
Context-Aware Analysis of
Data Sharing Agreements

Maurizio Colombo, Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchi
IIT-CNR, Pisa, Italy

{maurizio.colombo, fabio.martinelli, ilaria.matteucci, marinella.petrocchi}@iit.cnr.it

Abstract—A Data Sharing Agreement is an agreement among
contracting parties regulating how they share data under certain
contextual conditions. Upon the definition phase, where the
parties negotiate the respective authorizations on data covered
by the agreement, the resulting policy may be analysed in
order to identify possible conflicts or incompatibilities among
authorizations clauses. In this paper, we propose a formal
framework for Data Sharing Agreement analysis. Our proposal
is built on a process algebra formalism dealing with contextual
data, encoded into the Maude engine to make it executable. The
effectiveness of the analysis is shown through a sensitive data
sharing test bed. Furthermore, we present an implementation of
the analyser exposed as a Web Service built on top of Maude.
The Web Service technology allows the modularity of the whole
architecture with respect to the analysis tool.

Keywords-Data Sharing Agreements, Context-aware Data Pro-
tection, Formal Analysis, Web Service Implementation.

I. INTRODUCTION

Data sharing is a critical aspect of every business, govern-
ment, and social organization. Data exchange is vital for a
successful organization process, but confidentiality and privacy
requirements demand that only authorized people should be
granted access to such data.

Usually, organizations adopt Data Sharing Agreements
(DSA), which are formal legal agreements among two or
more parties regulating how they share data. The core of DSA
consists of a set of clauses, which main purpose is exactly that
of defining what parties are allowed or required to do with
respect to data covered by the agreement. A general structure
for a DSA consists of the following sections (see also [1], [2]
for detailed information):
Title gives a title to the DSA.
Parties defines the parties making the agreement.
Period specifies the validity period.
Data lists the data covered by the DSA.
Authorizations defines authorizations covered by the DSA.
Date and Signatures contains the date and (digital) signa-

tures of the Parties.
Note that DSA’s clauses are usually subject to a lifecycle
consisting at least of the following main phases: definition and
enforcement. During the definition phase, the parties negotiate
the respective authorizations on data covered by the agreement.
During the enforcement phase, the DSA clauses are enacted
by an appropriate infrastructure ensuring that data exchange
among parties comply with the DSA clauses.

This work is partly supported by the EU project FP7-214859 Consequence:
Context-Aware Data-Centric Information Sharing.

The FP7 European Project Consequence [3] aims at deliv-
ering a “data-centric information protection framework based
on data sharing agreements”. Precise goals are to define a
generic, context-aware, secure architecture to enable dynamic
management policies based on DSA that ensure protection of
data-centric information.

Our interest in the project is mainly on the DSA defini-
tion phase. We observe that the definition phase is iterative:
authoring of the DSA is followed by analysis of its content
in order to identify possible conflicts or incompatibilities
among authorizations clauses. This process is iterated until
all conflicts are solved, and parties have reached agreement
on the content of the DSA.

While the authoring phase needs some controlled natural
language assuring usability and user-friendliness to adoption
of DSA, the analysis phase quests a more formal substrate to
enable automatic verification.

In this work, we concentrate on the DSA analysis phase, by
providing a formal framework for the verification of DSA with
respect to some properties that it should satisfy. For example,
before passing the DSA to the enforcement phase, one would
like to be assured on which subjects have the rights to perform
which security actions on which set of data (e.g., write/read
certain files) given certain contextual conditions.

We consider a high level description of the agreement,
that we specify by means of the POlicy Process Algebra
POLPA [4]. As execution environment for checking if the
DSA/POLPA specification satisfies a set of properties we
choose the rewriting system engine Maude [5]. An encoding
of POLPA into the Maude programming language will be
presented. Analysis samples will be given by considering a
case study involving the protection of scientific research data.

We also present an implementation of the overall architec-
ture, based on Web Service technology to achieve modularity
with respect to the particular tool chosen for the analysis.

The paper is structured as follows. The next section lists
some related work. Then, we recall two high-level languages
for the description of DSA, CNL4DSA and POLPA. Sec-
tion IV presents our executable specification of POLPA into
Maude. In Section V, we consider a sensitive data sharing test
bed. Then, we show the implementation of the DSA analysis
architecture in Section VI. Then, we give final remarks.

II. STATE OF THE ART

Our proposal for a DSA analyser becomes part of an
information protection framework aiming at defining a scalable

2010 Third  International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services

978-0-7695-4141-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CENTRIC.2010.17

103

2010 Third  International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services

978-0-7695-4141-9/10 $26.00 © 2010 IEEE

DOI 10.1109/CENTRIC.2010.17

99



architecture to enable secure management of policies. The
architecture incorporates models and tools for policy specifica-
tion and authoring, e.g., [6], [7], [2], and secure mechanisms
for policy enforcement, e.g., [8].

There have been some efforts towards the analysis of DSA.
In particular, [9] focus on a specification model based on
distributed temporal logic predicates (DTL). A precise formal
semantics for that language has not been given. However, it
is the authors’opinion that it can be enriched with such a
semantics, leading to a variety of automated analysis.

Other alternative approaches are possible for modeling and
analysing DSA. Binder [10] is an open logic-based security
language that encodes security authorizations among compo-
nents of communicating distributed systems. It has a notion for
context and provides flexible low-level programming tools to
express delegation, even if Binder does not directly implement
higher-level security concepts like delegation itself. Also,
the Rodin platform provides animation and model-checking
toolset, for developing specifications based on the Event-B
language [11]. In [12], it was shown that the Event-B language
can be used to model obliged events. This could be useful in
the case of analysing obligations in DSA. Some of the authors
are our partners in the Consequence project, and we are
currently investigating for setting up an integrated framework
that could benefit from both the approaches.

Even if not specifically DSA-related, [13] presents a policy
analysis framework, which considers not only authorizations,
but also obligations, giving useful diagnostic information.
Furthermore, the XACML language [14] is a pretty new
standard for encoding data exchange. It makes possible a
simple, flexible way to express and enforce access control
policies in a variety of environments, using a single language.
Also, the Semantic Annotations for WSDL and XML Schema
(SAWSDL) language [15] is defined in the Web Service
research area for adding semantic annotations to various parts
of a document written in WSDL. Both XACML and SAWSDL
are used for specifying policies but there are no references
to automatic mechanisms for analysing policies expressed in
these languages.

Finally, there exists generic formal approaches that could a
priori be exploited for the analysis of some aspects of DSA. As
an example, the Klaim family of process calculi [16] provide
a high-level model for distributed systems, and, in particular,
exploits a capability-based type system for programming and
controlling access and usage of resources.

III. HIGH-LEVEL LANGUAGES FOR DSA SPECIFICATION

This section recalls two languages for describing DSA.
The first language is called CNL4DSA [2], and it is mainly
intended for authoring a DSA in a user-friendly, but controlled
manner. The second language is the POLicy Process Algebra
(POLPA), mainly due with the DSA analysis phase. Even if
this paper is more related to POLPA, we decide to briefly recall
CNL4DSA to give the general flavor of the whole working
architecture, from DSA authoring to DSA analysis. [2] shows
a mapping from CNL4DSA to POLPA.

A. CNL4DSA

In [2], a Controlled Natural Language for Data Sharing
Agreements, namely CNL4DSA, has been proposed. The
language aims at ensuring simplicity for end-users and safe
translation to formal specifications allowing for automated
verification of the authorizations clauses of a DSA.

The core of CNL4DSA is the notion of fragment, a tuple
f = 〈s, a, o〉 where s is the subject, a is the action, o is the
object. The fragment expresses that “the subject s performs
the action a on the object o”, e.g., “Bob reads Document1”.
Fragments are composable to form more complex expressions,
i.e., composite authorization fragments F. The syntax of a
composite fragment is inductively defined as follows:

F := nil | can f | F ;F | if C then F | after f then F | (F )

where C is the context, i.e., a predicate, evaluating to a
boolean value, that usually characterizes contextual factors,
such as time and location (e.g., “more than 1 year ago” or
“inside the facility”).

The intuition is the following: nil can do nothing; can f
is the atomic authorization fragment. Its informal meaning
is the subject s can perform the action a on the object
o. can f expresses that f is allowed; F ;F is a list of
composite authorization fragments. The list constitutes the
authorization section of the considered DSA; if C then F
expresses the logical implication between a context C and
a composite authorization fragment: if C holds, then F is
permitted; after f then F is the temporal sequence of frag-
ments. Informally, after f has happened, then the composite
authorization fragment F is permitted.

B. POLPA

CNL4DSA has been proposed with an eye for formal
verification (see [2] for the operational semantics of the
language). Its semi-formal structure makes it suitable for a
simple, intuitive and easy mapping to high-level formal policy
languages. Here, we consider POLPA [4], [17], built on top of
CSP [18] and enriched with a predicate construct expressing
that a transition happens only if a predicate is true. This
language proved to be useful for expressing usage control
policies, in particular for web applications [17] and for GRID
systems [4]. We recall syntax and operational semantics of the
language. The reader is referred to [4] for more details. The
syntax of POLPA is as follows:

P ::= stop | α(~x).P | p(~x).P | P [fun] | PorP | P |Alfa|P | Z

with process P ∈ P , parameterized actions α(~x) ∈ Act, and
p(~x) ∈ Pr parameterized predicates evaluating to a boolean
value. Parameters range over x, x1, . . . , xn and belong to set
X . The special action τ is the silent action denoting the
internal behaviour of a process. τ has no parameters.

The informal semantics of the language is the following:
• stop is the process that allows nothing;
• α(~x).P is the process that performs action α(~x) and then

behaves as P ;

104100



• p(~x).P is the process that behaves as P when the
predicate p(~x) is true; otherwise, it gets stuck;

• P [fun] is the process that behaves as P but with the
parameters ~x substituted according to fun . fun : X → X
is a finite substitution function;

• P1 or P2 is the choice between the two processes;
• P1 |Alfa| P2 is the composition operator and it represents

concurrent activity requiring synchronization between P1

and P2. In particular, any action belonging to the set
of actions Alfa ⊆ Act can only occur when both the
processes perform that action. When P1 and P2 engage
in actions not belonging to Alfa , the events from both
the processes are arbitrarily interleaved in time;

• Z is the constant process. We assume that there is a
specification Z .

= P and Z behaves as P .
This intuitive explanation is made precise by the operational

semantics shown in Figure 1, that defines a Labelled Transition
System (LTS) for POLPA processes. In particular, the LTS is
a structure ( P , Act,

α(~x)−→), where P is the set of POLPA
processes, Act is the set of parameterised actions, and

α(~x)−→ is
a ternary relation, i.e., a subset of P x Act x P , representing
a transition relation between processes through an action.
Notation P1

α(~x)−→ P2, with P1, P2 ∈ P and α(~x) ∈ Act means
that it is admissible that the implementation of P1 performs
α(~x) and then behaves like P2. As usual, rules are expressed
in terms of a set of premises, possibly empty (above the line)
and a conclusion (below the line). The operators for choice
and composition are assumed commutative and associative,
and the symmetric cases are not shown in the figure.

IV. ENCODING OF POLPA INTO MAUDE

Maude is an executable programming language that models
(distributed) systems and the actions within those systems [5].
Systems are specified by defining algebraic data types ax-
iomatizing systems states, and rewrite rules declaring the
relationships between the states and the transitions between
them.

Here, the goal is to exploit the Maude engine to make
POLPA executable. Then, Maude built-in commands and/or
ad hoc strategies can be used to search for allowed traces of
the specified DSA. These traces represent the actions that are
authorised by the DSA.

Our encoding is inspired by the work of Verdejo and Martı́-
Oliet [19], that implements the CCS operational semantics [20]
in Maude 2.0, by seeing transitions as rewrites and inference
rules as conditional rewrite rules.

First, we define the POLPA syntax in Maude. As in [19],
all the non constant operators are defined as frozen, meaning
that the use of rewrite rules in the evaluation of the arguments
is forbidden. The reason is detailed below.

fmod POLPA-SYNTAX is
sorts ProcId Proc . sort ActSet .
subsort Act < ActSet . subsorts Qid < ProcId < Proc .
op tau : -> Act . op stop : -> Proc .

---Polpa operators
*** prefix

op _._ : Act Proc -> Proc [frozen prec 25] .
*** choice
op _or_ : Proc Proc -> Proc [frozen assoc comm prec 35] .
*** composition
op _|_|_ : Proc ActSet Proc -> Proc [frozen prec 30] .
*** predicate
op _@_ : Pred Proc -> Proc [frozen prec 25] .
*** substitution
op _[_/_] : Proc Subj Subj -> Proc [frozen prec 20] .
op _[_/_] : Proc Obj Obj -> Proc [frozen prec 20] .

endfm

The module POLPA-DEFINITION (not shown here), fol-
lowing [19], defines process definitions and the operations to
work with them. In practice, a constant definition is defined,
through which the definition of the process identifiers of the
POLPA specifications is kept.

The module POLPA implements the operational semantics
of the language. The transitions are seen as rewrite rules. The
value {A}P of sort ActProcess indicates that process P has
performed action A.
mod POLPA is

pr POLPA-DEFINITION .
sort ActProcess . subsort Proc < ActProcess .
op {_}_ : Act ActProcess -> ActProcess [frozen] .
vars A B : Act . vars L M : Action . vars RO RO’ : Role .
vars S S’ : ActSet . vars Y Y’ : Subj . vars O O’ : Obj .
*** some other variables declaration....

*** Prefix
rl [pref] : A . P => {A}P .
*** Choice
crl [sum] : P or Q => {A}P’ if P => {A}P’ .
*** Composition (a la CSP)
crl P | S | Q => {A}(P’ | S | Q )

if P => {A}P’ /\ not (A incl S) .
crl P | S | Q => {A}(P | S | Q’ )

if Q => {A}Q’ /\ not (A incl S) .
crl P | S | Q => {A}(P’ | S | Q’)

if P => {A}P’ /\ Q => {A}Q’ /\ A incl S .
*** Predicate (go ahead if predicate == true)
crl PR @ P => P if eval(PR) .
*** Substitution (only two examples are shown)
---subject/object parameter in actions:
rl [rel] : ((L(Y,O)) . P) [Y’ / Y][O’ / O] =>

{L(Y’,O’)} P [Y’ / Y][O’ / O] .
---subject parameter in role predicates:
crl [rel] : ((AS(Y,RO)) @ P ) [Y’ / Y][O’ / O] =>

P[Y’ / Y][O’ / O] if eval(AS(Y’,RO)) .

*** reflexive, transitive closure
sort TProcess . subsort TProcess < ActProcess .
op !_ : Process -> TProcess [frozen] .
crl [refl] : ! P => {A}Q if P => {A}Q .
crl [tran] : ! P => {A}AP if P => {A}Q /\ ! Q => AP .

endm

We briefly comment the content of the POLPA module.
POLPA actions and predicates are parameterised. Some of
the variables declared at the beginning of the POLPA module
represent those parameters. The most general parameters one
may think of are the subject performing an action and the
target object of that action, e.g., action read can have as
parameters subject Bob and object Document1. Subjects may
be single individuals as well as organizations. Objects are the
data whose sharing is regulating by the DSA itself.

Other parameters specifically depend on the DSA one aims
at specifying. Generally speaking, they represent contextual
data such as time, locations, roles covered by subjects (e.g.,
Principal Investigator, Co-Investigator, Beam-line Scientist,
etc... ), and objects’ categories (e.g., numerical data, image
data, investigation metadata, etc... ).

The substitution rules shown above are specific for dealing
with actions parameterised by a subject and an object (the

105101



Let
α(~x)−→ be the smallest subset of P ×Act× P , closed under the following rules:

(prefix)
α(~x).P

α(~x)−→ P

(comp1)
P
α(~x)−→ P1

P |{Alfa}|Q α(~x)−→ P1|{Alfa}|Q
α(~x) /∈ Alfa

(subs1)
P
α(~x)−→ P1

P [fun]
α(fun(~x))−→ P1[fun]

(pred)
p(~x).P

τ−→ P
p(~x) = true

(comp2)
P
α(~x)−→ P1 Q

α(~x)−→ Q1

P |{Alfa}|Q α(~x)−→ P1|{Alfa}|Q1

α(~x) ∈ Alfa

(subs2)
(p(~x).P )[fun]

τ−→ P [fun]
p(fun(~x)) = true

(or) P
α(~x)−→ P1

P +Q
α(~x)−→ P1

(const)P
α(~x)−→ P1

Z
α(~x)−→ P1

Z
.
= P

Fig. 1. POLPA operational semantics rules

first substitution rule), and with predicates parameterised by,
e.g., subjects and their roles (the second substitution rule), and
objects and their categories (rule not shown). Operator incl
returns true if an action is included in a certain set. Appropriate
equations for all the operators are defined in the complete
specification.

As in [19], we consider only terms that are well-formed, i.e.,
that can be associated to a sort. Thus, rules cannot be applied
unless both the right hand side and the left hand side of the
rule are well-formed. The POLPA operators have been defined
as frozen since, when dealing with recursive processes, there
could be an infinite loop in the attempt to apply a rule, since,
for example, the built terms are not well formed. On the other
hand, one of our goals is to prove that a process can perform
a certain sequence of actions, i.e., a trace. Thus, we consider
an operator ! whenever we will ask if a process can perform a
certain trace. Instead, when we will just ask for the one-step
successor of a process, we will not use the ! operator. Once
defined the transitions semantics for the POLPA language, one
can implement, on top of it, the Hennessy-Milner modal logic
for describing capabilities of processes [21], [22]. This allows
us to prove in Maude if a POLPA process satisfies a logical
formula. Formulas are defined by the following grammar, over
some set of actions K:

Ψ ::= tt | ff | Ψ1 ∧Ψ2 | Ψ1 ∨Ψ2 | [K]Ψ | < K > Ψ

A formula: 1) is always true or always false; 2) can be the
conjunction and the disjunction of two formulas; 3) must
hold for all the K-derivatives of a process; 4) must hold for
some K-derivatives of a process. K-derivatives are the states
reachable by a process by performing actions in K.

These formulas will represent the logical specification of the
DSA properties. Some examples will be given in Section V.

Here, we do not show the modules implementing the
Hennessy-Milner logic over POLPA, since they are essentially
the same as the ones in [19]. We refer to that paper for the
detailed implementation of those modules.

Maude modules PREDICATE and PRED-EVAL define,
resp., 1) the collection of sorts for actions, predicates, param-
eters, etc... , and the equationally specifiable operators acting
on those sorts (and constants), and 2) ad-hoc defined truth
tables for predicates’ evaluation. We show some excerpts of
these modules.

fmod PREDICATE is
inc QID . inc QID .

--- here some sorts declaration
...

--- some roles declaration :
ops PrincipalInvestigator Coinvestigator : -> Role .
--- some data category declaration:
ops image investigation-metadata numerical : -> Typ .
--- some subjects and data declaration:
op Caroline : -> Subj . ops doc1 doc2 : -> Obj .
--- predicates terms:
ops has-role has-data-category has-embargo-end-date
current-time-is-before has-location-country : -> Assertion .
endfm

fmod PRED-EVAL is
inc PREDICATE . op eval : Pred -> Bool .
---some variables declaration
...
---example of predicates’ table of truth:
eq eval(has-role(Caroline,Coinvestigator)) = true .
eq eval(has-role(Stephen,PrincipalInvestigator)) = true .
eq eval(has-role(John,Coinvestigator)) = true .
...
eq eval(PR) = false [owise] .

endfm

V. A CASE STUDY: SENSITIVE DATA SHARING

Here, we consider the protection of sensitive scientific
research data across organisational boundaries.

Scientific and technologies councils in Europe and through-
out the world operates large facilities, e.g., x-ray, ultraviolet
light, neutron and muon sources used as large microscopes
to determine the structure of materials for biosciences and
physical sciences. Teams from universities and companies
come to these facilities to run experiments that produce data.
Also, many of the users of these facilities use more than
one, in order to exploit the differences between them, so
that they can gain as many data as possible. Furthermore,
scientists would like to access the data from remote sites,
e.g., to analyse them. The management of large data files,
the presence of many users, and the wide range of usage
applications, make necessary to make agreements between the
facility host organization and funding bodies, universities, and
companies, to provide them with data in accordance with all
the individual data policies. The set of data policies, which
can be applied to the data coming from one experiment, can
be both large and contradictory, and heavily influenced by
contextual factors like, e.g., user role, geographical location,
data category, and time.

We consider the following data policies, which represents
the Authorizations Section of a DSA, expressed in the En-
glish natural language. These policies have been provided by

106102



colleagues from the Science and Technology Facility Council
(STFC), our partner in the Consequence project.

1) Before the end of the embargo period, access to the ex-
perimental data is restricted to the principal investigator
and co-investigators.

2) After the embargo period, the experimental data may be
accessed by all users.

3) Beam-line scientists can access image data related to or
produced on their experimental station.

4) Access to numerical data should be denied to users
which country is subject to embargo regulations.

We are interested in answering to questions like:
• Action list: which are all the authorised actions in the

investigated DSA?
• Single authorization: is action read(x,y) authorised?
• Answer to specific authorization-related queries: is it true

that subject x is authorised to perform action z on object
y, under a set of contextual conditions?

• Look for temporal sequences of actions: is it true that,
after opening object y, subject x can read object y?

• Search for opposite actions: is it true that subject x
can read/write/print... object y and that, under the same
context, subject x cannot read/write/print...object y?

Maude makes possible to answer to those queries by means
of its built-in commands. By using command search, it is
possible either to find all the possible one-step successors of
a process, or all its possible successors, or to ask if there
is one (or more) way to rewrite a process into a certain
sequence of actions. Also, exploiting the implementation of
modal logic over the POLPA semantics, one can prove if a
modal formula, representing a certain query, is satisfied by
the Maude representation of the DSA POLPA specification.

In order to show some analysis examples, we consider an
initial configuration with three subjects, i.e., Caroline, Stephen,
and Eve, and two objects, i.e., doc1 and doc2. Note that
this configuration is completely arbitrary: aiming at describing
how the framework works, we fixed some constant values for
the subjects (and their roles and locations), for the objects
(and their categories), and we gave predefined tables of truth
relating, e.g., a subject value to a subject role value, an
object value to an object category value (see Maude modules
PREDICATE and PRED-EVAL in the previous section).

In particular, we assume that Stephen is a PrincipalInvesti-
gator and Caroline a Co-investigator, both coming from UK.
Also, Eve is a PrincipalInvestigator from Badland. Doc1 is
an image data, and doc2 is a numerical data (both image and
numerical data are experimental data). Finally, we assume that
we are in a period of time that is before the end of the embargo
period, that is set to 31/12/2010.

DSA authorization clauses are expressed by using variables
instead of constant values. The queries will fix the values of
the variables, being specific for some subjects and objects.

Excerpts of the Maude representation of the POLPA pro-
cess specifying the STFC DSA are shown in Figure 2. The
specification consists of eleven sub-processes, representing the

authorization clauses of the STFC DSA, plus their parallel
composition DSA (the last process definition). No synchro-
nization over a set of actions is required among the sub-
processes constituting the DSA (0 is the empty set of actions).

Textual queries Expected

Is it true that:
1) Stephen AND Caroline can read doc2? true
2) Eve can read doc2? false
3) after Caroline reads doc2 then Stephen can read doc1? true

TABLE I
EXAMPLE QUERIES FOR THE SENSITIVE DATA SHARING TEST BED

We will ask something about the subjects’ capabilities to
perform certain actions on the objects, given certain contextual
conditions. Table I shows an example list of queries and
the expected boolean result for each query. The queries are
given to the analyser in the Maude metalevel programming
representation, e.g., query 2 is represented as follows
red ’’DSA.Qid |= < ’_‘(_‘,_‘)[’’read.Action,

’Eve.Subj, ’doc2.Obj] > tt .

Figure 4 in the next section shows the screenshot of execut-
ing Maude over the DSA specification and this list of queries.

Note that, in the DSA specification, we consider only
some substitutions of values replacing variables. For example,
Statement 1 is evaluated by replacing X4 with Stephen, and
X0 with doc2. In the actual implementation, all the possible
substitutions of the variables with the values declared in the
configuration file are applied.

VI. IMPLEMENTATION

We choose to adopt the Web Service technology to publish
the functionalities of the analysis tool. We have considered
Maude as the rewrite engine for the analysis. An architecture
based on web services will allow us to easily adopt other
analysis tools, thus achieving as much modularity as possible.

Within the Consequence project, a general xsd schema has
been defined to include the DSA sections listed in the intro-
duction of this paper. In particular, Figure 3 shows an XML
instance of DSA according to the schema, highlighting the
Authorizations section (in particular, Statement 9 of the spec-
ification given in Figure 2). The DSA authorization clauses
are expressed in all the languages adopted in the definition
phase of the DSA lifecycle, i.e., English natural language,
CNL4DSA (used in the authoring phase), and POLPA (used
in the analysis phase).

The DSA Analysis framework comprises: 1) the WS-
Analyzer component, which functionalities are exposed
through a generic web service interface; 2) the internal analysis
tool, i.e., the Maude engine; 3) a graphical user interface (GUI)
that acts as a front-end for the WS-Analyzer. This GUI shows
the analysis results in a readable way.

A generic client application for the WS-Analyzer invokes
the analyze method to perform the analysis of the DSA.

107103



eq definition = ( ’Statement1 =def ((has-data-category(X0,numerical)) @ (has-embargo-end-date(X0,’31/12/2010)) @
(current-time-is-before(’31/12/2010)) @ (has-role(X4,PrincipalInvestigator)) @

(’read(X4,X0)) . stop) [Stephen / X4] [doc2 / X0] ) & ....
( ’Statement9 =def ((has-data-category(X0,numerical)) @ (not-has-location-country(X4,Badland)) @
(’read(X4,X0)) . stop) [Eve / X4] [doc2 / X0] ) & ....
( ’Statement11 =def ((has-data-category(X0,image)) @ (has-embargo-end-date(X0,’31/12/2010)) @
(current-time-is-after(’31/12/2010)) @ (has-role(X4,Any)) @ (’read(X4,X0)) . stop) [Stephen / X4] [doc1 / X0] ) &
(’DSA =def (’Statement1 | 0 | (’Statement2 | 0 | (’Statement3 | 0 ...... ) .

Fig. 2. Excerpts of STFC DSA specification

Fig. 3. Instance of DSA with the Authorizations section highlighted

Fig. 4. GUI and Maude computation screenshot

This method takes as input: 1) the DSA’s identifier; 2) the
XML representation of the DSA, containing also the POLPA
specification of the agreement; and 3) a set of queries.

The GUI behaves as a client for the Analyzer and allows
the user to load a specific DSA to be analysed. The analysis is
executed through a set of system calls directed to the Maude
tool installed on the system and fully wrapped into the web
service. The output from Maude is opportunely formatted and
returns back to the client. The GUI has been designed in order
to make the analysis result understandable for a human reader.
Figure 4 shows the graphical interface with the textual queries,
which related logical formulas are being checked by Maude.
The two leftmost columns show, respectively, the expected
results and the real results of the analysis. If the real results
match the expected results, then the analysis is a success,
otherwise, a failure. The results of the Maude computation
are also shown in the figure.

VII. CONCLUSIONS AND FUTURE WORK

We focused on the development of an executable specifi-
cation of a process algebra in Maude, to exploit its built-in
capabilities for the analysis of DSA authorizations clauses.
Our work aims at identifying inconsistencies and possible
conflicts among the clauses before their actual enforcement.
We presented a Web Service implementation that publish the
functionalities of the analysis tool. This approach facilitates
the usage of other background analysis engines.

We are currently developing a DSA infrastructure in which
the DSA back-end analysis engine is interfaced with a user-
friendly DSA authoring tool, which will enable end-users to
easily write authorizations clauses in a controlled natural lan-
guage, and to see possible conflicts detected by the analysers.

ACKNOWLEDGMENTS

The fourth author would like to thank Alberto Verdejo for
his support and help in encoding process algebras into Maude.

REFERENCES

[1] Deliverable D2.1, “Methodologies and tools for data
sharing agreements infrastructure,” http://www.consequence-
project.eu/Deliverables Y1/D2.1.pdf, 2008.

[2] I. Matteucci, M. Petrocchi, and M. L. Sbodio, “CNL4DSA: a controlled
natural language for data sharing agreements,” in SAC. ACM, 2010.

[3] “EU Project Consequence,” http://www.consequence-project.eu/.
[4] F. Martinelli and P. Mori, “A model for usage control in grid systems,”

in GRID-STP, 2007.
[5] M. Clavel et al., Eds., All About Maude - How to Specify, Program and

Verify Systems in Rewriting Logic. Springer, LNCS 4350, 2007.
[6] C. Brodie et al., “The coalition policy management portal for policy

authoring, verification, and deployment,” in POLICY, 2008.
[7] K. Kaljurand, “Attempto Controlled English as a Semantic Web Lan-

guage,” Ph.D. dissertation, Tartu Univ., 2007.
[8] E. Scalavino, V. Gowadia, and E. C. Lupu, “Paes: Policy-based authority

evaluation scheme,” in DBSec, 2009, pp. 268–282.
[9] V. Swarup et al., “A data sharing agreement framework,” in ICISS, 2006.

[10] M. Abadi, “Logic in access control,” in LICS. IEEE, 2003, p. 228.
[11] “Event-B and the Rodin Platform,” www.event-b.org.
[12] J. Bicarregui et al., “Towards modelling obligations in Event-B,” in ABZ,

2008, pp. 181–194.
[13] R. Craven et al., “Expressive policy analysis with enhanced system

dynamicity,” in ASIACCS, 2009.
[14] http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml,

Last access May 17, 2010.
[15] “Usage guide,” http://www.w3.org/TR/2007/NOTE-sawsdl-guide-

20070828/, Last access May 17, 2010.
[16] R. De Nicola, G. L. Ferrari, and R. Pugliese, “Programming access

control: The klaim experience,” in CONCUR, 2000, pp. 48–65.
[17] B. Aziz et al., “Controlling usage in business process workflows through

fine-grained security policies,” in TrustBus, LNCS 5185. Springer, 2008.
[18] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,

vol. 21, no. 8, pp. 666–677, 1978.
[19] A. Verdejo and N. M. i-Oliet, “Implementing CCS in Maude 2,” ENTCS

71, 2002.
[20] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[21] M. Hennessy and R. Milner, “On observing nondeterminism and con-

currency,” in ICALP, 1980, pp. 299–309.
[22] C. Stirling, “Modal and temporal logics for processes,” in Logics for

concurrency: structure versus automata. Springer, 1996, pp. 149–237.

108104


