

1. The distance function (or similarity function) used to compare pairs of strings (repeats or motifs).
Classical distance functions are (weighted or unweighted) Hamming and edit distances, but also more
complex functions with block-operations have been considered. Usually distance functions of choice are
also metrics. Sequence pair alignment scoring functions are often used as similarity functions.

2. The choice of pairing policy (adjacent pairs, all pairs, motif-instance pairs, etc..) is the most critical one,
in particular the use of motifs not present in the input string (Steiner motifs) may easily change the
validation task from polynomial to np-complete.

3. Different functionals for the final error score (typically the sum and the maximum functionals are used).
4. Use of an absolute error threshold or relative to the TR length. More generally the error thresholds can

be complex functions of the structure of the TR.



5. Role of the ambient string Y . In most definition a string X is a TR regardless of the properties of
the string Y containing it. In a few definitions a statistical analysis of Y is used to determine some of
parameters thus the property of being a TR depends on both Y and X

In [SBT07] it is used the following definition: X is called a k-edit Approximate Tandem Repeat when
∑t−1

i=1 DE(xi, xi+1) ≤ k, where the last repeat xt might be incomplete so DE(xt−1, xt) is computed as the
minimum edit distance of xt and the prefixes of xt−1. This definition is inspired by the evolutionary model
of TRs in which it is assumed TRs are generated by duplicating the last copy of a previous TR, possibly
with duplication errors that truncates it. A k-edit repeat is maximal if it cannot be extended either to the
left or to the right without violating its definition.
In [WYKG04] for a similarity function φ that measures the alignment score of two sequences, it is defined a
η-Simple Approximate Tandem Repeat (η-SATR) a string X = x1...xt such that: there exists a motif x̄ ∈ Σ∗

so that for every i ∈ [1, .., t], φ(x̄, xi) ≥ η. In other words the TR consists of t duplications of a single
consensus string x̄ with mutations. Such string x̄ is also called a Steiner motif if x̄ is not constrained to be
equal to some repeat xj . Often in practice x̄ is chosen as the repeat xj that minimizes the error function,
and is called a Pivot motif. The distinction is critical since, as mentioned before, Steiner motifs lead to
NP-complete recognition problems, while Pivot motifs do not.
The η-Neighboring Approximate Tandem Repeat (η-NATR) is a string X , so that for each i ∈ [1, .., t − 1],
φ(xi, xi+1) ≥ η [WYKG04]. The Pairwise Approximate Tandem Repeat (PATR) is a string X , such that for
every pair of indices i, j ∈ [1, ..t]2 with i 6= j we have φ(xi, xj) ≥ ηij , where ηij is set to be a monotonically
decreasing function of |i− j|, thus allowing more slackness when comparing distant copies of the basic motif.
In [KT04] it is used a definition similar to that of the Neighboring Approximate Tandem Repeat, except
that the Hamming distance is used and that the threshold is not absolute but relative to the length. A
γ-HATR (γ-Hamming Approximate Tandem Repeat) is a string X such that: for each i ∈ [1, .., t − 1],
DH(xi, xi+1) ≤ |xi|γ.
In [SGFR99] a more complex definition is given that takes into account the substring alignment score density
function for pairs of random substrings of a given length. Here the definition of a TR X depends on the
properties of the longer string Y into which X is embedded. In particular a (µ, p)-TR must comply to two

conditions: 1)
∑t−1

i=0 φ(xi, xi+1) ≥ (t−1)µ, that imposes an average high similarity score for adjacent repeats,
and 2) define α(p, k) as the value of similarity such that there is probability p that two random substrings of
length k in Y have similarity above α(p, k). There must be an index q ∈ [1, .., t] such that φ(xq , xj) ≥ α(p, k)
for all j ∈ [1, ..t]. Note that this condition limits the dispersion of the similarity with respect to one of the
copies (called the pivot).
TRF [Ben99] uses as final validation algorithm the Wraparound Dynamic Programming technique (WDP)
that tests efficiently the alignments of a given candidate motif with the surrounding portions of the input
sequence, so to determine the maximum number of adjacent repetitions within a user-defined score bound.
This implies a notion of TR akin to that of simple approximate tandem repeats (SATR) with Pivot motif.
Classical results on string alignments [Gus97, page 351] ensures that, for the metric score given by the sum
of motif-repeats distances, the solution found using the optimal Pivot motif has a score within a factor
(2 − 1/t) of the score induced by the optimal Stainer motif. For low levels of errors one could use a Pivot-
SATR definition doubling the error threshold to capture a Steiner-SATR, however for higher error levels
(say, above 25%), doubling the error threshold forces the existing systems to work in a range of values (say,
above 50%) where most methods do not perform well.
Precision and Recall. For all of the above definitions once the tandem repeat and its motif are found it
is possible to validate them according to the chosen definition. Thus we can assume that in principle any
Approximate TR finder algorithm will report only legitimate TRs (thus precision is always 100%) and the
only important output quality measure is recall (that is how many of the implanted ATR’s present in the
input string have been reported as such by the algorithm).

3 State of the Art

We will briefly survey the state of the art in finding tandem repeats. First we will describe methods that
for a given definition of TR are able to find all maximal substrings in the input that match the definition
(exhaustive algorithms). Often exhaustive algorithms may not be available, or when available are too slow
in practice, thus several heuristic algorithm have been developed which are shown experimentally to be able



to detect a large fraction of TRs efficiently. Note that the time/precision trade-off is severely influenced by
the allowed error thresholds. Performance often degrades quickly with increasing error levels.
Exhaustive algorithms. When we allow no error, it is possible to find all maximal exact TRs in a string of
length n in time O(n) [KK99,GS04]. When we allow two consecutive repeats to differ by an amount at most
k (either in Hamming or in edit distance) Landau, Schmidt and Sokol [LSS01] give exhaustive algorithms
running in time O(nk log(n/k)) for Hamming distance, and O(nk log k log(n/k)) for edit distance. A simpler
algorithm with the same asymptotic complexity for the edit distance is proposed by Sokol, Benson and Tojeira
[SBT07]. Kolpakov and Kucherov [KK03] improved the bound for the Hamming distance to O(nk log k + s)
where s is the number of TR found. For the Hamming distance, Krishnan and Tang [KT04] give an exhaustive
method running sequentially in time O(n3), that can be easily implemented onto a parallel architecture, since
every possible pattern length is searched independently.
Heuristic algorithms. The algorithmic techniques in [KK99,KK03] has been extended in the tool mreps
[KBK03] so to be able to handle approximate TRs under edit distance, with some additional heuristic filtering
steps.

The tool TRF (Tandem Repeat Finder) developed by Benson [Ben98,Ben99], based on statistical filtering
of zones of DNA likely to contain TRs, is currently one of the standard heuristic methods. ATRHunter
[WYKG04] by Wexler et al. is also based on a statistical filtering approach, placing greater emphasis in
techniques for designing thresholds for the quantities of interest. Other proposed heuristics for finding TRs
are REPuter [KS99,KCO+01], STRING [PFAP03], TEIRESIAS [SGFR99], TandemSWAN [BRPM06]. A
class of papers (see e.g. [SIRR04], [Bro07],[BJ03], [GSMS07]) tackle the problem of finding tandem repeats
as a problem in signal processing theory and usually map the input string into a time-signal in a suitable
numerical domain for which several spectral techniques can be used, such as the Periodicity Transform or the
Fourier Transform. Other methods use data compression techniques to detect repetitive elements [RDD+97].

The methods cited above are rather general since they aim at treating efficiently TRs in a wide range of
length values. There is also a large class of methods that are aimed at handling particular or special classes of
TRs such as: microsatellites (e.g. IMEx [MN07]), palindromic repeats (e.g. CRISPFinder [GVP07]), Variable
Length Tandem Repeats (VLTR) and Multi-period Tandem Repeats (MPTR) [HJ02], Variable Number
Tandem Repeats (VNTR) [SS06]. Since the focus of our research on TRs at present is on the more classical
forms of TRs we do not dwell longer on them. However, we just note that often methods for MPTR, VNTR,
VLTR use standard TR finding as a subroutine, thus our proposed algorithm can increase also our ability to
detect such higher order structures. Other methods need as input additional parameters, such as the target
period of the TR [BW94].

Systematic comparison among TR finding tools and algorithms operating “ab initio”, that is without
support of specific biological data bases has been tackled in recent years [LRJ07,SBMP08]. A survey of
problems on Tandem Repeats in the context of evolutionary mechanisms, such as the construction of TR
Evolutionary Trees, is proposed in [Riv04] (see also [EG02]).

4 Our algorithm: TRStalker

Our definitions of TR. We used two different definitions of TRs:

– Neighboring TR (NTR): it is a string X , so that for each i ∈ [1, .., t− 1], DE(xi, xi+1) ≤ µ|xi|, for a
user defined parameter 0 ≤ µ ≤ 1

– Stainer-STR with sum: it is a string X = x1x2..xt for which there exists a Steiner string x̄ ∈ Σ∗ so
that

∑
i∈[1,..,t] DE(x̄, xi) ≤ µ|X |, for a user defined parameter 0 ≤ µ ≤ 1. In other words the TR consists

of t duplications of a single Steiner consensus string x̄ with mutations.

The initial filtering phase is the same in either case, while the verification phase will be different for the two
possible definitions.

An example To focus on the main ideas, let us consider the very simple case of Exact TR. Given a string
X = x1x2..xt, embedded in a random string Y , where xi = x1 for all i and |x1| = k. Consider the class of
ungapped q-grams, and the distance between any two occurrences of a given q-gram (also called probes) in Y .
For q-grams in X , the period k will appear at least (k−q+1)(t−1) times as the distance between homologous
probes. More generally the distance hk, an integer multiple of k, will appear at least (k− q +1)(t−h) times
for each value h = 1, .., t− 1. For gapped q-grams similar formulae hold. For values of k and t large enough,



the period k and its integer multiples will occur more frequently than the expected number of occurrences in
a random string, thus the empirical number of occurrences of the value k and its multiple will tend to be in
the higher part of a ranking by frequency. This observation holds true as long as the length of the superstring
Y is sufficiently limited so that the frequencies generated by the random portion of Y do not overrun the
frequencies generated by X . An exact characterization of such a distribution in terms of the parameters k, t,
q and |Y | is complex since it can be characterized as the sum of non-independent random variables each with
a negative binomial distribution. However we avoid the issue of characterizing exactly such a distribution
(1) by splitting the input string into blocks of predefined length and limiting the analysis to each block sep-
arately, with mechanisms to deal with TR stranded across the block boundaries; (2) by ranking the periods
by weighted frequency and exploring only the top L positions (for L = 50 in our experiments). Note that in
most cases the top ranking periods not corresponding to tandem repeats will be discarded quickly when the
positional density is considered, thus we can be very slack in choosing L without incurring in a computational
cost. The choice of block-length could be more critical, but experiments show that blocks of length within fac-
tor 10-20 of the length of the TR sought do work well, so here too we do not need to define a sharp threshold.

Gapped q-grams The presence of substitutions/insert/deletions has the effect that many instances of q-
grams will be affected by error and a match will be missed, thus reducing the frequency counts for the
period k. To cope with this effect we use gapped q-grams [BK03,BK02] that are more resilient to the presence
of substitutions/insert/deletions. As suggested by experiments in [BK02] just few gaps are sufficient to be
effective, thus we will use the patterns all gapped q-grams with at most 2 gaps and 3 letters.

Period detection. Our overall strategy for period detection is as follows. We split the input string into
blocks of predefined length and we scan the block Y and record for each gapped q-gram P in Y the distance
of each occurrence of P to the 5 preceding and following occurrences (10 in total). If a distance and its integer
multiples has been detected we form a composite period by summing the occurrences of the single simple
periods. The candidate periods (simple and composite) are then weighted with the anti-smearing procedure
described below, sorted by weight. The candidate periods are processed in order from the highest weight.

Anti-smearing weighting. If q1 and q2 are occurrences of the same probe at distance k, before the implant
of mutations, the effect of insertion and deletions on the positions between q1 and q2 is to alter their distance
so that a different period k′ is detected. The difference k − k′ is equal to the algebraic sum of number of
insertions and deletions in the positions between q1 and q2. Assuming that any such position can be an insert
or a deletion independently with the same probability, the random variable k − k′ is distributed as a sum of
independent r.v. of value +1/ − 1 with the same probability [MR95,Mul93], thus, by a Chernoff argument,
its tail distribution decays exponentially, for any fixed number of terms in the summation5. Inspired by the
above observation we devise a weighting scheme that increments the total weight of period k if another
period of value k′ is discovered in a near-by position, with weights that decay exponentially with |k − k′|.
More formally, at position i of the input string we have pattern P (i) = P , let P (j1),..P (j5) be the next 5
occurrence of P and jw − i = xw the detected distances for w = 1, ..5. We give to the period xw a weight
1+

∑
y∈Q 2−|xw−y|, that favors the presence of nearby distances with similar values, and this weight is added

to the cumulative array indexed by period value. Afterwards we enqueue all values xw in the queue position
buffer Q. The queue is of a fixed length |Q| = 20 and the last elements (older) are dequeued and discarded6.
The weighting scheme can be easily adapted to the case in which the insert and delete probabilities are
different.

Positional density. The second property that TRs exhibit is that of having the same period (simple or
composite) detected by probes in near-by positions, so that we can define a notion of k-density, that is
the density of probes that contribute to the counter for the candidate period k. We search for position
of high k-density as candidates for the starting point of a TR. More formally, let p be the simple period
under investigation. Consider the set Qp of probes (i.e. substrings of Y that contribute to the popularity
of p (taking of the two matching probes only the first one) compute the union

⋃
Qp, thus if a position is

shared by several probes it will be counted only once. Let f : N → {0, 1} the characteristic function that

5 Technically, in our case, also the number of terms in the summation is a random variable distributed as a binomial
distribution, thus a full formal proof would need to take this into account.

6 Although the value of the queue length of |Q| could be made dependent of other parameters, we noticed that good
performance could be attained even with this simple choice.



for each position in Y denote the membership of that position to
⋃

Qp. Consider the p-window smoothing

of f : F (i) =
∑i+p

j=i f(j) that computes the p-density of the function f . Finally we define a threshold t(p)
proportional to the average p-density by a user-defined constant, and we consider as a candidate position
set CP (Y, p) = {i ∈ N |F (i) ≥ t(p)}. The output of the second phase is a sequence of pairs (p, i) where p is
a candidate period and i a candidate position.

Validation. In the third phase we take each candidate pair (p, i) and we test explicitly whether there is a
tandem repeat of period p starting in position i according to the definitions above. When using the definition
STR we use the incremental method for computing generalized media strings proposed in [JABC03]. When
using the definition NTR we use a standard wraparound dynamic programming technique (WDP) [FLSS93].
In this phase we discover the (maximum) repetition number of the TR eventually extracted. As a post
processing we check for inclusion the TRs found and we filter out those TR completely enclosed in another
one. For TR in the same position and length but different period we report all of them.

5 Experiments

5.1 Measurements of quality.

Let a TR be characterized by the triple: (b, p, r), where b is the initial position, p the period, r the repetition
number. Thus the TR covers the positions in Y from index b to b + rp − 1, we identify the TR with its
segment Seg(TR) = [b, b + rp− 1]. Given two tandem repeats TR1 and TR2 their Jaccard coefficient JC is:

JC(TR1, TR2) =
|Seg(TR1) ∩ Seg(TR2)|

|Seg(TR1) ∪ Seg(TR2)|
.

Given a TR TR0 and a set of TRs: T = {TR1, ..., TRs} we define the best-match BM(TR0, T ):

BM(TR0, T ) = arg max
t∈T

JC(TR0, t),

and the best-match-score BMS:

BMS(TR0, T ) = max
t∈T

JC(TR0, t).

In our controlled experiments we will have the ground truth TR0, and we will score the set T of output TRs
by the best match score. For a series of experiments we will take the average of the BMS. At first sight one
might consider this metric as overly generous. However, consider two algorithms A and B having as input
the same string Y into which TR0 has been embedded returning two candidate sets TA and TB. Because
of the above considerations, if A and B use the same definition of TR with the same parameters, the two
sets are both composed of valid TRs (no false positives). We cannot rule out the existence of other TRs in
Y besides the embedded ones, so we cannot penalize the presence in TA and TB of elements different from
TR0 provided they are valid. The BMS score measures how well the best choice in TA and TB approximates
TR0.
Modified Jaccard Coefficient. Even if X is a TR according to the definition, when we embed X in a
string Y , it is well possible that X is not maximal in Y , thus if an algorithm reports X ′ ⊃ X there will be
a slight penalization in the JC measure. This problem arises a number of times, thus we decided to use a
customized version of JC where the denominator is changed as max(|Seg(TR1)|, |Seg(TR2)|).

5.2 Experimental Setup

TRStalker has been compared with respect to TRF and ATRHunter. We used the on-line version of the
ATRHunter program that is available at its website7. The operation of the ATRHunter program can be
customized according to the following parameters:

– match, mismatch, gap, terminal gap: scores for match, mismatch, indel (insertion or deletion) and ter-
minal indels;

7 http://bioinfo.cs.technion.ac.il/atrhunter/



– maximum motif length: only repeats with motif length shorter than or equal to this value are reported;
– definition of approximate tandem repeat: it is possible to select the definition of TRs among the following

ones:
• similarity between adjacent copies;
• average similarity between adjacent copies;
• minimum alignement score with a repeating copy.

The operation of the TRF program can be customized through the following parameters:

– match, mismatch, indel score: weights used to compute the alignement score;
– match and indel probability: the expected value of matches and indels between two motif repetitions;
– minimum score: the program reports only the TRs that obtain an alignement score higher than this one;
– maximum period: the program looks for TRs where the period size is no larger than this value.

Since the parameters of operation of the TRF web version cannot be completely customized, we used both
the web-based tool and the downloadable binary (version 4.00).

5.3 Synthetic Data

We carried out a first set of experiments by using synthetic data. This allows a fine grained control on the
amount of mutations introduced within the regions covered by the TRs. The sequences we gave as input to
the programs have been built according to the following steps:

1. the background sequence is generated by selecting the four bases A,C,G, and T with equal probability;
2. a perfect TR is embedded within the previous sequence, the TR is generated as r repetitions of a motif

with length l;
3. the region covered by the TR is mutated according to substitution, insertion and deletion probabilities

(ps, pi, and pd); the number of substitutions, insertions and deletion for every repetition of the motif is
exactly equal to lps, lpi, and lpd;

4. if the TR is a Steiner-STR mutations are introduced in every repeat with respect to the consensus motif,
if the TR is a Neighboring-TR mutations are introduced with respect to the previous repeat.

The experiments have been carried out running ATRHunter with these values: match, mismatch, gap and
terminal gap score equal to 1 0 -1 0 (the most permissive setting on the website); maximum motif length
equal to 500bp. In order to select the definition of TRs, we performed a preliminary set of experiments: the
definition that gave the best results was the third one (minimum alignement score). In this case, ATRHunter
reports only the TRs that have a score higher than a given threshold. The value of the threshold has been
set to 30.

For the web-based version of TRF all the experiments have been carried out with these parameters: match,
mismatch, and indel score equal to 2, 3, and 5 respectively; maximum period equal to 500; minimum score
equal to 30. For the binary version we used the following ones: match, mismatch, and indel score equal to
2, 3, and 3 respectively; match and indel probability equal to 0.75 and 0.20; maximum period equal to 500;
minimum score equal to 30. The parameters of the experiments have been set so to make sure that the
minimum allowed score for all the tools tested is attained on the input data.

Results For the experiments on Neighboring-TR (Figure 1) we tested TR with motifs of length from 60
to 300, and a number of repeats from 2 to 8. TRStalker has recall always above 95%. TRF (binary) has a
recall always above 80% except for TR with repeat number 2 for which the recall drops to 60%. ATRHunter
has recall of about 60%. These experiments confirm the effectiveness of the new techniques for the initial
filtering steps.

Results on Steiner Simple TR with motifs of length from 60 to 300, and a number of repeats from 2 to 8
are shown in figure (Figure 2). Here we notice that all methods have degraded performance for longer motifs
(above 200 bases) while TRStalker still manages to have recall above 60%. For shorter motifs (of less than
100 bases) TRF (binary) is able to match TRStalker only when the repeat number is above 6. Thus for a
large range of values TRStalker attains the best performance in recall, or a matching one, always above 80%.

The time performance of TRStalker has not been yet optimized. At the moment it is within an order of
magnitude of TRF and ATRHunter.
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Fig. 1. The total length of the input sequence is 10000bp; the type of TR is Neighboring-TR (NTR); the amount of
substitutions, insertions, and deletions are equal to 10% of the motif length each (thus with total error allowed of
30%). Every point is the average of 30 measurements and the 95% confidence intervals are shown.

5.4 Biological data

A very preliminary testing of TRStalker on biological sequences has confirmed the potential of our method
for finding very fuzzy TRs not detected by TRF and ATRHunter. We tested the following sequences:

1. L3609 Homo sapiens germline T-cell receptor beta chain, complete gene - 684,973 bp long.
2. U43748 Homo sapiens frataxin (FRDA) gene, promoter region and exon - 2,465 bp long.
3. Saccharomyces cerevisiae Chromosome I - 230,208 bp long.

The three algorithms have been run with the setting used in the synthetic experiments on Steiner Simple
TRs (thus with a very permissive acceptance policy). In general, none of the three algorithms generates all
TRs found by the two others. For our purposes we concentrate on those found by TRStalker only. In Table
1 we report some very long TRs that were detected by TRStalker but missed by the other two methods. We
check the motif/repeat alignments using the tool jaligner8 using the BLOSUM62, that confirms the good
quality of the motifs found (see table 2, figure 3).

8 http://jaligner.sourceforge.net/
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(d) Motif length: 300

Fig. 2. Total length of the input sequence is 10000bp; the type of TR is a Steiner Simple TR (Steiner-STR); the
amount of substitutions, insertions, and deletions are equal to 10% of the motif length each (thus with total error
allowed of 30%). Every point is the average of 30 measurements and the 95% confidence intervals are shown.

6 Conclusions

TRStalker is a novel efficient heuristic algorithm for finding NP-complete tandem repeats in biological
sequences. TRStalker aims at improving the capability of TR detection for a class of TRs and error range
for which existing methods do not perform well. Initial testing on synthetic data are encouraging and we
plan extensive testing on biological data as future work.
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[BK02] Stefan Burkhardt and Juha Kärkkäinen. One-gapped q-gram filtersfor levenshtein distance. In CPM,
pages 225–234, 2002.
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