

C

Consiglio Nazionale delle Ricerche

Design and performance evaluation of
ContentPlace, a

social-aware data dissemination system for
opportunistic networks

CC.. BBoollddrriinnii,, MMaarrccoo CCoonnttii,, AAnnddrreeaa PPaassssaarreellllaa

IIT TR-12/2009

Technical report

Dicembre 2009

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Design and performance evaluation of ContentPlace, a

social-aware data dissemination system for

opportunistic networks

Chiara Boldrinia,∗, Marco Contia, Andrea Passarellaa,

aInstitute of Informatics and Telematics, National Research Council, Via G.Moruzzi 1,
56124 Pisa, Italy

Abstract

In this paper we present and evaluate ContentPlace, a data dissemination
system for opportunistic networks, i.e., mobile networks in which stable si-
multaneous multi-hop paths between communication endpoints cannot be
provided. We consider a scenario in which users both produce and consume
data objects. ContentPlace takes care of moving and replicate data objects
in the network such that interested users receive them despite possible long
disconnections, partitions etc. Thanks to ContentPlace, data producers and
consumers are completely decoupled, and might be never connected to the
network at the same point in time. The key feature of ContentPlace is learn-
ing and exploiting information about the social behaviour of the users to
drive the data dissemination process. This allows ContentPlace to be more
efficient both in terms of data delivery and in terms of resource usage with
respect to reference alternative solutions. The performance of ContentPlace
is deeply investigated both through simulation and analytical models.

Key words: opportunistic networks, data dissemination, social-aware
networking, data-centric networks, performance evaluation

∗Corresponding author
Email addresses: chiara.boldrini@iit.cnr.it (Chiara Boldrini),

marco.conti@iit.cnr.it (Marco Conti), andrea.passarella@iit.cnr.it (Andrea
Passarella)

Technical Report IIT-CNR August 26, 2009

1. Introduction

This paper is focused on the problem of data dissemination in oppor-
tunistic networks. Opportunistic networks [35] are a recent mobile network-
ing paradigm stemming from the research on conventional Mobile Ad Hoc
NETworks (MANET). In this paradigm nodes are assumed to be mobile, and
forwarding of messages occurs based on the store-carry-and forward concept
[16]. Specifically, no simultaneous end-to-end multi-hop path is required to
enable communication between any two nodes, unlike conventional MANET.
Instead, each node carrying a message for an intended destination evaluates
the suitability of any other node it makes contact with as the next hop. Mes-
sages are thus opportunistically forwarded by exploiting nodes encounters,
until they reach the intended destination. This paradigm enables end-to-end
communication despite possible long disconnections of the communication
endpoints and severe network partitions, which is usually cumbersome in
traditional MANET architectures.

A significant share of research on opportunistic networks has focused on
routing issues (see [35] for a survey). Instead, in this paper, we consider
the problem of data dissemination. This is a key research problem, par-
ticularly in opportunistic networks. In this environment, according to the
User-Generated Content wave, users are expected to generate large amounts
of content by exploiting capability-rich mobile devices (such as PDAs, smart-
phones, etc), and to share them with people around them or people they have
social relationships with. In the following, we refer to any piece of content
(e.g., a picture or an mp3 file) as data object. The problem of efficiently
disseminating data objects in opportunistic networks is thus very relevant,
and not widely explored in the literature yet, as discussed in Section 2.

Data dissemination in opportunistic networks is a difficult problem. As
the topology is very unstable, and users appear in and disappear from the
network dynamically, content providers and content consumers might be
completely unaware of each other, and never connected at the same time
to the same part of the network. Therefore, data objects should be moved
and replicated in the network in order to carry them to interested users de-
spite disconnections and partitions. On the other hand, data dissemination
systems should take care of both network and device resource constraints.
For example, a trivial solution would be to flood the whole network with
any generated data object, but this would clearly saturate both network re-
sources (in terms of available bandwidth) and device resources (e.g., in terms

2

of energy, storage, etc).
In this paper, we propose and evaluate ContentPlace, which is a data

dissemination system for opportunistic networks that exploits social infor-
mation about users behaviour in order to drive the dissemination process.
Exploiting social information is a very promising research direction for op-
portunistic networks. In this environment the nodes are mobile devices users
carry with them all the time. Therefore, the users social behaviour, being
a key driver for their movement patterns, is also a key piece of context in-
formation to predict nodes’ co-location and future encounters. ContentPlace
assumes that users belong to social communities, and autonomically learns
the time spent by them in each community, which types of data objects users
of each communities are interested into, and how spread in the communities
the data objects are. This information is used to evaluate the utility of each
encountered data object. Specifically, each node, upon making contact with
another peer, evaluates the utility of the data objects the peer is carrying
with. Assuming that the buffer space devoted to the dissemination process is
limited, the node selects which data objects to fetch from the peer, in order
to maximise the total utility of the data objects in its own buffer. Therefore,
the data dissemination process is driven by the interests and social behaviour
of the users, and just requires local interactions between nodes that happen
to come in contact.

We assume that users’ mobility is driven by the social relationships among
users, i.e., that users spend their time with their friends. This assumption
may not be always satisfied. This is the case, e.g., of friends living in different
part of the world or of virtual friends (e.g., Facebook or chatroom friends).
However, also these relationships can be exploited to disseminate messages.
For example, in the case of long distance friendship, the distance can be
overcome by going through the traditional infrastructure and then switching
again to ad hoc mode when this distance has been covered. The inclusion of
such hybrid communications into our data dissemination system is currently
under study.

After presenting ContentPlace in details in Sections 3 and 4, we provide
a detailed simulation analysis in Section 5. Specifically, we compare different
data dissemination policies that could be plugged in the general ContentPlace
design, either considering or not considering social information. We show
that social-aware policies outperform naive ones in which social information
is not taken into account. Among the social-aware policies, we identify the
one performing best (named Future), and highlight the reasons why it is

3

the most efficient one. Finally, in Section 6 we provide an analytical model
describing the behaviour of the Future policy, which shed additional light on
its performance.

2. Related Work

Content dissemination systems have been widely investigated with re-
spect to the conventional wired Internet. Extremely popular P2P systems
(such as Napster, BitTorrent, Kazaa, Gnutella), are used for this purpose.
Typically, the main idea of this vast body of work is to exploit overlay net-
works to build logical structures onto which data dissemination strategies are
implemented. For example, Squirrel [25] is a P2P web-caching service built
on top of Pastry [37], one of the most popular implementations of a struc-
tured overlay (in the form of a Distributed Hash Table, DHT). The solutions
described in [9, 27] exploit unstructured and structured overlay networks, re-
spectively, to approximate optimal replication of a given set of data objects.
These papers also derive the optimal replica allocation through standard
optimisation techniques. Approximations are then proposed as the optimal
solutions require global knowledge which is not available in realistic settings.
These policies allow each node to identify the set of peers in the overlay on
which to replicate data. This body of work is related to ContentPlace as
it studies replication and replacement policies in distributed systems. How-
ever, the proposed approaches rely on overlay networks that can hardly be
built on opportunistic networks, especially if they are structured. Internet
overlay networks are built on the assumptions of large bandwidth and small
delays in peer-to-peer communications. Even overlay networks optimised for
MANETs (e.g., CrossROAD [13] and XL-Gnutella [10]) assume that nodes of
the network are quite well connected, such that MANET routing protocols
can be used on them. As this is exactly the opposite of what happens in
opportunistic networks, these solutions are not suitable to be used in such a
networking environment.

Gossiping is another area of traditional distributed systems quite close to
opportunistic networking in general, and to ContentPlace in particular. It is
a general mechanism to disseminate messages in a network without assuming
any global knowledge: Each node receiving a message replicates it to a subset
of its peers. This general mechanism has been applied to a vast number of
problems, both in wired and in wireless networks (see [17] for a brief survey).
Just to mention a few examples, gossiping has been used as the underlying

4

mechanism to build unstructured P2P networks [43], to implement multicast
and routing in MANETs [19, 31], and for data dissemination in wired [15]
and wireless networks [14]. Broadly speaking, most of the proposals for for-
warding algorithms in opportunistic networks can be seen as instances of the
gossiping scheme. In opportunistic networks each node carrying a message
evaluates the opportunity of replicating the message on its current physi-
cal neighbours, based on information about the neighbours themselves and
the destination. The choice of neighbours on which to replicate the message
distinguishes the protocols, ranging from choosing all neighbours (as in Epi-
demic Routing [42]), to choosing the destination only [41], to choosing just
those neighbour having higher probability of bringing the message closer to
the destination (as in HiBOp [7]). Indeed, also ContenPlace can be seen
as an instance of gossiping systems, as in ContentPlace nodes decide which
data to exchange and replicate upon each contact. The main novelty of Con-
tentPlace with respect to the traditional gossiping systems looking at data
dissemination (such as [15, 14]) is that ContentPlace uses context informa-
tion describing users’ social relationships to choose the set of nodes where to
replicate data objects, instead of simple probabilistic policies.

Another area related to ContentPlace is cooperative caching for MANETs.
A first body work in this area is described in [45, 30]. These proposals require
stable end-to-end paths between nodes to correctly operate. For example,
in the algorithms proposed in [45], a data object is stored at intermediate
nodes in the path between a node requesting the object, and the node is-
suing the object. Instead of caching the data object, nodes can cache the
path towards the node issuing the object, if this is more convenient from
a network traffic standpoint. Those nodes are then able to serve requests
for the same object directly. Clearly such heuristics can work well in static
MANETs, while are not suitable for opportunistic networks. PReCinCt [39]
exploits a geographical DHT to identify regions responsible for a set of data
objects (corresponding to a set of keys). Objects are replicated by requesting
nodes only if they are outside the region of responsibility. The concept of
identifying groups of users whose caches are managed as a unique collective
cache is also used in [8, 20, 21]. Similarly to ContentPlace, these systems
define groups as sets of users with similar behaviour (usually, similar move-
ment or data access patterns). Indeed, unlike ContentPlace, the main focus
of [21] is on algorithms to identify such groups, rather than on data manage-
ment policies exploiting such a classification. In general, being tailored to
MANETs, these systems assume that paths be rather stable at least within

5

groups, and generate a significant amount of traffic to maintain knowledge
of other nodes’ caches. Therefore, they too are not suitable for opportunistic
networks.

ContentPlace is also related to the vast literature on utility-based caching.
This has been commonly adopted for web caching in the wired Internet
(see [1] for a survey). In mobile networks, utility-based replacement schemes
have been used both for MANETs (e.g., [39]) and for WLANs (e.g., [46, 40]).
Routing for opportunistic networks exploiting a utility-based framework has
also been proposed in [2]. ContentPlace inherits the general framework of
this body of work, as the ContentPlace utility function is an instance of the
general form used by all the other works in the literature. While [2] is focused
on unicast routing, ContentPlace deals with content dissemination. More-
over, the main novelty of ContentPlace is the fact that its utility function is
defined based on the social behaviour and relationships of the users.

The idea behind ContentPlace is to exploit social information on the en-
vironment the nodes operate in in order to enable the communication. In
the framework of opportunistic networks, this idea has already been success-
fully applied to message forwarding (e.g., [7] [23] [34]). There the idea is to
move messages closer and closer to their destinations following a path based
on the social interactions between nodes (as in the famous “six degrees of
separation” experiment [33]). In the case of forwarding protocols, however,
messages have a specific destination node, while in ContentPlace, following
the User Generated Content approach, content generators might be unaware
of the nodes interested in their data, and so might be the content consumers
about the nodes that generate the content they are interested in. In addition,
even if pursuing a similar goal, ContentPlace does not rely on any underly-
ing forwarding protocols and autonomously takes care of the data delivery
process.

In principle, ContentPlace shares similarities with pub/sub systems pro-
posed for mobile networks (e.g., [3],[12],[32], [48], [11], [47]). Among them,
just the pub/sub system designed within the Haggle project [47] explicitly
considers the social behaviour of users in the system’s design. Furthermore,
in pub/sub systems, support for intermittent connectivity is seldom pro-
vided. The work in [47] identifies social communities, and “hubs” within
communities (i.e., nodes with the highest number of social links inside the
community). An overlay network is then built between hubs, that act as the
brokers of a standard pub/sub topic-based system. ContentPlace assumes
the same community-detection mechanisms of [47]. However, ContentPlace

6

does not provide any standard pub/sub system, and does not need any over-
lay infrastructure, which might be costly to maintain and rather unstable in
opportunistic networks. With respect to SocialCast [11], ContentPlace uses
a more complete utility function to drive the dissemination process. Specif-
ically, ContentPlace takes into account the estimated utility for all social
communities any given user is in touch with, and within each community,
considers the interest for, and availability of, the data objects. Furthermore,
the SocialCast dissemination mechanism is more oriented towards traditional
forwarding than to actual dissemination with respect to ContentPlace. A
fallback of this is that SocialCast works well when all members of each com-
munity are interested in the same type of content, but it is not clear how it
works in the more general settings considered in this paper.

As is clear from this section, ContentPlace touches upon several areas
relevant to the data dissemination problem. However, to the best of our
knowledge, the only other works looking at content dissemination for oppor-
tunistic networks are the PodNet project [29], and the social-aware pub/sub
system designed in [47]. As described in details in Section 5 we use an
application and evaluation scenario similar to that defined for PodNet. In
PodNet, users subscribe to channels they are interested into. Upon pair-
wise contacts, users exchange their interests and select which data objects
to exchange. Different policies have been compared in [2]. With respect to
PodNet, ContentPlace takes into consideration social relationships between
users to select the data object to exchange, and provide a more general
utility-based framework to design content dissemination policies. We actu-
ally compare ContentPlace with the best heuristics identified in [29], showing
the advantage of the social-aware dimension.

This work is an extended version of our previous paper [5]. This work
provides an extensive analytical model that deals with the average behavior
of the best dissemination policy, the Future policy. Furthermore, we perform
an analysis of the impact of inaccurate social information on the performance
of the social-aware policy. This work is also related to [6], where a preliminary
design and evaluation of ContentPlace have been presented.

3. ContentPlace general design

This section provides necessary background information required to present
the main contribution of this paper by recalling the target application sce-
nario and the main design features of the ContentPlace system.

7

3.1. Application scenario

The application scenario we target is similar to the one used in Pod-
Net [29], named “podcasting for ad hoc networks”. As in the typical oppor-
tunistic networking paradigm, we consider a number of mobile users whose
devices cannot be encompassed by a conventional MANET. Instead, com-
munication is achieved by opportunistically exploiting pair-wise contacts be-
tween users to exchange data objects, and bringing them towards eventual
destinations. Sporadic contacts of users with point of access to the Internet
(e.g., WiFi hotspots) are possible although not necessary. In podcasting ap-
plications, data objects (e.g., MP3 files, advertisements, software updates,
. . .) are organised in different channels to which users can subscribe. We
assume that the channel(s) of a data object is decided by the source of the
object at the generation time. Data objects might be generated from within
the Internet, and “enter” the opportunistic network upon sporadic contacts
of users with Internet Access Points. Or, data objects may be generated
dynamically by the users of the opportunistic network according to the Web
2.0 model (e.g., users may wish to share pictures taken with their mobile
phones). ContentPlace is responsible for the two main tasks of content dis-
semination, i.e., i) managing subscriptions to channels, and ii) bringing data
objects to subscribed users (content distribution).

3.2. ContentPlace framework

At the high level, the rationale of ContentPlace is as follows. Since sta-
ble network structures cannot be assumed, ContentPlace only exploits di-
rect interactions between nodes (contacts) to gather information about the
users’ subscriptions and current data objects availability. Each node uses
this knowledge to decide which data objects “seen” on other nodes should
be locally replicated, according to a replication policy. The main challenge
of ContentPlace is defining a local replication policy (i.e., a policy that does
not require precise information about the global state of the network) that
achieves a global performance target (such as, for example, maximising the
hit rate, the per-user fairness, the network efficiency).

More in detail, ContentPlace subscription management works as follows.
Nodes just advertise the set of channels the local user is subscribed to upon
encountering another node. As will be clear in the following, no per-node
state is necessary, and thus unsubscription data objects are not required.
As far as content distribution is concerned, the core of ContentPlace is the

8

definition of the replication policy, which can be summarised as follows. Con-
tentPlace defines a utility function by means of which each node can associate
a utility value to any data object. When a node encounters a peer, it com-
putes the utility values of all the data objects stored in the local and in the
peer’s cache1. Then, it selects the set of data objects that maximises the lo-
cal utility of its cache, without violating the considered resource constraints
(e.g., max cache size, available bandwidth, available energy, . . .). The node
fetches the selected objects that are in the peer’s cache, and discards the lo-
cally stored objects that are not in the selected set anymore. Finally, a user
receives a data object it is subscribed to when it is found in an encountered
node’s cache. As discussed in more detail in [6], the set of objects to store
in the local cache upon each contact can be found by solving the following
multi-constrained 0-1 knapsack problem:⎧⎨

⎩
max

∑
k Ukxk

s.t.
∑

k cjkxk ≤ 1 j = 1, . . . ,m
xk ∈ {0, 1} ∀k

, (1)

where k denotes the k-th object that the node can select, Uk its utility, cjk the
percentage consumption of resource j related to fetching and storing object k,
m the number of considered resources, and xk the problem’s variables. When
the number of managed resource (m) is not big (which is quite reasonable),
solving such problems is very fast from a computational standpoint [28]. Such
a solution is therefore suitable to be implemented in resource constrained
mobile devices.

It is clear that the core of the content distribution mechanism is the
definition of the utility function. In the following sections, we discuss how
information about the social behaviour of users can be leveraged to this end.

3.2.1. Utility function

To have a suitable representation of the users’ social behaviour, we take
inspiration from the caveman model proposed by Watts [44], which is a ref-
erence point in the field of social behaviour modelling. We assume that users
can be grouped in communities. Users belonging to the same community
have strong social relationships with each other. In general, users can belong
to more than one community (a working community, a family community,

1Hereafter, we use the term cache to denote a memory buffer that a node contributes
to the ContentPlace system.

9

etc.), each of which is a “home” community for that user. Users can also have
relationships outside their home communities (“acquainted” communities).
We assume that people movements are governed by their social relationships,
and by the fact that communities are also bound to particular places (i.e.,
the community of office colleagues is bound to the office location). Therefore,
users will spend their time in the places their home communities are bound
to, and will also visit places of acquainted communities.

Different communities will have, in general, different interests. Therefore,
the utility of the same data object will be different for different communities.
Based on this remark, the utility of a data object computed by a node is
made up of one component for each community its user has relationships
with, be it either a home or an acquainted community. Formally, the utility
function is defined as follows2:

U = ωlul +
∑
i�=l

ωiui =
∑

i

ωiui , (2)

where ui is the i-th component and ωi measures the social strength of the
relationship between the user and the i-th community. Finally, in Equation 2
we stretch a bit the concept of community, and represent the local user just
as another community the user is in touch with (i.e., the utility for the local
user is represented by ul). Note that the definition of the weights ωi defines
the social-oriented behaviour of ContentPlace. As the main focus of this
paper is on this aspect, we now briefly describe the definition of the utility
components, and discuss in detail the definition of weights in Section 4.

3.2.2. Utility components

ContentPlace uses the same definition for all utility components. In this
paper we consider a simplified version of the general function defined by Con-
tentPlace, and we also assume that i) the cache space is the only considered
resource, and ii) data objects never expire. See [6] and the associated re-
port for the discussion of more general cases. Inspired by the Web-caching
literature [1], the utility of a data object for a community is the product
of the object’s access probability from the community members (pac) by its
cost c, divided by the object’s size. The cost is measured as a monotonically
decreasing function of the object’s availability in the community (denoted

2For easy of reading, with respect to Equation 1 we drop here the k index, as this does
not impact the clarity of the discussion.

10

as pav), as the more the object is spread, the less it is costly to find it, the
less the utility of further replicating it. Dividing by the object’s size is also
common in the Web-caching literature, as it also allows very simple approx-
imations of the multi-constrained knapsack problem defined by Equation 1.
Specifically, we use the following definition:

u =
pac · fc(pav)

s
=

pac · e−λpav

s
, (3)

In Equation 3 we use an exponential function as cost function, which achieves
a fairer behaviour with respect to a (more intuitive) linear decay, as shown
in [6].

3.3. Architecture overview

In this Section we give an overview of the communication architecture
of ContentPlace. Following the opportunistic networking paradigm, Con-
tentPlace does not assume any specific technology (e.g., 802.11, Bluetooth)
implementing the single hop wireless communication on which it is based. It
only relies on the existence of an underlying abstraction level that manages
the available interfaces and provides the correct mapping between them[38].
ContentPlace does not rely any routing protocols either, as it autonomously
uses application layer information (in this case, information on the sociality
of nodes) to disseminate objects across the network.

The dissemination of messages in ContentPlace exploits pair-wise con-
tacts between nodes, during which an association is established (Figure 1).
At the beginning of a contact, a new association is established if the two
nodes are both free, i.e., not already engaged in an ongoing association.
Otherwise, the association request is queued until the busy node becomes
free again. During an association, each node acts as both the content up-
loader and the content downloader, for itself or on behalf of the other nodes
of its communities. An association is completed when both peers have fin-
ished downloading data objects deemed useful (for themselves or for the
nodes of their communities, according to Equation 2). An association can
terminate unexpectedly before the downloading is completed, e.g., because
the two nodes have moved out of range or because one of them has run out
of battery. In this case, the association is closed, data objects that were
successfully transferred are stored in the buffer, the others are discarded.

When a new association is established, the two nodes exchange the state
of their respective buffers, i.e., they tell each other what data objects they

11

Start
association

Buffer
synchronization

Data object
exchange

Association
closure

Figure 1: ContentPlace algorithm - Setting up an association

are currently storing. The algorithm described in Equation 1 is then run on
the joint set of the locally stored objects and the objects advertised by the
peer, and, if some of the peer’s object are selected to be retrieved, a request
is issued to the peer. When the peer has provided the requested objects, the
requesting node stores the new objects in its buffer and closes the handshake
on its side. The communication exchange is sketched in Figure 2.

Besides the data object exchange process, in ContentPlace nodes have
also to keep up-to-date the estimates of the utility component’s parameters
(Equation 3). To this aim, nodes periodically broadcast a summary mes-
sage containing the necessary information to compute these estimates. More
details will be given in Section 4.2.

4. ContentPlace social design

The use of the social weights in Equation 2 permits full flexibility in
the ContentPlace design. Specifically, it allows us to define and compare
different social-oriented policies, as well as, in the limiting case, non-social
policies such as a greedy behaviour. Although clearly not exhaustive, the
set of social-oriented policies we compare covers a fairly large spectrum of

12

Select data
objects

Request
data objects

Send data
objects

Store data
objects

Content Downloader Content Uploader

Figure 2: ContentPlace algorithm - Data object exchange

possible (reasonable) definitions. Overall, the global goal we wish to achieve
is to optimise the hit rate for all users in all communities. Different policies
clearly give different importance to the utility components. The comparison
we carry out shows which are the components that provide the best behaviour
with respect to the desired global target.

4.1. Policies definition

We consider the following policies:

Most Frequently Visited (MFV) Each community is given a weight pro-
portional to the time spent by the user in that community. Specifically,
if ti is the time spent by the user in the i-th community since the system
start-up, then wi is equal to ti/

∑
i ti. With this policy, dissemination

decisions of a user favour the communities the user is more likely to get
in touch with.

Most Likely Next (MLN) The weight of the i-th community is equal to
the probability of visiting the i-th community, conditioned to the fact
that the user is in the current community. Hereafter, this probability
is referred to as P (ci|CC), where C denotes the current community.
The weight of the current community is set to 0. With this strategy,

13

users favour the communities they will be visiting next, but do not
contribute to data dissemination within their current community.

Future (F) As in MLN, the weight of the current community is set to 0.
However, the weight of all other communities is set as in MFV, i.e., is
proportional to the average time spent by the node in that community.
With respect to MLN, with F we consider not only the most likely
community for the next visit, but all the communities the user is in
touch with.

Present (P) The weight of the current community is set to 1, and the
weights of all other communities are set to 0. With this strategy, users
always behave as members of the community they are currently in, and
do not favour any other community.

Uniform Social (US) All the communities the user gets in touch with are
given equal weight. Therefore, wi is equal to 1 for the home and the
acquainted communities.

Clearly, it would be possible to consider a number of additional strategies,
by modifying the definition of the weights. The strategies we have selected
are representative of several reference behaviours. In the US policy all com-
munities a user is in touch with are given the same importance. In MFV
the importance of a community is proportional to the time spent by the user
in the community. P and MLN can be seen as opposite extreme customisa-
tions of MFV. In P only the current community is given importance. This
is a MFV customisation which looks exclusively at the current “role” of the
user, as a member of the current community, without any “look-ahead” be-
haviour. In MLN the current community is not given any importance, and
only future communities are considered. MLN is thus a customisation of
MFV with an extreme “look-akead” behaviour. Finally, F is an intermedi-
ate policy between MFV and MLN. It keeps the “look-ahead” behaviour of
MLN, because it does not consider the current community. However, as in
MLN, it considers all the other communities the user is in touch with, and
not only the most likely one for the next visit.

Finally, for comparison purposes, we consider two non-social policies as
well, and specifically a Greedy and a Uniform policy. In the Greedy policy
all weights but the one of the local user are set to 0. In the Uniform policy all
the weights are equal. As a minor, but important, remark, note that in this
case a lot of data objects ends up having the same utility. In this case, a node
breaks ties by choosing data objects according to a uniform distribution.

14

4.2. Social parameter estimation

The ContentPlace social-oriented policies require online, dynamic estima-
tion of the utility components’ parameters, as well as an estimation of the
parameters required to compute the components’ weights. In this section
we describe how this can be achieved by avoiding any form of (controlled)
flooding, such as that implemented by Epidemic Routing [42], which easily
saturate networking resources [26]. Clearly, this choice calls for a trade-off
between estimation accuracy and network overhead.

A necessary pre-requisite to estimate the parameters is to detect the com-
munities in the network, and to enable nodes to understand in which com-
munity they are currently roaming. Fortunately, there are promising results
about autonomic community detection in opportunistic networks Content-
Place can rely on, such as [22, 24]. These mechanisms allow nodes of an
opportunistic network to i) be aware of the communities they belong to and
have acquaintance with, and ii) be aware of the community in which they
are currently in at any given point in time. We assume that one of these
mechanisms is in operation.

4.2.1. Estimation of the social weights

The communities’ weights defined in Section 4 can be easily computed
thanks to the community detection features and, in some cases, by measuring
the time spent by nodes in the different communities, and monitoring tran-
sitions between communities. Specifically, the strategies P, US and MLN
just require community detection. This trivially holds true for P and US.
MLN requires an estimate of the conditional probability of moving to future
communities, starting from a given current community, i.e., P (ci|CC) where
CC is the current community. This is equivalent to estimating the transition
probabilities of a Markov process whose states are the different communities
the user can visit. These probabilities can be estimated on line, by mon-
itoring the transitions between communities during the user’s movements.
Finally, MFV and F can be implemented by measuring the time spent by
the user in each community. In MFV, the weight ωi is equal to ti/

∑
i ti,

where ti is the time spent by the user in community i. In F, the weights are
defined as in MFV, unless for the weight of the current community, which is
set to 0.

15

4.2.2. Estimation of the utility parameters

Gathering context information to compute utility components requires
some more steps. According to Equations 2 and 3 to compute utility com-
ponents for a given data object a node requires the size of the object (s),
and estimates of the access probability (pac) and the availability of that ob-
ject (pav) in all the individual communities. Theoretically, to achieve the
maximum precision of parameter estimation, nodes should advertise all in-
formation for all data objects they become aware of, and for all communities
they happen to visit. Clearly, this would result in a very detailed computa-
tion of utility values, but in a huge networking overhead. Instead, we chose
to exploit nodes’ movements to save on network overhead, which is one of the
basic principles of opportunistic networks. Basically, when two nodes meet
they exchange a summary of data objects in their caches. From these snap-
shots, each node is able to compute, for each object, a fresh sample of the
local availability p̂av,l, as the fraction of time during which the object has been
seen on neighbours caches. This newly computed value is then used to update
pav,l according to a standard smoothed average pav,l ← αpav,l + (1 − α)p̂av,l.
For what concerns pac,l, we assume that pac,l is equal to 1 for those objects
the user is interested into, and equal to 0 for the others.3.

The estimation of the utility parameters for a generic community i, differ-
ent from the local one, steams from the fact that,in ContentPlace, together
with the summary vector describing its cache, each node also advertises the
set of data objects its local user is interested into, and an estimate of the
availability of the object for its local user, i.e., pav,l. Then, every time period
T , each node compute a fresh sample for pac,i and pav,i as the arithmetic mean
of the values advertised by the neighbours during T . Then these values are
used to update pac,i and pav,i, using the standard smoothed average as seen
above. For a more detailed explanation see [6].

Finally, note that the size s of a data object (for which a utility value
is required) is easily derived from the summary vectors advertised by the
neighbours.

3A more precise estimation of the access probability of the local user to a data object
would require a refined model of the user behaviour as far as data access is concerned.
However, this is an orthogonal problem with respect to the ContentPlace algorithms, and
therefore we choose this simplified representation of users’ access pattern.

16

5. Performance evaluation

In this section, we evaluate the performance of the social-oriented policies
described in Section 4. To this aim, we developed a custom simulator that is
extended from the one in [7] and uses the same assumptions for lower com-
munication layers. As we discuss in the following, the simulation scenario
we consider has been chosen as it is able to highlight general features of the
social-oriented policies. Note that in [6] we have already presented results
showing the impact of system parameters such as the cache size and the num-
ber of nodes, which are not evaluated here. The main focus of this analysis
is to understand the impact of the different social-oriented policies. We also
include in the comparison the two non-social policies, i.e., the Greedy and
the Uniform policies. Uniform has been identified as the best heuristic (from
a number of standpoints) in [29]. Furthermore, Greedy and Uniform have
shown to achieve boundary performance result in [6]. Specifically, Uniform is
the best possible policy in terms of fairness, while Greedy the best in terms
of hit rate, in a scenario with a single homogeneous community.

We hereafter describe the default scenario for our simulations. The de-
fault scenario is composed of 45 nodes, divided into 3 communities, moving
according to the HCMM model [4] in a 4x4 grid (1000m wide). HCMM is
a mobility model inspired by the Watt’s caveman model, that has shown to
reproduce statistical figures of real user movement patterns, such as inter-
contact times and contact duration [4]. In HCMM, each group represents a
social community, and nodes within the same group have social relationships
among themselves. Also nodes belonging to different communities can have
social relations: according to the rewiring probability (pr), each link towards
a friend is rewired to a node belonging to a different community. Social links
in HCMM are used to drive movements: each node moves towards a given
community with a probability proportional to the number of links he has
towards the community. Thus, the rewiring parameter allows us to control
the degree of interactions between nodes of different communities. In our
simulations, each group is initially assigned to a cell (its home-cell) avoiding
that two groups are physically adjacent (no edge contacts between groups) or
in the same cell. This allows to eliminate physical shortcuts between groups,
which would bias the evaluation of the ability of policies to bring data objects
from one community to the others. Therefore, nodes can exchange data only
due to social mobility of nodes and not due to random colocation. The rest
of HCMM parameters are as in Table 1. We consider as many channels as

17

Node Speed uniform in [1,1.86] m/s
Transmission Range 20m

Sampling period 5s
Cost function parameter (λ) 15

Smoothed average parameter (α) 0.9

Table 1: Configuration Parameters

the number of groups (ngr). Each group is the source for 1/ngr of the objects
belonging to each channel, i.e., 1/ngr-th of the objects of each channel are
generated (at the beginning of the simulation) in each group. Note that a
data object is always available from the node that generated it. To not inter-
fere with the data dissemination performance figures, nodes generating data
objects make them available through a separate buffer with respect to the
cache. Therefore, for any node, the only way to obtain objects not generated
in the local group is to get in touch directly (i.e., the node itself moves in a
different group) or indirectly (i.e., one of the nodes of the local community
goes out and then comes back, with the desired data object in its cache) with
an external community. To have an integer number of objects generated in
each group, we consider 99 data objects per channel. Each node can sub-
scribe just to one channel. When not otherwise stated, nodes’ interests are
distributed according to a Zipf’s law (with parameter 1) within each group.
Unless otherwise stated, we consider 3 channels. The popularity of channels
is rotated in each group, such that each channel is the most popular in one
group, the second-most popular in another group, and the least popular in
the last group. Cache space on a node can accommodate exactly all data
objects belonging to an individual channel. An analysis with varying cache
sizes has been presented in [6]. The cache size we choose is a good trade
off between seeing the impact of dissemination policies, and avoiding data
object disappearance due to low utility on too many caches.

Nodes’ requests for data objects follow a Poisson process with parameter
λ = 200 (on average 3 requests every 10 minutes for each node). Nodes
can request data only for the channel they subscribe. Within the channel,
the data object they request is select according to a uniform distribution.
Requests are valid until the simulation ends. As we show in the following,
the delay distribution highlights that our simulation length is long enough to
reasonably approximate an infinite requests validity timeout. As requests are
buffered at issuing node only, and do not occupy cache space, having infinite

18

validity does not impact on the system’s performance. Instead, it allows
us to derive a complete analysis of the system’s performance for increasing
validity timeouts.

All policies are evaluated in terms of the quality of service (QoS) perceived
by the users and the resource consumption. The QoS is measured in terms
of hit rate, latency, system utility and fairness level. The hit rate is given by
the number of successful requests divided by the number of overall requests.
Note that, unless otherwise stated, we show hit rate related to infinite timeout
values. As not all policies reach 100% hit rate even in this case, this index
allows us to show the fraction of requests that cannot be served by the
policies. We then separately investigate the hit rate index as a function
of the validity timeout. The latency in satisfying the requests has been
computed as the difference between the time at which the request is satisfied
and and the time at which the request was generated. The system utility
is computed as the sum of the channel hit rate weighted with the access
probability of each channel, i.e., SU =

∑
i pac,ihri. The fairness of each

policy has been computed according to the traditional Jain’s fairness index
(using the hit rate as a measure of the service level obtained by each channel).
Resource consumption has been measured in terms of the traffic generated
in the network, i.e., the average number of data transmitted by all nodes
during the simulations. This includes data exchanged for context creation,
buffer state data objects, request data objects and data objects themselves.
Simulations run for 50000s. Exchanges of data objects upon nodes’ contacts
start after an initial transitory required by parameter estimators to reach the
steady state. Results shown in the following section have a 95% confidence
interval, obtained through standard independent replication techniques.

5.1. Analysis with uniform rewiring

Our first experiment is based on a configuration in which the rewiring
probability is the same for all nodes, and equal to 5%. This means that the
average number of social links across communities is the same for all the
three communities. Although the probability of rewiring is not particularly
high, it is already sufficient to mix communities enough to let data objects
circulate across all communities, independently on the data dissemination
policy. Indeed results in Figure 3 show that all policies achieve 100% hit
rate. Furthermore, results do not change depending on the channel to which
the travellers are subscribed (Figure 4).

19

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel

Future
Greedy

MFV

MLN
Present

 Unif

UnifSoc

Figure 3: Hitrate with rewiring 0.05 - Travellers subscribed to ch.1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel

 Future
Greedy

 MFV

 MLN
 Present

Unif

UnifSoc

Figure 4: Hitrate with rewiring 0.05 - Travellers subscribed to ch.3

20

If we reduce the timeout of the request, we realize that the QoS provided
by different policies may vary with the specific configuration. In fact, Figures
5(a) and 5(b) show that data objects are delivered faster by the Greedy policy,
and more slowly by the Uniform policy. Thus, when reducing their timeout,
many requests will not be fulfilled under the Uniform policy, resulting in an
decrease in the hit rate. Again, the performance of the social-aware policies
is halfway between the Greedy and the Uniform policy.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000

H
it

ra
te

Request Validity [s]

 Future
Greedy

 MLN
Unif

(a) Requests on ch. 1

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000

H
it

ra
te

Request Validity [s]

 Future
Greedy

 MLN
Unif

(b) Requests on ch. 3

Figure 5: Hit rate with varying timeouts - Rewiring 0.05 - Travellers subscribed to ch. 1

Table 2 shows that policies are not equivalent, even when they provide the
same hit rate. In fact, with respect to the bandwidth overhead, the Uniform
policy uses triple the bandwidth that MFV, Present and Uniform Social
need, and around 20 times more than Future and MLN. The most significant
difference is between Greedy and Uniform, where the increase in the data

21

transmitted is around 3500%. In the next Section we will see in more details
the reason for this behaviour. Here we only highlight the fact that when
not exploiting context information, the bandwidth consumption may become
huge. Another implication of Table 2 is that a selfish policy (Greedy) can pay
when the contacts between nodes are numerous and uniformly distributed.
In fact, when nodes can freely move from one community to another and
meet many other nodes, the likelihood of finding another node with the
same interests is high, and therefore the data objects can easily be found by
their interested nodes.

Bandwidth Overhead [MB]

Greedy 175.45 ± 1.77 MFV 21583.80 ± 1112.72
Future 2589.45 ± 533.18 UnifSoc 21124.10 ± 1106.01
MLN 3412.71 ± 352.65 Unif 62306.43 ± 3828.69

Present 22796.61 ± 1447.52

Table 2: Resource Consumption - Rewiring 0.05 - Travellers subscribed to ch. 1

Summarizing, when nodes are highly mixed, data objects spread naturally
across the network, regardless of the policy used. However, policies differ in
their resource consumption and in the speed of the resulting dissemination
process. In a setting with high node mobility, the Greedy policy guarantees
the lowest bandwidth overhead and the quickest delivery.

5.2. Analysis in the default scenario

Based on the results in Section 5.1, here we consider a less mixed mobil-
ity pattern, as follows. Each pair of communities is connected through just
one node. Specifically Community 1 (C1) has two nodes (“travellers”) with
relationships outside C1, one with Community 2 (C2), the other with Com-
munity 3 (C3). Hereafter, we show the performance figures related to nodes
in C1. The same remarks can be done for nodes in the other communities,
as well. Note that, from Equation 2, it is clear that the channel the traveller
nodes are subscribed to (which affects the ul component) impacts on the
data dissemination process. For this reason, we replicate the experiments by
varying the channel travellers are subscribed to.

Figure 6 shows the hit rate for C1, when travellers are subscribed to
channel 1. Specifically, the group of boxes related to channel i show the
hit rate achieved by nodes whose home community is C1 and are subscribed

22

to channel i. Experiments with travellers subscribed to the other channels
provide similar results for all policies but the Greedy, that achieves 100% hit
rate only for the channel the travellers are subscribed to. Recall that these
plots are related to an infinite validity timeout. When shorter timeouts are
used, the misbehaviours of Present, MFV and Uniform Social we discuss
hereafter become more serious. Also, the performance difference between
MLN and Future (which already in this case appear as the best policies)
and the other policies increase. We will analyse these aspects in detail in
Section 5.3. As a preliminary remark note that, since data objects are always
available at generating nodes, a hit rate of 33.33% is always guaranteed. We
can identify four different behaviours. With the Greedy policy, travellers
store only data objects to which they are directly interested. This results
in a 100% hit rate on the subscribed channel and a 33.33% hit rate on the
other channels (there is hit only on the 1/3 of data generated locally). As
expected, the Greedy policy is able to improve the hit rate of the nodes
interested in the same objects the travellers are interested, and is not able
to disseminate other objects. With the Uniform policy, the hit rate of all
channels improves and reaches about 80%. The set of social policies MFV,
Present and Uniform Social all show a similar behaviour: they tend to be
slightly unfavourable towards the most popular channel. This is due to the
fact that nodes within the same group tend to synchronise their behaviour:
when nodes realise that certain objects are poorly available, they all fetch
them as soon as they become available. This results in the objects becoming
highly available, and being dropped simultaneously by all nodes. A detailed
analysis of the logs confirms this behaviour. Finally, MLN and Future policies
have a very good hit rate in all cases. The key of these policies is that
nodes do not consider the community in which they currently roam, but just
future communities. It is easy to see that this results in static nodes (i.e.
nodes without social relationships outside their home community) behaving
greedily, and in travellers working to help communities they will visit in
the future. This clearly avoids the problems related to the synchronisation
effect of the other policies. Results related to the other communities (not
shown here) highlight that these policies guarantee the same hit rates shown
in Figure 6. This is quite important. For example it shows that nodes
subscribed to channel 3 in C2 are able to get not only the locally generated
objects, and not only the objects carried generated in C1 (directly carried by
the traveller of C1 visiting C2), but even those objects generated in C3 that
are firstly brought in C1 by the traveller of C1 visiting C3. The identification

23

of these “social” paths is something that is peculiar of the ContentPlace MLN
and Future policies. We can anticipate that this type of “collective” social
behaviour, in which just travellers adopt a social-oriented strategy turns out
to be the best solution. The above remarks are confirmed when considering

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel
 Future
Greedy

 MFV

 MLN
 Present

Unif

UnifSoc
33.33%
66.66%

Figure 6: Hit Rate - Travellers subscribed to ch. 1

 0
 0.2
 0.4
 0.6
 0.8

 1

PoliciesA
ve

ra
ge

 S
ys

te
m

 U
til

ity

 Future
Greedy

 MFV
 MLN

Present
 Unif

 UnifSoc

Figure 7: System Utility - Travellers subscribed to ch. 1

the system utility and fairness indices, as well (Figures 7 and 8): Future
and MLN are the best policies, although Uniform closely approximate their
performance. Note that the Greedy policy is the only one achieving low
fairness. Figures 7 and 8 are related to the case when the travellers are

24

 0
 0.2
 0.4
 0.6
 0.8

 1

Policies
A

ve
ra

ge
 F

ai
rn

es
s

 Future
Greedy

 MFV
 MLN

 Present
Unif

 UnifSoc

Figure 8: Fairness - Travellers subscribed to ch. 1

Bandwidth Overhead [MB]

Greedy 68.89 ± 0.28 MFV 16497.79 ± 660.57
Future 508.32 ± 21.84 UnifSoc 16749.46 ± 430.16
MLN 509.05 ± 21.61 Unif 71974.40 ± 1316.68

Present 15500.51 ± 881.80

Table 3: Resource Consumption - Travellers subscribed to ch. 1

subscribed to channel 1. Similar results are obtained in the other cases, as
well.

Table 3 shows the bandwidth overhead for each protocol. The Uniform
policy, although closely approximates MLN and Future in terms of hit rate
and fairness, significantly overuses network resources. This is because nodes
continuously exchange data objects as a consequence of the tie breaking pol-
icy (see Section 4.1). It is easy to show that this is the only way for Uniform
to make objects circulate. Furthermore, MFV, Present and Uniform Social
pay for their synchronisation problem also with regard to the bandwidth
overhead. Instead, MLN and Future have a very good performance also with
respect to network overhead, while the performance of the Greedy policy is
paid in term of hit rate.

Finally, Figure 9 shows the CCDF of the delay for satisfied requests on
channel 1, when the travellers are subscribed to channel 1. For the sake of
readability, we only show the Greedy, Uniform, Future and MFV policies.
The Present and Uniform Social policies are basically equivalent to MFV,
while Future and MLN are overlapped. We show this plot only, as plots

25

for the other cases are qualitatively similar. Clearly, Greedy achieves the
best performance in this case. The other social-oriented policies other than
MLN and Future suffer quite high delay. This is a side effect of the unwanted
synchronisation issue that we have discussed above. Requests for data objects
that have disappeared need long time to be satisfied. MFV and Future clearly
outperform Uniform also from this standpoint. Note that the maximum delay
is in the order of 20000s. This confirms that simulation runs of 50000s are
reasonably long to consider the request timeouts as infinite.

In this section we have presented the policies behaviours with respect
to all performance figures. In the following, we concentrate on the hit rate
index only to highlight the policies different behaviour in different scenarios.
The comparison with respect to the other performance figures is qualitatively
similar to the one presented in this section.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000

P
(d

el
ay

 >
 x

)

Delay [s]
 Future
Greedy

 MFV
Unif

Figure 9: Delay CCDF for requests on channel 1 - Travellers subscribed to ch. 1

5.3. Reduced requests’ validity timeouts

In this section we analyse the hit rate index as a function of the requests’
timeout. Figures 10(a) and 10(b) show the hit rate for increasing requests’
timeout. Again, we only present results related to the Greedy, MFV, Uni-
form and Future policies. Both plots are related to the case when travellers
are subscribed to channel 1. Figure 10(a) shows the hit rate for requests on
channel 1, while Figure 10(b) shows the hit rate for requests on channel 3.
Thus, we consider requests on the most and least popular channels, respec-
tively. Note that the hit rate in the Greedy policy do not change with the
validity timeout. Recall that requests start after an initial transient in which

26

the policies reach stability. Thus, the Greedy policy has already moved all
the data objects it is able to move across communities. Uniform and the
social policies increase the hit rate when the validity timeout increases. The
dynamic is slower with respect to the Greedy policy, but they are definitely
able to provide higher performance to channels that travellers are not sub-
scribed to (see Figure 10(b)). In that case, as expected, the Greedy policy is
not able to bring any new data objects in addition to those already generated
in the community. Finally, again the MLN and Future policies confirm to be
the best policies among the one investigated, for all the validity timeouts.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000 10000

H
it

ra
te

Request Validity [s]

 Future
Greedy

 MFV
Unif

(a) Requests on ch. 1

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000 10000

H
it

ra
te

Request Validity [s]

 Future
Greedy

 MFV
Unif

(b) Requests on ch. 3

Figure 10: Hit rate with varying timeouts - Travellers subscribed to ch. 1

5.4. Uniform Zipf subscriptions
In this section we modify the default scenario by considering a different

distribution for subscriptions to channels. Specifically, we continue to use a

27

Zipf distribution with parameter 1, but we do not rotate the most popular
channels among communities. Channel 1 is always the most popular, channel
2 the second most-popular, channel 3 the least popular. Results have been
derived in this case with a limited validity timeout equal to the expected
time for a traveller to return in C1, which is about 250s. Figures 11 and
12 show the average hit rate and the system utility when the travellers are
subscribed to channel 1 and 3, respectively, i.e. to the most and least popular
channels. The main results we have found in this scenario is that the most
popular channel receives the worst service for social-oriented policies other
than MFN and Future. The channel travellers are subscribed to does not
have a significant impact, as is clear by comparing the plots. This is a side
effect of the synchronisation effect suffered by these policies. Since data
objects of channel 1 are the most requested in all communities, they spread
aggressively once available, and get easily dropped short afterwards, thus
resulting in a high probability of being available just for limited amount of
time (unless, of course for data objects generated within each community).

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel
 Future
Greedy

 MFV

 MLN
 Present

Unif

UnifSoc
33.33%
66.66%

Figure 11: Hit rate with uniform subscriptions - Travellers subscribed to ch.1

5.5. Large number of travellers

In Section 5.2 we have suggested that policies, like Future and MLN, in
which static users are greedy and travellers take care of moving data objects
between communities result in the best social-oriented solutions. To further
explore this claim, in this section we increase the number of travellers in C1
to 7. All of them are subscribed to channel 1, such that the set of static nodes

28

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel
 Future
Greedy

 MFV

 MLN
 Present

Unif

UnifSoc
33.33%
66.66%

Figure 12: Hit rate with uniform subscriptions - Travellers subscribed to ch.3

subscribed to channel 1 in C1 is reduced to one node only. Figure 13 shows
the hit rate related to C1. Also in this case, the validity timeout was set to
the average time for the travellers to get back in C1. The main result in this
scenario is that the hit rate of social-oriented policies other than MFN and
Future tends to increase with respect to the case with less travellers. This
is not surprising, as more travellers result in a more mixed scenario which
(as highlighted at the beginning of Section 5.2), results in higher hit rates,
in general. Also note that Future and MLN do not suffer from an increased
number of travellers, because in C1 there is anyway enough overall cache
space to let data objects of all nodes survive on static nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel
 Future
Greedy

 MFV

MLN
Present
 Unif

UnifSoc
33.33%
66.66%

Figure 13: Hit rate - 7 travellers subscribed to ch. 1

29

5.6. Increased number of nodes

In Section 5.5 we have shown that an increased number of travellers im-
proves the dissemination of data objects because it results in a more mixed
scenario. In this section we want to evaluate the impact of an increased num-
ber of nodes that are not travellers. While the travellers have an active role
by making possible the spreading of objects from one community to another,
the nodes that always roam within the same community are just content
generators/consumers and their contribution to the dissemination process is
very limited. In this section we double the number of nodes in each commu-
nity, going from 15 nodes to 30 nodes per community, and again we assign
nodes’ interests according to a Zipf’s law with parameter α = 1.

In terms of the hit rate, Figure 14 shows that the behaviour of the Greedy,
Uniform, Future and MLN policy is approximately the same as in the case
of 45 nodes (Figure 3). With many nodes, however, the performance of
the social policies that suffer from synchronization problems worsens. The
reason is that, with more nodes per community, the synchronization effect
is stronger than before, and this results in a decrease in the hit rate. If we
vary the request timeout, we find that the hit rate (Figure 15) shows the
same trend as in Figure 10. Also, the delay CCDF (Figure 16) has the same
pattern as in Figure 9. Therefore, from the QoS standpoint, increasing the
number of nodes that are not travellers has only the effect of boosting the
synchronization problems of the MFV, Present and Uniform Social policies.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3

A
ve

ra
ge

 H
itr

at
e

Channel

 Future
Greedy

 MFV

MLN
Present

Unif

UnifSoc
33.33%
66.66%

Figure 14: Hit rate with 90 nodes - travellers subscribed to ch.1

30

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.01 0.1 1 10 100 1000 10000
H

it
ra

te
Request Validity [s]

 Future
Greedy

MFV
 Unif

(a) Requests on ch. 1

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000 10000

H
it

ra
te

Request Validity [s]

 Future
Greedy

 MFV
Unif

(b) Requests on ch. 3

Figure 15: Hit rate with 90 nodes and varying timeouts - Travellers subscribed to ch. 1

In order to complete the analysis, in Table 4 we also give the results for
the resource consumption. The most interesting finding here is that under
the Uniform policy the bandwidth overhead with 90 nodes is about four times
the overhead in the case of 45 nodes (Table 3). This means that the Uniform
policy does not scale well with the number of nodes in the network, and this
can be a problem in all cases in which resource usage is a concern. Instead,
for all other policies there is a roughly linear dependence between the increase
in the number of nodes and the resource consumption,thus implying a more
judicious use of the network resources.

Considering both the QoS and the resource consumption, also in the case
of an increased number of nodes per community, the best trade-off is provided
by the Future and MLN social policies.

31

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000 10000

P
(d

el
ay

 >
 x

)

Delay [s]

 Future
Greedy

 MFV
Unif

Figure 16: Delay CCDF for requests on channel 1 - Travellers subscribed to ch. 1

Bandwidth Overhead [MB]

Greedy 181.86 ± 0.88 MFV 36758.21 ± 2937.98
Future 1114.23 ± 46.15 UnifSoc 36574.81 ± 3322.24
MLN 1132.90 ± 65.11 Unif 321973.33 ± 4324.55

Present 31836.81 ± 2457.00

Table 4: Resource Consumption with 90 nodes - Travellers subscribed to ch. 1

32

5.7. Multi-hop social paths

The results presented so far show that in the considered scenarios MLN
and Future are the best policies, and perform almost the same. However,
there are cases in which they behave differently. Specifically, both MLN and
Future fetch data objects by estimating social paths of travellers. Within
any community, MLN just takes into consideration the next hop only, i.e.,
the next community it will visit. Future takes into consideration all the
communities it is likely to visit in the near future, weighted by the probability
of visiting each. Therefore, MLN might miss to exploit “multi-hop” social
paths across multiple communities. To investigate this effect, we consider a
scenario with one traveller only, belonging to C1, subscribed to channel 1.
It can visit either C2 or C3 with equal probability when in C1, while always
gets back to C1 after having been in C2 or C3. Furthermore, all nodes of
C1 (C2, C3) are subscribed to channel 1 (2, 3). In this case, it is expected
that MLN is not able to completely serve communities C2 and C3. While
in C2 or C3, it will consider only the interests of users in C1, and thus it
will only bring back data objects of channel 1. It will bring to C2 (C3) only
data objects originated in C1 for channel 2 (3). On the other hand, Future
is expected to provide 100% hit rate to all communities. This behaviour is
totally confirmed by the simulation results in Figures 17 and 18, that show
the hit rate as a function of the requests’ validity timeout. As expected, both
policies are fast in achieving the maximum hit rate. However, MLN can only
serve 66.66% of the requests for users in C3, as it can only move the data
objects of channel 3 generated in C1. Results similar to those in Figure 18
hold for community C2, as well.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 1 10 100 1000 10000

H
it

ra
te

Request Validity [s]

Future MLN

Figure 17: Hit rate for C1

33

 0
 0.2
 0.4
 0.6
 0.8

 1

 1 10 100 1000 10000
H

it
ra

te

Request Validity [s]

Future MLN

Figure 18: Hit rate for C3

6. Average Analysis of the Future policy

In this Section we perform an average analysis of the dissemination behav-
ior of the Future policy, that we have shown to be the best in Section 5. The
scenario we consider is that of two communities A and B, having N nodes
each that roam locally in the community, with a traveler node commuting
between A and B. We consider the following situation: i) an initial set of
data has been already spread among the nodes of the two communities and
its dissemination process has ended, leaving the system in a stationary state
ii) at time t = 0 a new data object is generated for a generic channel chnew

within community B (given the symmetry of the topology, the choice of the
generating community doesn’t affect the analysis). The focus of our investi-
gation is the time it takes for the traveler to deliver this new object to the
interested nodes in community A (the underlying assumption is that there
is at least one node in community A interested in the new data). We have
chosen to restrict the analysis to the case of two communities, because this
configuration represents the building block of every more complex scenario.
In fact, the traveler’s movements between multiple communities are nothing
but a composition of its movement patterns between pairs of communities.

In this analysis, we assume that nodes’ interest in the available channels
follows a Zipf’s distribution and that the ranking of the popularity of channels
is the same in all communities. Then the probability that a generic node is
interested in channel j (ranked j-th according to its popularity) is given by:

Pop (j) =
1/jα∑C
i=1 1/iα

, (4)

34

where α is the parameter of Zipf’s distribution and C is the number of
available channels. In this paper we consider α = 1. Thus, Equation 4
becomes Pop (j) = 1

jHC
, where HC is C-th harmonic number. In addition,

each node can be interested in just one channel and this interest implies that
the node wants to receive a copy of each new data object of that channel
as soon as possible, without the user issuing a specific request. For this
reason, the terms ”interested nodes” and ”destinations” will hereafter be
used interchangeably. In order to avoid the superposition of different effects,
we assume that the traveler has not direct interest in any available data. We
also assume that data objects never disappear. Given that, according to the
Future policy, all nodes except for the traveler are greedy,it is reasonable to
consider this condition verified when the nodes’ buffers are not too small with
respect to the number of data objects for their interested channel. We assume
that the dissemination process stops when a given percentage of interested
nodes in the same community has been reached by the data object. This
percentage is referred to as replication factor. For data objects belonging
to channel c, the replication factor f(c) might range from 1/Nc and 1. In
our analysis we consider f(c) = 1

Nc
, which is the worst case for the delay

experienced by data objects. In our analysis we consider f(c) = 1
Nc

, i.e.,
each object is stored by one node only. This is the worst case for the time
required by traveler to get in touch with a copy of the data object.

Throughout this Section we consider a simplified version of the utility
function defined in Section 3.2.2. Instead of including in the availability the
notion of redundancy (e.g., the availability for a data object with two copies
in a community is higher than that for a data object with one copy), the
availability used hereafter only reflects the presence or not of a data object.
Therefore the availability is equal to 1 for data objects seen by the node, 0
otherwise.

For what concerns the mobility of nodes, we assume that inter-contact
times between nodes roaming in the same community are exponentially dis-
tributed with rate λ. This assumption in backed up by the fact that, in
HCMM, nodes, when roaming within a community, move according to the
Random Waypoint mobility model, whose inter-contact times have been
shown to follow an Exponential distribution [18]. This consideration holds
true also for the traveler because it roams in either community A or B.

The dissemination process for our social-aware policies is heavily influ-
enced by the accuracy of the statistics (access probability and availability)

35

used by the travelers to make retrieval decisions. For example, in Section 5
the dissemination of data objects starts after a transitory during which the
traveler has constructed the statistics for the access probability and avail-
ability. This is the best case for our social-aware policies, which are as good
as the statistics that the traveler nodes are able to collect. Therefore, our
analysis is split into two cases. We first consider the case in which the statis-
tics used by the travelers are congruent with the state of the system. The
second part of our analysis focuses on the functioning of the system when
the social information is not yet available or is not precise. We refer to the
latter part as transient analysis, because we target the transitory phase of
collecting statistics, while the former is denoted as stationary analysis.

6.1. Stationary regime of context information

At time t = 0, when the available data objects have already been dissem-
inated to the interested nodes and the context information on the traveler
is up-to-date, the system is in a situation where each data object has utility
equal to zero. In fact, being the data objects available in both communities,
their availability (as seen by the traveler) is at the maximum level. If at
time t = 0 a new data object is generated, this data object will be the only
one with utility different from 0. This means that when the traveler gets
in touch with the data object, it will get for sure a copy of it, being this
data object the one with the highest utility. Therefore, when the context
information on the traveler is correct, the delay for the new data object to
reach its destinations depends only on the physical time for the traveler to
get in touch with the data object and to get back to community B: i.e., the
delay is only a function of the mobility characteristics of the system.

We define E[D] as the expected delay from the generation of the new
data object in community B to its delivery to its destinations in community
A. E[D] can be separated in its different components as follows:

E[D] = E[Dfetch] + E[Dlocal] (5)

E[Dfetch] is the average time required for the data object to enter the com-
munity A for the first time. E[Dlocal] is the expected time for the interested
nodes in community A to be reached by a copy of the data object. As we have
assumed that a data object is not further disseminated when its replication
level is reached, with f(c) = 1

Nc
the spreading in the local community stops

after the first interested node is reached. Therefore, in this case, E[Dlocal]

36

is equal to the expected time for the traveler to deliver a copy of the data
object to the first interested node in community A.

When the new data object appears in community B at time t = 0, the
travel can be in community A or in community B, and its location impacts
on E[Dfetch]. Applying the law of total probability we can write E[Dfetch] as

E[Dfetch] = E[Dfetch|ST = CA] · P (ST = CA) +

+E[Dfetch|ST = CB] · P (ST = CB), (6)

where ST is the community in which the traveler T is roaming when the data
object is generated. The probability of finding the traveler in either com-
munity depends on the mobility model in use and is equal to the stationary
distribution (if any) of the location of nodes. For the HCMM mobility model
used in Section 5, these probabilities can easily be found [4]. Intuitively,
the fact that the traveler commutes between the two communities suggests
that the overall expected delay is a composition of multiples of the expected
roaming time in these communities and it depends on how many round trips
are required on average to retrieve and deliver the data object. The fact that
the traveler can be in either community when the new data object is gener-
ated impacts on the delay for the first round trip. We define the duration
of a normal round trip Tcycle as the time it takes for a traveler to come back
to community A, given that it has just entered that community. Tcycle is
the sum of the expected roaming time in two communities plus the expected
time to travel from one community to the other.

Tcycle = E[TA] + 2E[Ttr] + E[TB] (7)

When the data object is generated, the traveler can have been in either A
or B for an unspecified amount of time and not having just entered that
community. Therefore, for the first round trip we have to take into consid-
eration the expected remaining roaming time in the community in which
the traveler is roaming at t = 0, instead of the expected roaming time it-
self. However, if we assume that the roaming periods follow an Exponential
distribution, then the expected remaining roaming times are equal to the
expected roaming periods, according to the PASTA principle [36]. Thus, we
have that E[TA|ST = A] = E[TA] and E[TB|ST = B] = E[TB]. The only
difference between the traveler starting from community A or community B
is that, when the traveler starts from community B, it has a chance of getting
in touch with the new data object immediately, without having to wait for

37

the next round trip. This implies that in this case the contribution to the
expected delay is shorter than when the traveler is roaming in A at t = 0.
Finally, in both cases, once the traveler enters community A with the data
object, the expected delay to reach the first destination is given by E[Dlocal].
After putting all these considerations together, we obtain:

T
′
cycle = E[TA] + 2E[Ttr] + E[TB] (8)

T
′
cycle−short = E[Ttr] + E[TB] (9)

Tcycle, Tcycle−short and T
′
cycle−short only depend on the the mobility of the

traveler. Again applying the law of total expectation to Equation 6, we
have:

E[Dfetch|ST = CA] = T
′
cycle +

∞∑
i=1

Tcycle(i − 1) · P (Y = i) (10)

E[Dfetch|ST = CB] = T
′
cycle−short +

∞∑
i=1

Tcycle(i − 1) · P (Y = i), (11)

where Y is a random variable representing the probability that the traveler
fetches the data object at the i-th round (i.e., that the travel meets one of
the nodes currently having a copy of the data object in community B).

If the number of nodes currently having a copy of the data object in
community B is j, then the distribution of the delay until the first one
is reached is the minimum over a set of j exponentially distributed random
variables, all having the same rate λ. The minimum of these variables follows
an Exponential distribution with rate equal to jλ [36].

Uj = min {E1, · · · , Ej} = min {Exp(λ), · · · , Exp(λ)} ∼ Exp(jλ) (12)

Then, the probability that the traveler sees the data object during a generic
round i is equal to the probability of meeting one of the nodes currently
having a copy of the data object before moving back to community A, i.e.,
within the roaming period TB. As in our analysis there is just one node in
B having a copy of the new data object, the probability that the traveler
gets in touch with that node within a roaming period with distribution TB is
P (U1 < TB). While we know from Equation 12 that U1 follows an Exponen-
tial distribution with rate λ, the distribution of TB depends on the mobility
model in use. If, for the sake of tractability, we assume that TB follows an

38

Exponential distribution with rate 1
E[TB]

, using standard probability theory

we obtain that P (U1 < TB) = λE[TB]
λE[TB]+1

. Each roaming period in community

B can be seen as a Bernoulli trial with success probability pB = P (U1 < TB).
Thus, the probability that the traveller gets the data object at exactly the
i-th roaming period follows a Geometric distribution:

P (Y = i) = (1 − pB)i−1pB =

(
1

λE[TB] + 1

)i−1
λE[TB]

λE[TB] + 1
. (13)

If we rewrite Equation 10 using Equation 13, we obtain:

E[Dfetch|ST = CA] = T
′
cycle +

∞∑
i=1

Tcycle(i − 1)(1 − pB)i−1pB (14)

After routine manipulation, Equation 14 becomes:

E[Dfetch|ST = CA] = T
′
cycle + Tcycle

1 − pB

pB

= Tcycle
1

pB

, (15)

where the last equality follows from the exponential assumption for the roam-
ing times. For E[Dfetch|ST = CB], the computation is the same, and so we
have:

E[Dfetch|ST = CB] = T
′
cycle−short + Tcycle

1 − pB

pB

(16)

Once the traveler has fetched the data object, the delay of the delivery to
the first destination met depends on how long the traveler roams in commu-
nity A. If during this roaming interval no destination is met, then we have to
wait for an entire cycle for the traveler to be back in that community again,
and so on. If the data object is delivered at the i-th round, then E[Dlocal] is
given by the delay up to the i − 1-th round, plus the time required to reach
the destination during the i-th round. Therefore, the expression for E[Dlocal]
is the following:

E[Dlocal] = E[UNchnew
] +

∞∑
i=1

(i − 1) Tcycle · (1 − pA)i−1pA, (17)

where pA is the probability of meeting one of the interested nodes during
the roaming period. As the number of nodes of community A interested
in channel chnew is Nchnew , pA = P (UNchnew

< TA). From Equation 12 we

39

know that UNchnew
∼ Exp(Nchnewλ). Thus, E[UNchnew

] is equal to 1
Nchnew λ

and pA = P (UNchnew
< TA) is equal to

Nchnew λE[TA]

Nchnew λE[TA]+1
. Assuming independent

and identically distributed node encounters and Pop(j) as in Equation 4,
the average number of nodes interested in channel chnew is given by Nn

j =
Pop(j) ∗ Nn. After some manipulation we get:

E[Dlocal] =
1

Nchnewλ
+ Tcycle

1 − pA

pA

=

=
Tcycle + E[TA]

E[TA]NPop(chnew)
. (18)

Now that we have the expressions for E[Dfetch] and E[Dlocal], the formula
for E[D] follows from simple substitutions in Equation 5.

In the remaining of this Section, we give a brief overview of the depen-
dency of the delay on the characteristics of the mobility and the popularity
of the channel. Figure 19 shows E[D] against the popularity of the chan-
nel to which the new data object belongs. The channel for the new data
object is selected among 100 channels. Small, medium and large values of
λ correspond, respectively, to 0.0001, 0.001 and 0.01. These setting will be
used throughout Section 6. In Figure 19 the delay experienced by the new
data object decreases linearly with increasing popularity. The intuitive rea-
son behind this behavior is that the lesser popular is a data object, the more
difficult is for the traveler to find an interested node to which deliver the
object. The second result from Figure 19 is that this trend worsens when
the frequency of contacts is smaller. Figures 20 and 21 show the separated
contributions to the overall delay with an intermediate value of λ and vary-
ing average roaming periods. In Figure 20, E[TA] is ten times smaller than
E[TB] and E[Ttr], while the opposite is true for Figure 21. When the roaming
time in community B is long, it is very easy for the traveler to get the data
object, and the overall delay is strictly dependent on E[Dlocal]. This effect is
mitigated in Figure 21.

6.2. Transient regime of context information

The case in which at the time the new data object is generated, the
traveler has not yet statistics on the popularity and availability of the data is
the worst case for our social-aware dissemination policies. In fact, during the
transitory period when the traveler builds these statistics from scratch, the
precision of the collected social information might be unreliable and this may

40

0 20 40 60 80 100
0

20000

40000

60000

80000

Popularity ranking of the new message

tim
e
�s
�

Λ large

Λ medium

Λ small

Figure 19: Expected delay

0 20 40 60 80 100
0

5000

10000

15000

20000

25000

30000

35000

Popularity ranking of the new message

D
el

ay
�s
�

E�D_local�

E�D_fetch�

E�D�

Figure 20: Expected delay with E[TB] = E[Ttr] = 1/10E[TA]

lead to wrong retrieval decisions on the traveler. To characterize the transient
phase during which the traveler collects the information, it is worth focusing
on two aspects: i) how the traveler gets in touch with the other nodes and
ii) how the traveler gets in touch with the data objects.

6.2.1. Meetings between the traveler and the other nodes

The statistics on the interests and on the distribution of data objects
for the nodes of a community are collected by traveler while it roams in that
community. If the expected roaming time in a community A is E[TA] and the
inter-contact time between the traveler and each other node is exponentially
distributed with rate λ, the expected number of nodes met after the first
roaming period (N1) is equal to N(1 − e−λE[TA]), being (1 − e−λE[TA]) the
probability of seeing a node during the roaming period. After the n-th round,
the number of nodes met is Nn = N(1 − e−λnE[TA]). In general, the traveler
does not meet all nodes in the first roaming period, but multiple rounds

41

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Popularity ranking of the new message

D
el

ay
�s
�

E�D_local�

E�D_fetch�

E�D�

Figure 21: Expected delay with E[TB] = E[Ttr] = 10E[TA]

are required. Figure 22 shows the time required to meet all nodes 4 under
different mobility conditions. When the nodes get in touch rarely (small λ), it
takes some time for the traveler to meet all the nodes of a community, while,
when the frequency of meetings is higher, the time required is much lower.
It is also interesting to note that this time does not depend significantly on
the number of nodes of the community.

Among the Nn nodes met after the n-th round, the average number of
nodes interested in channel j is Nn

j = Pop(j) ∗ Nn, given that we assume
independent and identically distributed node encounters and Pop(j) is as
in Equation 4 . As the access probability pac to channel j for a generic
community is equal to the proportion of nodes of that community interested
in channel j, the access probability for channel j as seen by the traveler after
round n is pn

acj
= Nn

j /Nn = Pop(j). Thus, on average, the statistics on the
access probability give a precise estimate of the interests of the nodes. This
is because, being all nodes equally likely to be met, the distribution of the
interests on the subset of nodes met is equal to the distribution of interests
itself, as highlighted in Figure 23. As explained in Section 6, we consider a
simplified version of the availability of a data object. This availability can
be either 0, if the data object has been seen by the traveler, or 1 otherwise.
In our scenario, all data objects are available in both communities A and
B, except for the new data object. Therefore, the availability of these data
objects should be 1. However, during each roaming period the traveler meets
only a subset of the nodes of the community. This implies that the statistics

4Given that the exponential function has an asymptote towards infinity, we consider
the process completed when N − ε nodes are reached, with ε very small.

42

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

Λ

D
el

ay
�s
�

N�1000
N�100
N�5

Figure 22: Time required to meet all nodes

that the traveler collect are not exact until all nodes have been met. We want
to compute the error on the estimation of the availability of the data objects
available in the system before t = 0. Given a replication factor f(j) = 1

Nj
for

channel j, when the traveler meets Nn
j nodes having data objects for channel

j, the probability that a given data object is seen is equal to f(j)Nn
j . The

complementary of this quantity gives the probability of not having seen an
object yet, i.e., of having a wrong statistic for that data object. After trivial
substitutions, we find the following expression for the error on the availability
after round n-th:

en
avj

= e−λnE[TA], (19)

Here the independence from the particular channel considered results from
the fact that each data object is replicated on just one node (and therefore all
data objects have the same probability of being found on a node). In Figure
24, the availability statistic is plotted as a function of time (discretized in
rounds) for different mobility configurations. When the frequency of meetings
between nodes is high, the statistic converges fast. The opposite holds true
for small values of λ, when it takes some rounds for the availability to become
up-to-date.

6.2.2. Data object discovery on the traveler

Now that we have an estimation on the statistics for the access probability
and availability of data objects in a given community, we can focus on how
this community is served when the traveler is outside. In particular, we need
to find how data objects are seen by the traveler. When traveler roams in

43

�

�

�

�
�
�
��

�

�

�
�
��

�
���

0 10 20 30 40 50
0

1

2

3

4

5

Channel ID

N
um

be
r

of
no

de
s

� After round 10

� After round 100

� After round 1000

Figure 23: Interest distribution of nodes met

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � ��

�

�

�

�

�

�
�
�
�
� �

� � �
� � � � � � � � �

� � � � � � � � � �

�

�
� �

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

round

p�
av

� Λ large
� Λ medium
� Λ small

Figure 24: Availability statistics as a function of the time

community B, it sees all the data objects carried by the nodes that it meets.
As we are interested in the average behavior of the traveler, we simplify the
dissemination process in community B assuming that the traveler selects the
data objects to be put in its buffer only once per roaming period and this
selection is performed among all the data objects seen on average during
that roaming period. If the average roaming period lasts for E[TB], during
this time the traveler meets on average E[Z1] nodes having data objects of
channel 1, E[Z2] for channel 2, and so on. By denoting with Q the number
of data objects carried by each local nodes, as all these objects belong to the
channel in which the node is interested, the average number of data objects

44

seen during a roaming period for each channel j is

Mj = QE[Zj] = QPop(j)(1 − e−λE[TB]) =
QN(1 − e−λE[TB])

jHC

. (20)

Out of these Mj data objects, on average W n
j = en

avj
Mj are the data

objects for which the traveler has wrong statistics. As the traveler has not
seen these data objects yet, their availability is zero, although they are actu-
ally spread in the community. These data objects with wrong statistics are
the ones that can slow down the retrieval of the new data object, because
the traveler can erroneously think that some of these data objects are more
important than the new one. This is actually the case when the old data
objects with wrong statistics belong to channels that are more popular than
the channel to which the new data object belongs. In fact, in the average
case, the new data object is fetched by the traveler as soon as the number of
data objects with wrong statistics seen during a round and being more pop-
ular than the new data object is less than the total size K of the traveler’s
buffer. The number of rounds for the traveler to fetch the new data object
in the average case is thus:

n
ch′

new
first = min

n

{
chnew−1∑

i=1

en
avi

Mi < K

}
(21)

n
ch′′

new
first = min

n

{
chnew∑
i=1

en
avi

Mi < K

}
(22)

nchnew
first =

nch′
first + nch′′

first

2
. (23)

Note that we consider two values n
ch′

new
first and n

ch′
new

first , corresponding to the cases
where the new data object is considered, respectively, more or less important
than the already existing data objects for the same channel. Also note that
the inequality in Equations 21 and 22 has always a solution. In fact, en

avj
is

always decreasing with n, as it is the probability of not seeing each particular
data object and Mj does not vary with n. Therefore

∑chnew−1
i=1 en

avi
Mi is

decreasing, and it goes to 0 for n → ∞. This implies that we can find n by
solving equation

∑chnew−1
i=1 en

avi
Mi = K for n. The solution is as follows:

n
ch′

new
first =

ln(
eE[TB]λ(eE[TB]λ−1)N(B)Hchnew−1

HC
)

E[TA]λ
(24)

45

n
ch′

new
first =

ln(
eE[TB]λ(eE[TB]λ−1)N(B)Hchnew

HC
)

E[TA]λ
(25)

For the computation of the time up to round nchnew
first , we have to consider

both the case of the traveler starting from community A and that of the
traveler starting from community B. Following the same line of reasoning of
Section 6.1, we obtain:

E[Dfetch] = E[Dfetch|ST = CA] · P (ST = CA) +

+E[Dfetch|ST = CB] · P (ST = CB) (26)

E[Dfetch|ST = CA] = T ′
cycle + (nchnew

first − 1)Tcycle (27)

E[Dfetch|ST = CB] = T ′
cycle−short + nchnew

first Tcycle (28)

Once the traveler has a copy of the data object, it will not drop it until the
destination in community A has received the data object.

As the expression for E[Dlocal] is equal to the one given in previous Sec-
tion, we finally obtain E[D] as:

E[D] = E[Dfetch] + E[Dlocal]

As in the previous Section, we conclude our analysis discussing a plot for
the delay experienced on average by the new data object. Figure 25 shows
E[D] varying the popularity of the channel to which the new data object
belongs. When the channel is very popular the delay is small because the
data object is retrieved in the first few rounds or even in the first one (when
λ is big). On the other end, when the data object belongs to an unpopular
channel, the expected delay increases. The notable thing is, however, that
the number of rounds required to get the new data object is finite for all
channels. This is the main advantage of the Future policy with respect to
the Greedy. In fact, the Greedy policy can result in lower delays for certain
channel but in infinite delays for others, as shown in Section 5.2. With the
Future policy the service is guaranteed to all channels, but the quality of that
service in term of, in this case, the expected delay depends on the popularity
of the channel. Note also the difference in the delays shown in Figure 25 and
Figure 19: the inaccuracy of context information worsen the performance the
Future policy.

7. Conclusions

In this paper we have focused on data dissemination issues for opportunis-
tic networks. Specifically, we have presented and evaluated ContentPlace,

46

0 20 40 60 80 100
0

100000

200000

300000

400000

500000

600000

Popularity ranking of the new message

D
el

ay
�s
�

Λ small
Λ medium
Λ large

Figure 25: Average delay for a new data object to be retrieved by the traveler

which is a data dissemination system exploiting information about the social
behaviour of the users in order to drive the dissemination process. We have
provided extensive simulation results showing the advantage of social-aware
policies over naive policies that do not take social information into account.
In general, social-aware policies turn out to provide higher hit rate, to be
more fair, and to be quicker to disseminate data objects with respect to the
other policies. Among the social-aware policies, we have identified Future as
the best one. Broadly speaking, Future takes into consideration the set of
users (communities) each particular user will be in touch with in the near
future, and carries data objects of interest to them. This simple behaviour
allows Future to serve all users in an efficient and fair way. The behaviour of
Future has been investigated both through simulation and analytical models.

References

[1] A. Balamash and M. Krunz. An overview of web caching replacement
algorithms. IEEE Communications Surveys & Tutorials, 6(2):44–56,
2004.

[2] A. Balasubramanian, B. N. Levine, and A. Venkataramani. Dtn routing
as a resource allocation problem. In Proceedings of the 2007 conference
on applications, technologies, architectures, and protocols for computer
communications (SIGCOMM), 2007.

[3] R. Baldoni, R. Beraldi, L. Querzoni, G. Cugola, and M. Migliavacca.
Content-based Routing in Highly Dynamic Mobile Ad Hoc Networks.

47

International Journal of Pervasive Computing and Communications,
1(4):277, 2005.

[4] C. Boldrini, M. Conti, and A. Passarella. Users mobility models for
opportunistic networks: the role of physical locations. In Proceedings of
the IEEE Wireless Rural and Emergency Communications (WRECOM)
Conference, 2007.

[5] C. Boldrini, M. Conti, and A. Passarella. ContentPlace: social-aware
data dissemination in opportunistic networks. In Proceedings of the
11th international symposium on Modeling, analysis, and Simulation
of Wireless and Mobile systems (MSWiM), pages 203–210. ACM New
York, NY, USA, 2008.

[6] C. Boldrini, M. Conti, and A. Passarella. Context and resource aware-
ness in opportunistic network data dissemination. In Proceedings of the
IEEE WoWMoM Workshop on Autonomic and Opportunistic Commu-
nications (AOC), 2008.

[7] C. Boldrini, M. Conti, and A. Passarella. Exploiting users’ social rela-
tions to forward data in opportunistic networks: the HiBOp solution.
Pervasive and Mobile Computing (PMC), 2008.

[8] C.-Y. Chow, H. V. Leong, and A. T. Chan. Grococa: group-based peer-
to-peer cooperative caching in mobile environment. IEEE Journal on
Selected Areas in Communications, 25(1):179–191, 2007.

[9] E. Cohen and S. Shenker. Replication strategies in unstructured peer-
to-peer networks. In Proceedings of the 2002 conference on applications,
technologies, architectures, and protocols for computer communications
(SIGCOMM), volume 32, pages 177–190, 2002.

[10] M. Conti, E. Gregori, and G. Turi. A cross-layer optimization of gnutella
for mobile ad hoc networks. In Proceedings of the 6th ACM international
symposium on mobile ad hoc networking and computing, pages 343–354.
ACM New York, NY, USA, 2005.

[11] P. Costa, C. Mascolo, M. Musolesi, and G. Picco. Socially-aware routing
for publish-subscribe in delay-tolerant mobile ad hoc networks. IEEE
Journal on Selected Areas in Communications, 26(5):748–760, 2008.

48

[12] P. Costa and G. Picco. Semi-Probabilistic Content-Based Publish-
Subscribe. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 575–585, 2005.

[13] F. Delmastro. From Pastry to CrossROAD: CROSS-layer ring overlay
for ad hoc networks. In Proceedings of the third IEEE International
Conference on Pervasive Computing and Communications Workshops,
2005. PerCom 2005 Workshops, pages 60–64, 2005.

[14] V. Drabkin, R. Friedman, G. Kliot, and M. Segal. RAPID: Reliable
Probabilistic Dissemination in Wireless Ad-Hoc Networks. In Proceed-
ings of the 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS), 2007.

[15] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and
A. M. Kermarrec. Lightweight probabilistic broadcast. ACM Transac-
tions on Computer Systems (TOCS), 21(4):341–374, 2003.

[16] K. Fall. A delay-tolerant network architecture for challenged internets.
In Proceedings of the 2003 conference on applications, technologies, ar-
chitectures, and protocols for computer communications (SIGCOMM),
pages 27–34. ACM Press New York, NY, USA, 2003.

[17] R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, and S. Voulgaris.
Gossiping on MANETs: the beauty and the beast. ACM SIGOPS Op-
erating Systems Review, 41(5):67–74, 2007.

[18] R. Groenevelt, P. Nain, and G. Koole. The message delay in mobile ad
hoc networks. Performance Evaluation, 62(1-4):210–228, 2005.

[19] Z. Haas, J. Halpern, and L. Li. Gossip-based ad hoc routing. IEEE/ACM
Transactions on Networking, 14(3):479–491, 2006.

[20] T. Hara. Replica allocation methods in ad hoc networks with data
update. Mobile Networks and Applications, 8(4):343–354, 2003.

[21] J.-L. Huang and M.-S. Chen. On the effect of group mobility to data
replication in ad hoc networks. IEEE Transactions on Mobile Comput-
ing, 5(5):492–507, 2006.

49

[22] P. Hui and J. Crowcroft. How small labels create big improvements.
In Proceedings of the Fifth IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOMW), 2007.

[23] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: Social-based for-
warding in delay tolerant networks. In Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking and computing,
pages 241–250. ACM New York, NY, USA, 2008.

[24] P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft. Distributed community
detection in delay tolerant networks. In Proceedings of 2nd ACM/IEEE
international workshop on Mobility in the evolving internet Architecture
(MobiArch), 2007.

[25] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: a decentralized peer-
to-peer web cache. In Proceedings of the twenty-first annual symposium
on principles of distributed computing, pages 213–222. ACM Press New
York, NY, USA, 2002.

[26] A. Jindal and K. Psounis. Contention-aware analysis of routing schemes
for mobile opportunistic networks. In Proceedings of the 1st inter-
national MobiSys workshop on Mobile Opportunistic networking (Mo-
biOpp), 2007.

[27] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimizing file avail-
ability in peer-to-peer content distribution. In Proceedings of the annual
conference of the IEEE Computer and Communications Societies (IN-
FOCOM), 2007.

[28] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
2004.

[29] V. Lenders, G. Karlsson, and M. May. Wireless Ad hoc Podcasting.
In Proceedings of the 4th Annual IEEE Communications Society Con-
ference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), 2007.

[30] S. Lim, W.-C. Lee, G. Cao, and C. R. Das. A novel caching scheme for
improving internet-based mobile ad hoc networks performance. Ad Hoc
Networks, 4(2):225–239, 2006.

50

[31] J. Luo, P. T. Eugster, and J. P. Hubaux. Route driven gossip: proba-
bilistic reliable multicast in ad hoc networks. In Proceedings of the an-
nual conference of the IEEE Computer and Communications Societies
(INFOCOM), volume 3, 2003.

[32] R. Meier and V. Cahill. STEAM: Event-Based Middleware for Wire-
less Ad Hoc Networks. In Proceedings of the International Workshop
on Distributed Event-Based Systems (ICDCS/DEBS02), pages 639–644,
2002.

[33] S. Milgram. The small world problem. Psychology today, 2(1):60–67,
1967.

[34] M. Musolesi and C. Mascolo. Car: Context-aware adaptive routing for
delay tolerant mobile networks. IEEE Transactions on Mobile Comput-
ing, 2009.

[35] L. Pelusi, A. Passarella, and M. Conti. Opportunistic Networking: data
forwarding in disconnected mobile ad hoc networks. IEEE Communica-
tion Magazine, 44(11), Nov. 2006.

[36] S. M. Ross. Introduction to Probability Models. Elsevier, 2006.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. Lecture
Notes In Computer Science, 2218:329–350, 2001.

[38] J. Scott, P. Hui, J. Crowcroft, and C. Diot. Haggle: A networking
architecture designed around mobile users. IFIP WONS, 2006, 2006.

[39] H. Shen, M. Joseph, M. Kumar, and S. Das. Precinct: A scheme for
cooperative caching in mobile peer-to-peer systems. In Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2005.

[40] H. Shen, M. Kumar, S. K. Das, and Z. Wang. Energy-efficient data
caching and prefetching for mobile devices based on utility. Mobile Net-
works and Applications, 10(4):475–486, 2005.

[41] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Efficient rout-
ing in intermittently connected mobile networks: The single-copy case.
IEEE/ACM Transactions on Networking, 16(1):63–76, 2008.

51

[42] A. Vahdat and D. Becker. Epidemic Routing for Partially Connected
Ad Hoc Networks. Technical Report, CS-2000-06, 2000.

[43] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays. Journal of
Network and Systems Management, 13(2):197–217, 2005.

[44] D. Watts. Small Worlds: The Dynamics of Networks Between Order
and Randomness. Princeton University Press, 1999.

[45] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks.
IEEE Transactions on Mobile Computing, 5(1):77–89, 2006.

[46] L. Yin, G. Cao, and Y. Cai. A generalized target-driven cache replace-
ment policy for mobile environments. Journal of Parallel and Distributed
Computing, 65(5):583–594, 2005.

[47] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft. A socio-aware over-
lay for publish/subscribe communication in delay tolerant networks. In
Proceedings of the 10th ACM Symposium on Modeling, analysis, and
Simulation of Wireless and Mobile systems (MSWiM), 2007.

[48] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc net-
works. In Proceedings of the 1st ACM international symposium on Mo-
bile ad hoc networking & computing, pages 51–60, 2000.

52

