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ABSTRACT
In opportunistic networks data dissemination is an impor-
tant, although not widely explored, topic. Since oppor-
tunistic networks topologies are very challenged and un-
stable, data-centric approaches are an interesting direction
to pursue. Data should be proactively and cooperatively
disseminated from sources towards possibly interested re-
ceivers, as sources and receivers might not be aware of each
other, and never get in touch directly. In this paper we con-
sider a utility-based cooperative data dissemination system
in which the utility of data is defined based on the social
relationships between users. Specifically, we study the per-
formance of this system through an analytical model. Our
model allows us to completely characterise the data dissem-
ination process, as it describes both its stationary and tran-
sient regimes. After validating the model, we study the sys-
tem’s behaviour with respect to key parameters such as the
definition of the data utility function, the initial data allo-
cation on nodes, the number of users in the system, and the
data popularity.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Performance
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Opportunistic networks [8] are challenged mobile (multi-
hop) ad hoc networks characterised by prolonged discon-
nections, partitions, unpredictable and unstable topologies.
With respect to the legacy MANET paradigm, all these fea-
tures are seen as properties of the network, instead of ex-
ceptions to cope with. This results in a paradigm shift for
the design of network services. Continuous multi-hop paths
may seldom be available between communicating end points.
Network protocols should be opportunistic, in the sense that
they should opportunistically exploit any contact1 between
nodes to bring data closer to possibly interested users. Users
mobility should be exploited to bridge partitions and move
data. Therefore, knowledge about the social behaviour of
users is a key piece of information, as it complements the
unreliable knowledge about the network topology. As nodes
might never be aware of each other, data-centric networking
is an interesting direction to explore, besides conventional
topology-centric networking.

It is clear that in such an environment data-dissemination
systems are very useful. According to a data-centric paradigm,
such services move (replicate, distribute) data objects, such
as MP3 files, advertisements, . . . , within the network, trying
to understand the regions where there are interested users.
Clearly, as opportunistic networks are formed by resource-
limited mobile devices, data dissemination should also be
aware of resource consumption (e.g., memory, buffer, en-
ergy), and trade performance for resource usage.

As we discuss in Section 1.1, traditional schemes for data
dissemination in mobile networks assume rather stable or
predictable network topologies, and are thus unsuitable for
opportunistic networks. In this paper we consider a utility-
based data-dissemination scheme proposed in [3]2, and char-
acterise its performance through an analytical model. This
data dissemination scheme (summarised in Section 2) adopts
a utility-based approach. The main idea is that nodes gather
other users’ interests (i.e., the type of data objects they are
interested into) during contacts, and estimate the availabil-
ity of these data objects in the network. They use this in-
formation to compute utility values for data objects they
“see” (i.e., objects that are available on encountered nodes),
and to decide what to fetch and store locally. This deci-
sion is also based on the cost of the data objects in terms of
resource consumption.

The main goal of the model we present in Section 3 is

1By contact we mean a one-hop communication opportunity.
2The work in [3] is also available online as a Tech-
nical Report, at http://bruno1.iit.cnr.it/~chiara/
dataDisseminationTR.pdf.



understanding if the data-dissemination system reaches sta-
tionary regimes, and to characterise their properties. We
propose a Markovian model of the data distribution process
resulting from our dissemination system. The main result
of our analysis (derived in Section 3.4) is that the data dis-
tribution process always converges to one of two possible
stationary regimes. Either nodes store only data objects
they are interested into, or oscillate between storing only
data objects they are interested into and data objects other
users are interested into. The analysis also characterises the
transient behaviour of the system, and thus permits to com-
pute the probabilities of reaching either stationary regimes
starting from arbitrary initial conditions. As discussed in
Section 3.1, this characterisation is the building block to
study typical performance figures such as hit rate, fairness,
network overhead.

Finally, we validate the model through simulations, and
use it to study the data distribution process with respect to
several parameters, such as the definition of the data utility
function, the initial data objects’ allocation, the number of
users in the system, and the data objects’ popularity. This
analysis allows us to achieve deep insights into the system’s
behaviour, and permits fine control on its evolution. For ex-
ample, it permits to design the data utility function in order
to achieve the desired stationary regime, also in relation with
the expected number of users of the system and the popu-
larity of the data objects. The results we show allow us to
also understand which initial distribution of data objects on
nodes is preferred to achieve a desired stationary regime, or,
if the initial distribution cannot be controlled, how to set the
other system’s parameters to control the system’s evolution.

1.1 Related work
Utility-based approaches to data distribution have been

studied for legacy Internet environments [1], as well as for
single-hop mobile environments [9]. This body of work is the
main inspiration for our utility based framework. However,
these solutions are not directly applicable to opportunistic
networks. Indeed, they propose non-cooperative solutions,
designed either for wired Internet or single-hop wireless en-
vironments, in which proactive dissemination of data ob-
jects is not necessary. Similarly, strategies for conventional
MANETs [10] are not applicable, as they build upon the as-
sumption of connected topologies with rather stable paths.

Distributed systems based on gossiping [4] are also related
to our system. Indeed, most of the networking systems for
opportunistic networks can be seen as gossiping schemes.
Specifically, in our system the choice of which data objects
to fetch from encountered nodes can be seen as a gossiping
operation. The main novelty of our system is using context
information describing users’ social relationships to choose
the set of nodes where to replicate data objects, instead of
simple probabilistic policies.

Recently, data dissemination for opportunistic networks
has been targeted in the PodNet project [7]. With respect to
PodNet, our system provides a general utility-based frame-
work, while the work in [7] proposes heuristics for data dis-
semination services. A utility-based system is also proposed
in [2], which, however, considers routing protocols instead
of data dissemination services. This makes the definition
of utility functions and the related analysis of the system
totally different. Furthermore, our system is completely
structure-less, and thus differentiates itself from data dis-

semination schemes requiring some level of knowledge about
the network structure, such as multicast trees [12], or broker
overlay networks [11].

Finally, this paper differentiates from our previous work
in [3], as in that paper we provide full specification of the
data dissemination algorithms and a preliminary simulation
evaluation, while here we develop an analytical model char-
acterising the transient and stationary regimes of the data
dissemination process.

2. OVERVIEW OF THE DATA DISSEMINA-
TION SYSTEM

In this section we firstly describe our reference applica-
tion scenario. Then, we summarise the utility-based data
dissemination system we use to support it.

2.1 Application scenario for data dissemina-
tion in opportunistic networks

The application scenario we target is similar to the one
used in PodNet [7], named“podcasting for ad hoc networks”.
As in the typical opportunistic networking paradigm, we
consider a number of mobile users whose devices cannot be
encompassed by a conventional MANET. Instead, communi-
cation is achieved by opportunistically exploiting pair-wise
contacts between users to exchange messages, and bring-
ing them towards eventual destinations. Sporadic contacts
of users with point of access to the Internet (e.g., WiFi
hotspots) are possible although not necessary. In podcasting
applications, data objects (e.g., MP3 files, advertisements,
software updates, . . . ) are organised in different channels to
which users can subscribe. We assume that the channel(s)
of a data object is decided by the source of the object at
the generation time. Data objects might be generated from
within the Internet, and “enter” the opportunistic network
upon sporadic contacts of users with Internet Access Points.
Or, data objects may be generated dynamically by the users
of the opportunistic network according to the Web 2.0 model
(e.g., users may wish to share pictures taken with their mo-
bile phones). The data dissemination system summarised in
Section 2.2 is responsible for managing subscriptions, and
bringing data objects to subscribed users.

2.2 Utility-based data dissemination system
As discussed in Section 1.1, the network we consider does

not permit to exploit structures such as multicast trees (as
in [12]) or broker-based publish/subscribe overlays [11]. In-
stead, our data dissemination paradigm follows a gossiping-
like approach.

Every data dissemination system must specify mechanisms
for managing subscriptions and delivering data to subscribed
users. As far as the former aspect, as will be clear in the
following, our framework just requires that each node ad-
vertises the channels its user is subscribed to upon making
contact with any other node. The framework does not need
per-user subscription state, and thus unsubcriptions are not
required.

Implementing data delivery requires several mechanisms,
as follows. First of all, we assume that nodes that generate
data objects persistently store them locally, so that, even
if not replicated at all, they never disappear from the net-
work. If data objects are generated in the Internet, they are
stored at the Access Points that provide Internet access to
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Figure 1: Example of replication.

the opportunistic network. In addition to that, nodes con-
tribute a limited-size shared buffer (hereafter called cache)
for data dissemination purposes. Following a gossiping-like
approach, whenever two nodes make contact (i.e., “meet”)
they decide which data objects to fetch from the peer’s
cache, if any, and store fetched objects in the local cache.
As will be clear in the following, this may result in replacing
data objects stored locally. Note that, as decisions of the
two peers are independent of each other, the objects fetched
by one peer are not, in general, evicted from the other peer’s
cache, and are thus replicated. The policy used to select the
data objects to fetch is hereafter referred to as replication

policy, and is the core of our system. Users receive data
objects of channels they are subscribed to when they meet
another user storing such data objects in their cache.

As in the majority of gossiping protocols, the main chal-
lenge of our system is defining a replication policy that
does not rely on precise global knowledge about the network
state, but that nevertheless achieves a global performance
target. Our framework can be customised towards max-
imising the hit rate, the per-user fairness, or minimise the
network overhead, for example. Our system uses a utility-
based framework to define the replication policy. When a
node meets a peer, it computes the utility of each data ob-
ject either stored locally or on the peer’s cache, and identifies
the set of data objects that can be stored in its cache (i.e.,
fit in the cache’s size) and maximise the total utility of the
cache. Figure 1 shows a trivial example in which the caches
of nodes A and B can store just one data object. The utility
of the object carried by B is the highest one for both nodes,
thus node A replaces the object it is currently storing with
the object available in B’s cache (note that the utility of the
same data object computed on different nodes can be differ-
ent). More in general, the utility-based framework permits
to consider several resource constraints at the same time
(besides the cache size) such as, for example, the energy
and bandwidth available for the data dissemination oper-
ations. According to the framework, upon a contact, each
node solves a multi-constrained knapsack problem (MKP) to
identify the optimal set of data objects that do not violate
any constraint, and fetches those objects in the set that are
on the peer’s cache. Formally, the MKP has the following
form:

8

<

:

max
P

k
Ukxk

s.t.
P

k
cjkxk ≤ 1 j = 1, . . . , m

xk ∈ {0, 1} ∀k
, (1)

where k denotes the k-th object that the node could select
(either stored locally or on the peer’s cache), Uk its utility,
cjk the consumption of resource j related to fetching and
storing object k, normalised to the maximum allowed con-
sumption of that resource (i.e., 0 ≤ cjk ≤ 1 holds true), m
the number of constrained resources, and xk ∈ {0, 1} the
MKP’s variables. As long as the number of resources (m)
is not too high (which is quite reasonable), the solution of
the above MKP can be well approximated by fast on-line

algorithms [5], making the framework suitable for mobile
environments also from a computational standpoint.

The ability of such a data-dissemination system to achieve
the global performance target depends on the definition of
the function used to compute utility values. In our frame-
work we define the utility function inspired by the litera-
ture on utility-based Web caching [1], which has been also
exploited to define caching policies in infrastructure-based
single-hop wireless systems [9]. The typical form of the util-
ity function is the product of the access probability to the
data object (pac) by a measure of the retrieval cost (c), nor-
malised by the object’s size (s). The rationale of this defini-
tion is that the utility of an object should be high if it is very
popular and costly to be retrieved. Normalising by the size
is usually just a way to have a simple, but accurate, approx-
imate solution of the resulting knapsack problem. In our
framework we use exactly the same kind of utility function,
by defining the cost c as a strictly monotonically decreasing
function (denoted as fc()) of the object’s availability in the
network (hereafter referred to as pav). Specifically, pav is
defined as the probability of finding the object in the cache
of any node. Clearly, the higher pav, the lower the cost to
retrieve the object, the lesser its value. Different types of
functions can be used for fc(). For example, in [3] we have
considered an exponential function e−λpav , λ > 0.

In the Web caching literature, pac and c are computed
with respect to the set of Web users accessing the cache.
In our opportunistic networking scenario, the users of any
node cache are i) the local user, and ii) the users of the
other encountered nodes. The general form of the utility
function takes this into consideration by defining multiple
components, one for the local user and one for any social
community the local user is in contact with. In this paper,
we consider a simplified, yet significant, definition, by which
the utility function is made up of two components only, one
related to the local user (u(l)), the other (the social compo-

nent, u(s)) aggregating the utility for all the other users:

U = u(l) + u(s) = p(l)
ac fc(p

(l)
av) + p(s)

ac fc(p
(s)
av ). (2)

In Equation 2: i) p
(l)
ac represents the probability that the local

user is interested into the data object; ii) p
(s)
ac represents the

probability that any encountered node is interested into the

data object; iii) p
(l)
av represents the probability that the local

node “sees” the data object in the caches of any encountered

node; and iv) p
(s)
av represents the average probability (over

encountered nodes), that those nodes“see”the data object in
the caches of any node they encounter. Note that, according
to this utility function, nodes do not necessarily store data
objects the local user is interested into. As will be clear in
the following, this might happen if such data objects are so
spread in the network that it is extremely easy to find them
on encountered nodes’ caches. In this case, it is more useful

to store less spread data objects, because this improves the
overall utility of the system.

In our system, nodes do not need any global knowledge to
estimate the pac and pav parameters. Specifically, each node
must only advertise, upon each contact, the set of channels
the local user is subscribed to, and an index of the current
content of the cache. As described in detail in [3], this in-
formation is sufficient to estimate pac and pav related to
both the local user (local component of U), and the other
encountered users (social component of U).



Finally, we highlight two modifications of the above gen-
eral framework introduced in [3] to reduce the per-node state
associated with the data dissemination operations. Firstly,
we assume that a user subscribed to a channel is interested
into all the data objects of the channel. Therefore, the pac

indexes (both local and social) of Equation 2, computed by a
given node, are the same for all the data objects of the same
channel. Secondly, the availability indexes are aggregated
over all objects of the same channel. pav thus represents
the probability of finding data objects of a given channel on

any node’s cache, for the local user (p
(l)
av), or the encountered

users (p
(s)
av ). From these assumptions it follows that the util-

ity of all the data objects of the same channel, computed by
a given nod, is the same, i.e., the terms Uk in Equation 1
computed by a particular node are the same for all the data
objects of the same channel. Thus, in the following, we talk
about channel utility. Although these modifications result in
approximate indices for the access probability and availabil-
ity of individual data objects, this does not severely impact
on the performance of our system, as shown in [3].

A side effect of these modifications (confirmed by simula-
tion results in [3]) is the fact that nodes tend to store data
objects of the most useful channel only, because, as soon as
it becomes the most useful, nodes fetch data objects of that
channel which replace objects of any other channel. We will
exploit this property in Section 3.2.

3. ANALYSIS OF UTILITY-BASED DATA DIS-
SEMINATION

3.1 Analysis target and results preview
The goal of the model we present hereafter is studying

the process of distribution of data objects in the network
when our data dissemination system is used. Specifically,
we want to understand if the process reaches a stationary
regime, and characterise its properties. This allows us to de-
scribe how data objects distribute on nodes in the stationary
regime, and is therefore the key building block to determine
the performance of the system with respect to a number of
figures, such as the hit rate, the fairness, the network over-
head, etc. Under the assumptions discussed in Section 3.2,
it is sufficient to use a Markovian representation of the data
distribution process, that describes how many nodes store
data objects of any particular channel during the process
evolution.

Clearly, the process evolution depends on the utility func-
tion. Therefore, in Section 3.3 we analyse its behaviour,
depending on the status of the Markov chain. This is the
basis for the core of our analysis, presented in Section 3.4,
and specifically for Theorem 1, which is the main analytical
result. Theorem 1 states that the data distribution pro-
cess always reaches one among two alternative stationary
regimes (corresponding to two stationary distributions of the
Markov chain). In one of the regimes, each node stores only
the data objects it is interested into (which corresponds to a
greedy behaviour). In the other regime, each node oscillates
between storing only data objects it is interested into, and
storing only data objects it is not interested into. The Theo-
rem also provides the conditions under which either configu-
ration is reached, starting from arbitrary initial conditions.
Thus, our analysis is also able to completely describe the
transient regime of the process and, therefore, completely

characterises the data dissemination process. These results
are derived for generic utility functions in the form of Equa-
tion 2. We complete the analysis in Section 3.5, by special-
ising the results of Theorem 1 to the case of utilities with
exponential and linear cost functions.

Theorem 1 has several implications. First of all, it permits
to achieve full control on the evolution of the data dissemina-
tion system. Since it provides the parameters’ values under
which either stationary regime is reached, it enables tuning
the system to reach any feasible target behaviour. Further-
more, it provides additional insights with respect to simu-
lation results presented in [3], for example on the difference
between pure greedy and cooperative (social) utility func-
tions. In that paper we have shown that a social-oriented
utility function achieves higher per-user fairness (in terms
of hit rate) with respect to a greedy policy, at the cost of
slightly increased traffic overhead. The reason of this lies
in the fact that the social-oriented policy function can lead
the system into the oscillating stationary regime (while the
greedy policy does not). By making nodes alternatively stor-
ing data objects they are interested to and they are not, the
system increases the availability of all data objects, thus im-
proving fairness. On the other hand, the oscillations are also
the reason of the additional traffic overhead.

3.2 Assumptions and Markov representation
We assume that time is slotted, and nodes compute util-

ities at the beginning of each time slot. Within one time
slot, each node fills its cache (by exchanging data objects
with encountered peers) with data objects of the channel
identified as the most useful at the beginning of the slot.
Based on the last property discussed in Section 2.2, we as-
sume that, at any point in time, each node stores only data
objects of the channel it considers as the most useful one
(this assumption is backed up by simulation results in [3]).
Finally, we assume that the mobility model is uniform (i.e.,
all nodes move according to the same statistical process),
that the size of data objects is the same, and the size of
the caches is the same across all nodes. Under these as-
sumptions, we can model the evolution of the data distribu-
tion process with a Markov chain whose status is the vector
n = (n1, . . . , nC), where C is the number of channels, and ni

the number of nodes considering channel i as the most useful
(and thus storing data objects of channel i). This Markov
chain completely describes the data distribution process in
the network. Specifically, since the chain is finite, stationary
distributions always exist. Note that the stationary distri-
bution of n is the key building block, as far as the data
dissemination system is concerned, for performance indices
such as the hit rate, fairness, etc. Also note that, as it fo-
cuses on the figure n, the model does not depend on the
nodes’ cache size, and is valid for any cache size as long
as each node can find enough data objects of the channel
identified as the most useful to fill its cache.

In general, this Markovian model is rather complex to de-
scribe and solve due to the number of possible states, and
the form of the transition probabilities. It is possible to sim-
plify the analysis, by assuming that all the nodes have an
exact view of the utility function’s parameters pac and pav

(both for the local and for the social components). Note
that this does not necessarily require global knowledge, but
that each node estimates these parameters after meeting a
set of peers whose caches and interests correctly reproduce



the current status of the network. The exact achievement
of this condition might not be granted in practice, and its
approximation heavily depends on the underlying mobility
process. In the following, we assume a mobility model that
meets this requirement. Generalising our model to any mo-
bility model is the main subject of future work.

Under these assumptions, we are able to completely de-
scribe both the transient and the stationary regimes of the
process. Hereafter, we present the analysis in the case of 2
channels. The same methodology permits to deal with more
general cases, as well. However, we consider the special case
of 2 channels as the analysis is quite simple, and the results
are intuitive. Even this rather simple case shows the deep
level of understanding about the system’s behaviour that
can be achieved, and motivates us to use this modelling ap-
proach to more complex cases.

3.3 Analysis of the utility function
The state transitions of the Markov chain are clearly de-

termined by the values of the utility function. Under our
assumptions, the function’s parameters used by each node
can be described as follows. For the sake of explanation, let
us focus on a user subscribed to channel j, and let us eval-
uate its utility parameters with respect to channel i. The

local access probability to is p
(l)
ac = 1{j}(i) where 1{·}(·) is

the standard indicator function. The social access probabil-
ity is the probability of meeting a node subscribed to channel
i. Under our assumptions, this is the probability that any
given node subscribes to channel i (throughout referred to
as zi)

3. Since we assume that nodes can compute exact pav

parameters, p
(l)
av and p

(s)
av are both equal to ni/M , where M

is the number of nodes in the system. Therefore, the utility
of channel i computed by any node subscribed to j is

Uij = (1{j}(i) + zi) · fc

“ ni

M

”

. (3)

The properties of the Markov chain can be analysed by
exploiting the fundamental observation that all nodes sub-
scribed to j store data objects of channel ı̂ such that:

ı̂ = arg max
i

{Uij} . (4)

In the 2-channel case, if we assume that users subscribe to
a single channel only, nodes subscribed to channel 1 store
channel 1 iff U11 = (1 + z1)fc(n1/M) ≥ U21 = z2fc(n2/M),
while nodes subscribed to channel 2 store channel 2 iff U22 =
(1 + z2)fc(n2/M) ≥ U12 = z1fc(n1/M). Based on this ob-
servation, we can identify 3 regions, depending on the value
taken by n1, as in Figure 2. The boundaries of these re-
gions (besides the trivial values 0 and M), are defined by
the points where U11 is equal to U21 (point H+

1 in Figure 2),
and where U22 is equal to U12 (point H−

1 in Figure 2). For
values n1 < H−

1 channel 1 is so poorly distributed, that all

nodes consider it as the most useful one, and thus store it.
For values n1 > H+

1 channel 1 is so widely distributed that
no node considers it as the most useful, and thus no one
stores it. Between H−

1 and H+
1 nodes subscribed to chan-

nel 1 store channel 1, and nodes subscribed to channel 2
store channel 2. Note that, the same line of reasoning holds
also with respect to n2. Specifically, it can be shown that
H+

2 = M − H−
1 and H−

2 = M − H+
1 .

3Note that we are assuming that the probability distribution
of subscribing to channels is the same for all nodes.

n1
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>U12 U22

>U11 U21

<U12 U22

<U11 U21

<U12 U22

H1
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H10 M

U

Figure 2: Utility regions.

The type and parameters of the cost function fc() play a
fundamental role with respect to these three regions: they
determine the values of H−

1 and H+
1 , and thus, the form of

the regions. We are in the position of showing that, in turns,
the shape of the regions fully determines the transient and

stationary regimes of the Markov chain. This is shown in
the following section (3.4) with respect to strictly monoton-
ically decreasing cost functions fc(). Note that the following
derivations assume that fc() is such that H+

1 ≥ H−
1 holds

true. Similar results can be obtained also in the complemen-
tary case (not shown here for the sake of space).

3.4 Analysis of the data dissemination process
with generic cost functions

The core of our analysis is the result in Theorem 1, which
provides the possible stationary regimes of the distribution
process, as well as the conditions under which each regime
is reached. Note that we express the conditions with respect
to H−

1 and H+
1 . It is trivial to express the same conditions

in terms of H−
2 and H+

2 .

Theorem 1. The utility-based data dissemination process

converges to one of the following configurations:

• nodes store the data objects of the channel they are

subscribed to iff H+
1 ≥ M or H−

1 ≤ 0;

• nodes either store data objects of the channel they are

subscribed to, or oscillate between synchronously stor-

ing data objects of channel 1 and data objects of chan-

nel 2, iff 0 < H−
1 ≤ Mz1 and Mz1 ≤ H+

1 < M ;

• nodes oscillate between synchronously storing data ob-

jects of channel 1 and channel 2 iff H−
1 > Mz1 or

H+
1 < Mz1.

As anticipated in Section 3.1, Theorem 1 states that the
data dissemination process always reaches one of two possi-
ble stationary regimes. The first one corresponds to a greedy
behaviour, in which nodes store only data objects of the
channel they are subscribed to. The second one is an oscil-
lating regime, in which either all nodes store data objects
of channel 1, or store data objects of channel 2. Note that,
as data objects are always available at nodes that gener-
ate them in the first place (or at Access Points), they never
completely disappear from the network. Theorem 1 also
provides the parameters’ ranges for which just one of these
regimes can be reached, or both are feasible. As we will
show in Section 3.4.1 (Lemma 4), this immediately permits
to identify the set of initial conditions leading to each regime.
Therefore, Theorem 1 describes both the stationary and the
transient regimes of the data distribution process, thus pro-
viding its full characterisation.

The proof of Theorem 1 follows immediately from the fol-
lowing Lemmas. See Appendix A for the proofs of the Lem-
mas.



Lemma 1. In the Markov chain represented by n = (n1, n2)
the state (Mz1, Mz2) is absorbing, and all the other states

are transient iff H+
1 ≥ M or H−

1 ≤ 0.

Lemma 2. In the Markov chain represented by n = (n1, n2)
the state (Mz1, Mz2) is absorbing, the class {(0, M), (M, 0)}
is recurrent and periodic with period 2, and all the other

states are transient iff 0 < H−
1 ≤ Mz1 and Mz1 ≤ H+

1 <
M .

Lemma 3. In the Markov chain represented by n = (n1, n2)
the class {(0, M), (M, 0)} is recurrent and periodic with pe-

riod 2, and all the other states are transient iff H−
1 > Mz1

or H+
1 < Mz1.

3.4.1 Probability of reaching the absorbing state and
the recurrent class

Theorem 1 identifies one recurrent periodic class and one
absorbing state. Trivially, when only the absorbing state
or the unique periodic recurrent class is feasible, that is
reached with probability 1. However, under the conditions
of Lemma 2, both the absorbing state (Mz1, Mz2) and the
recurrent class {(0, M), (M, 0)} are feasible. In this case it
is useful to compute the probability of reaching either, as a
function of the initial allocation of data objects in the net-
work. This is the final step to characterise also the transient
regime of the process.

To this end, the following lemma describes the evolution
of the Markov chain from any possible initial state (see Ap-
pendix A for the proof).

Lemma 4. Under the conditions of Lemma 2, the absorb-

ing state (Mz1, Mz2) is reached in at most one step from

any initial state (n0
1, n

0
2) such that H−

1 ≤ n0
1 ≤ H+

1 . The pe-

riodic recurrent class {(0, M), (M, 0)} is reached in at most

one step from all the other initial states.

Based on Lemma 4, the probability of reaching the ab-
sorbing state (Mz1, Mz2) is the probability that the num-
ber of nodes choosing channel 1 as the most useful at the
system’s start up lies within [H−

1 , H+
1 ]. We assume that, at

the system’s startup, each node independently selects chan-
nel 1 with probability p1, and channel 2 with probability
p2 = 1 − p1 (according to the previous hypotheses, we also
assume that each node immediately stores data objects of
the channel selected as the most useful). Therefore, n0

1 is a
random variable with binomial distribution. Thus, the prob-
ability of reaching the absorbing state (Mz1, Mz2) is equal
to:

Pabs =

bH
+

1
c

X

k=dH
−

1
e

 

M

k

!

pk
1(1 − p1)

M−k, (5)

and the probability of reaching the periodic recurrent class
{(0, M), (M, 0)} is 1 − Pabs.

Clearly, Pabs is a key performance parameter, as it indi-
cates the probability that the system oscillates or does not
oscillate in the stationary regime.

3.5 Results for specific cost functions
When fc() is precisely instantiated, the conditions of The-

orem 1 translate into conditions on the cost function pa-
rameters. Hereafter we explicitly derive these conditions
for exponential and linear cost functions, that are the types

of functions that we consider in the performance analysis.
These are two of the simplest functions that meet the gen-
eral requirements of fc(). The proofs follow from basic alge-
braic manipulations from the utility definition (Equation 3),
the conditions defining H−

1 and H+
1 , and the conditions of

Theorem 1 (see Appendix A for the details).

Corollary 1. When fc(ni) = e−λ
ni

M then:

• H−
1 = M

2

“

1 − 1
λ

ln 1+z2

z1

”

;

• H+
1 = M

2

“

1 + 1
λ

ln 1+z1

z2

”

.

Furthermore, the data dissemination process converges to

one of the following stationary regimes:

• nodes store data objects of the channel they are sub-

scribed to iff λ ≤ max
n

ln 1+z1

z2
, ln 1+z2

z1

o

;

• nodes either store data objects of the channel they are

subscribed to, or oscillate between synchronously stor-

ing data objects of channel 1 and data objects of chan-

nel 2, iff max
n

ln 1+z1

z2
, ln 1+z2

z1

o

< λ ≤ max



ln
1+z1

z2

2z1−1
,

ln
1+z2

z1

2z2−1

ff

• nodes oscillate between synchronously storing data ob-

jects of channel 1 and data objects of channel 2 iff

λ > max



ln
1+z1

z2

2z1−1
,

ln
1+z2

z1

2z2−1

ff

.

Corollary 2. When fc(ni) = 1 − λni

M
then:

• H−
1 = M

2

`

1 − 2−λ
λ

z2

´

;

• H+
1 = M

2

`

1 + 2−λ
λ

z1

´

.

Furthermore, the data dissemination process converges to

one of the following stationary regimes:

• nodes store data objects of the channel they are sub-

scribed to iff λ ≤ 2 max{z1,z2}
1+max{z1,z2}

;

• nodes either store data objects of the channel they are

subscribed to, or oscillate between synchronously stor-

ing data objects of channel 1 and data objects of chan-

nel 2, iff
2 max{z1,z2}
1+max{z1,z2}

< λ ≤ 2 max{z1,z2}
3 max{z1,z2}−1

• nodes oscillate between synchronously storing data ob-

jects of channel 1 and data objects of channel 2 iff

λ > 2 max{z1,z2}
3 max{z1,z2}−1

.

4. PERFORMANCE EVALUATION
The main focus of our evaluation is studying the impact of

the key system and environment parameters on the resulting
stationary regime. This is indeed the main focus for tuning
data dissemination system at design time. Therefore, we
investigate the behaviour of Pabs, defined in Equation 5,
and the transition points between the different regions in
which different stationary regimes can be achieved, derived
in Corollaries 1 and 2.

First of all, we validate our analytical model through sim-
ulations, and investigate the impact of different initial data
objects allocations (Section 4.1). As the model shows to be
accurate, we perform a sensitiveness analysis of Pabs with
respect to two key system’s parameters, i.e., the number of
users and the popularity of the channels (Sections 4.2 and
4.3, respectively).
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4.1 Model validation
In this section we validate the analytical expressions of

Pabs (Equation 5) and of the transition points in Corollary 1
and 2, i.e., the points in which the type of stationary regime
changes. We consider different distributions for the initial
allocation of data objects at the system startup. We also
consider both exponential and linear cost functions.

We use a custom simulator written in C++. The simula-
tor shares the model’s assumption about the fact that nodes
can exactly estimate the parameters of the utility function.
The simulator also assumes that nodes can find enough data
objects to fill their caches upon selecting the most useful
channel. Note that these assumptions make the simulation
model independent of the users’ mobility process, provided
it meets the requirements set in Section 3.2. The simulator
parameters are thus the number of nodes M , the popular-
ity of channels (z1, z2), the type of cost function fc() (and
its parameter λ), the initial data allocation distribution (p1

and p2 being the probability of each node to store data ob-
jects of channel 1 or 2 at the system’s startup, respectively).
We have explored three different distributions, i.e., uniform
(p1 = p2 = 0.5), zipf with parameter 1 (p1 = 2/3, p2 = 1/3),
“inverse” zipf with parameter 1 (p1 = 1/3, p2 = 2/3). Note
that we have always set the channel popularity distribution
(z1, z2) according to a zipf law with parameter 1. The ex-
periments with initial zipf data allocation model a system in
which the initial allocation of data objects follows the same
distribution of users’ interests. The experiments with the in-
verse zipf initial data allocation model a system in which the
initial allocation of data objects follows an “opposite” distri-
bution with respect to users’ interests (i.e., the data objects
that are most interesting for users are the least spread and
vice versa). For all the initial data allocation distributions,
we have varied the cost function parameter λ so as to explore
all the cases predicted by Theorem 1. Finally, the number
of nodes M has been set to 99 to have an integer number
of nodes subscribed to each channel. For each initial data
allocation, cost function and value of λ we have performed
at least 5000 i.i.d. simulation runs. At the beginning of each
run, we allocate channels according to the initial distribu-
tion, and let the system evolve until it reaches the stationary
regime. Each run provides a sample Z equal to 1 if the sys-
tem does not oscillates, and equal to 0 if it oscillates in the
stationary regime. We use standard analysis techniques of
the simulation output (see, e.g., [6]) to estimate the average
value of Pabs and compute confidence intervals with a 99%
confidence level.

Figures 3 and 4 show Pabs as a function of λ for expo-
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nential and linear cost functions, respectively. The com-
parison between the analytical and simulation curves as-
sesses the model’s accuracy. Note that, according to the
model, the transition between the region where the sys-
tem always converges to the absorbing state (Mz1, Mz2)
(in which Pabs = 1) and the region where the system ei-
ther converges to the absorbing state or oscillates occurs for
λ = 1.609 for the exponential cost function, and λ = 0.8 for
the linear cost function. Then, the transition to the region
where the system always oscillates (in which Pabs = 0) oc-
curs at λ = 4.828 and λ = 1.333, respectively. Figures 3
and 4 show that also these transition points are correctly
predicted by the model. It is also interesting to note that
these transition points may mark a sort of discontinuous
phase changes in the system. For example, in the expo-
nential case, Pabs abruptly drops from 1 to about 0.8 at
the first transition point, when the initial data allocation
is inverse zipf. Then, Pabs drops from about 0.9 and 0.5
to 0 at the second transition point, for the uniform and zipf
initialisation, respectively. Also note that the initial data al-
location has a large impact on Pabs. This can be intuitively
understood by looking again at Figure 2. For example, let
us compare the curves related to an initial zipf and inverse
zipf data allocation, in the regions under the hypothesis of
Lemma 2 (1.609 < λ ≤ 4.828 for the exponential case). In
the former case, the distribution of the number of nodes ini-
tially storing channel 1 tends to concentrate around Mz1.
In the latter case, around Mz2. It is easy to show that, as
z1 > z2, H+

1 − Mz1 is greater than Mz2 − H−
1 . Therefore,

the probability of having initial conditions (n0
1, n

0
2) leading

to an oscillating regime when the inverse zipf initial data al-
location is used (i.e., having n0

1 < H−
1 ) is greater than when

a zipf initial data allocation (i.e., having n0
1 > H+

1 ) is used.
Similar remarks can be derived for the linear cost function,
as well.

4.2 Sensitiveness to the user population
In this section we analyse, by exploiting the analytical

model, the sensitiveness of Pabs to the number of users in the
system, M . Figures 5 and 6 consider the cases of exponential
and linear cost functions. We mainly wish to highlight the
different behaviour with different initialisations, thus we plot
together curves obtained with initial zipf and inverse zipf
data allocations. The behaviour with uniform initialisation
is similar to that with zipf initialisation. Since the users’
interests distribution (z1, z2) is always zipf with parameter
1 (thus, z1 = 2/3, z2 = 1/3), we consider values of M which
are integer multiples of 3, so as to have an integer number
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of nodes in the absorbing state (Mz1, Mz2). Furthermore,
we increase M according to a logarithmic scale.

First of all, note that the transition points between the re-
gions with different stationary regimes do not change. This
is because the transition points are functions of λ, z1, and z2

only (see Section 3.5). It is interesting to note that for zipf
initialisation Pabs constantly increases with M , while with
the inverse zipf initialisation it increases for low values of λ
and decreases afterwards. In the zipf initialisation, the ini-
tial distribution of n0

1 concentrates around Mz1. It is easy
to show that the differences H+

1 −Mz1 and Mz1 −H−
1 (i.e.,

the distance between Mz1 and the transition points) can be
expressed as α(λ, z1, z2)M, α > 0 ∀λ. Even though the vari-
ance of the n0

1 distribution increases with M , this is more
than compensated by the linear increase of those differences
with M . This means that, as M increases, the probability
of starting in a state of the chain that reaches the absorbing
state (i.e., the probability that n0

1 < H+
1 , see Section 3.4.1)

increases. On the other hand, in the case of the inverse zipf
initialisation, n0

1 is distributed around Mz2. It can be shown
that Mz2 − H−

1 = α(λ, z1, z2)M too. However, in this case,
α is positive just below a certain value of λ. Thus, beyond
this threshold, increasing M results in lower probabilities
of reaching the absorbing state (i.e., of having n0

1 > H−
1 ).

The same holds true both for exponential and linear cost
functions.

4.3 Sensitiveness to the data popularity
Finally, we discuss the behaviour of Pabs as a function of

the parameter (denoted as z) of the zipf distribution used
to model users’ interests (and thus defining z1 and z2). The
higher z, the more channel 1 is popular with respect to chan-
nel 2. Figures 7 and 8 show Pabs(z) for linear cost functions
in the cases of zipf and inverse zipf initialisations, respec-
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tively. We choose these particular configurations to show a
general behaviour we have found (see Appendix B for more
details). Two remarks can be done. First of all, the tran-
sition points between the different stationary regimes move
with z. Specifically, as can be shown by the Equations de-
rived in Section 3.5, the value of λ for which the first tran-
sition occurs increases with z, while the value for which the
second transition occurs decreases. Furthermore, plots high-
light the same kind of behaviour of Pabs highlighted in the
previous section, as far as the initial distribution of channels
is concerned. In the case of a zipf initialisation, Pabs always
decreases when z increases, while for an inverse zipf initial-
isation there is a threshold value for λ: before the thresh-
old, increasing z results in higher values of Pabs, beyond the
threshold, Pabs decreases when z increases.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed an analytical model to

study utility-based cooperative (social) data dissemination
systems for opportunistic networks. Although bound to
some simplifying assumptions, the modelling approach shows
to be very promising, as the resulting analysis permits to
achieve complete insights (and, thus, full control) on the
transient and stationary regimes of the data distribution
process. System designers can exploit such a model to tune
the system parameters (such as the utility function) or, if
possible, environment parameters (such as the initial allo-
cation of data objects on nodes), so as to achieve a target
distribution of data objects in the system. As the main
subject of future work we consider the extension of the de-
tailed results we have provided in this paper in more general
cases, by releasing some of the assumptions discussed in Sec-
tion 3.2.
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APPENDIX

A. PROOFS OF THE LEMMAS, THEOREM,
AND COROLLARIES

This Appendix contains the demonstrations of Lemmas 1÷3
of Section 3.4, of Lemma 4 of Section 3.4.1, and of Corol-
laries 1 and 2 in Section 3.5. Note that we make explicit
the assumption underlying Figure 2, i.e., H+

1 ≥ H−
1 and

H+
2 ≥ H−

2 .

Lemma 1. In the Markov chain represented by n = (n1, n2)
the state (Mz1, Mz2) is absorbing, and all the other states

are transient iff H+
1 ≥ M or H−

1 ≤ 0.

Proof. We firstly prove that the condition H+
1 ≥ M ∨

H−
1 ≤ 0 is a sufficient condition for (Mz1, Mz2) being the

unique absorbing state of the chain. Let us consider the
case H+

1 ≥ M . In this case, starting from any state, after
one step nodes subscribed to channel 1 always store channel
1, because U11 is always greater than U21. That is, start-
ing from any state, n1 ≥ Mz1 holds true after one step.
Therefore, also n2 ≤ Mz2 holds true after one step. We can
prove that if H+

1 ≥ M , then Mz2 ≤ H+
2 . This means that,

from any initial condition, after one step nodes subscribed
to channel 2 always see channel 2 as the most useful, and
thus store channel 2. This proves that (Mz1, Mz2) is an
absorbing state, and all other states are transient.

To prove that Mz2 ≤ H+
2 we firstly observe that, in gen-

eral, both H+
1 and H+

2 are greater than M/2. By defini-
tion, in H+

2 the following equation holds (1 + z2)fc(H
+
2 ) =

z1fc(M−H+
2 ). Therefore, we can write 1 ≤ 1+z2

z1
=

fc(M−H
+

2
)

fc(H+

2
)

.

It can be shown that when H+
2 > H−

2 then both fc(H
+
2 ) and

fc(M − H+
2 ) are positive. Since fc() is monotonically de-

creasing, we obtain M−H+
2 ≤ H+

2 ⇒ H+
2 ≥ M/2. If z2 ≤ z1

then we obtain Mz2 ≤ M/2 ≤ H+
2 . If z2 > z1 we prove that

H+
2 > H+

1 ≥ M . Thus, in this case Mz2 < H+
2 . In H+

1 the
following equation holds (1 + z1)fc(H

+
1 ) = z2fc(M − H+

1 ),

or 1+z1

z2
=

fc(M−H
+

1
)

fc(H+

1
)

. It can be shown that when H+
1 > H−

1

then both fc(H
+
1 ) and fc(M − H+

1 ) are positive.By recall-
ing the similar equation holding in H+

2 , and the fact that

z2 > z1, we obtain
fc(M−H

+

2
)

fc(H+

2
)

>
fc(M−H

+

1
)

fc(H+

1
)

. As fc() is

monotonically decreasing, H+
2 > H+

1 follows immediately.
The case when H−

1 < 0 can be proved by exactly the
same methodology by just swapping channels 1 and 2, just
after showing that H−

1 ≤ 0 ⇒ H+
2 ≥ M . To show this, we

firstly proove that H+
2 = M − H−

1 (and, by the way, that
H−

2 = M −H+
1 ). By definition (see Figure 2), in H+

2 , U22 =
U12, thus the following equation holds: (1 + z2)fc(H

+
2 ) =

z1fc(M − H+
2 ). At the same time, also in H−

1 the equation
U22 = U12 holds true, thus (1+z2)fc(M −H−

1 ) = z1fc(H
−
1 ).

Thus, we obtain
fc(M−H

+

2
)

fc(H+

2
)

=
fc(H−

1
)

fc(M−H
−

1
)
. Since fc() is

monotonically decreasing, this is possible iff H+
2 = M −H−

1 .
Following the same line of reasoning, it is straightforward to
proove also that H−

2 = M − H+
1 .

To conclude the proof we show that H+
1 ≥ M ∨ H−

1 ≤ 0
is a necessary condition for (Mz1, Mz2) being an absorb-
ing state, and all the other states being transient. This is
easy to prove by showing that if H+

1 < M ∧ H−
1 > 0 then

the class {(0, M), (M, 0)} is a recurrent class. Starting from
state (0, M), all nodes consider channel 1 as the most useful



(see Figure 2). Thus, the chain reaches state (M, 0) at the
next step. Then, in this state all nodes consider channel 2
as the most useful, and thus the chain reaches back state
(0, M).

We now provide the proof of Lemma 3, as the proof of
Lemma 2 can be based on the results of Lemmas 1 and 3.

Lemma 3. In the Markov chain represented by n = (n1, n2)
the class {(0, M), (M, 0)} is recurrent and periodic with pe-

riod 2, and all the other states are transient iff H−
1 > Mz1

or H+
1 < Mz1.

Proof. We firstly proof that if H−
1 > Mz1 ∨H+

1 < Mz1

then the class {(0, M), (M, 0)} is recurrent and periodic with
period 2, and all the other states are transient.

Let us firstly focus on the case H+
1 < Mz1. We show that

from any initial state the process ends up oscillating with
period 2 between (0, M) and (M, 0).

Let us consider an initial condition such that H−
1 ≤ n0

1 ≤
H+

1 . Since, as shown in the proof of Lemma 1, H−
2 = M −

H+
1 and H+

2 = M − H−
1 , then we can write M − H−

1 ≥
M −n0

1 ≥ M −H+
1 , thus H−

2 ≤ n0
2 ≤ H+

2 . Therefore, in the
initial condition (n0

1, n
0
2) nodes subscribed to channel 1 (2)

consider channel 1 (2) as the most useful, and the process
reaches state (Mz1, Mz2) after one step. In this state all

nodes see channel 2 as the most useful, as Mz1 > H+
1 and

thus Mz2 = M − Mz1 < M − H+
1 = H−

2 . Therefore, the
process reaches state (0, M). We show that in this state all

nodes consider channel 1 as the most useful. To this end,
we preliminary show that if H+

1 < M and z1 > z2 then
H−

1 > 0. From the proof of Lemma 1 it is straightforward
to show that if z1 > z2 then H+

1 > H+
2 . Thus, if z1 > z2

and H+
1 < M we obtain H−

1 = M − H+
2 > M − H+

1 > 0.
In our hypothesis H+

1 < Mz1 ≤ M , thus these properties
hold true. Therefore, in the state (0, M) all nodes consider
channel 1 as the most useful as H−

1 > 0 and H+
2 < M . The

chain thus reaches state (M, 0). Again, since H+
1 < M and

thus H−
2 > 0 and H+

1 < M , the state reaches (0, M). Thus,
the class (0, M), (M, 0) is recurrent and periodic with period
2. Let us now consider the case n0

1 > H+
1 . As this implies

that n0
2 < H−

2 , all nodes see channel 2 as the most useful,
and the process reaches the state (0, M) in one step. As
shown above, from this state the process reaches (M, 0) and
then (0, M) again. Finally, let us consider the case n0

1 < H−
1 .

This implies n0
2 > H+

2 and thus all nodes see channel 1 as
the most useful. Thus, the process reaches the state (M, 0)
and thus the periodic recurrent class (0, M), (M, 0).

The case when H−
1 > Mz1 can be analysed by swapping

channel 1 and 2 in the above line of reasoning, because H−
1 >

Mz1 ⇒ H+
2 < Mz2.

To conclude the proof, we show that if the class {(0, M), (M, 0)}
is recurrent and periodic with period 2, and all the other
states are transient then H−

1 > Mz1 or H+
1 < Mz1. To this

end, it is sufficient to observe that if H−
1 ≤ Mz1 ≤ H+

1 then
the state (Mz1, Mz2) is absorbing.

We are now in the position of proving Lemma 2 as well.

Lemma 2. In the Markov chain represented by n = (n1, n2)
the state (Mz1, Mz2) is absorbing, the class {(0, M), (M, 0)}
is recurrent and periodic with period 2, and all the other

states are transient iff 0 < H−
1 ≤ Mz1 and Mz1 ≤ H+

1 <
M .

Proof. We first proove that if 0 < H−
1 ≤ Mz1 and

Mz1 ≤ H+
1 < M then the state (Mz1, Mz2) is absorbing,

the class {(0, M), (M, 0)} is recurrent and periodic with pe-
riod 2, and all the other states are transient. This can be
shown by considering the possible evolutions of the process
starting from any initial state (n0

1, n
0
2).

Let us consider the case in which n0
1 < H−

1 , which implies
n0

2 > H+
2 . All nodes consider channel 1 as the most use-

ful, and thus the process reaches the state (M, 0). Since
H+

1 < M and H−
1 > 0 then all nodes consider channel

2 as the most useful, and the process reaches the state
(0, M). From the thypothesis it is straightforward that 0 <
H−

2 ≤ Mz2 ≤ H+
2 < M holds true. Therefore, from state

(0, M) the process gets back to (M, 0). This shows that
(0, M), (M, 0) is a recurrent class with period 2, and all
states (n1, n2) such that n1 < H−

1 are transient. The same
conclusion can be drawn in the case n1 > H+

1 , by swap-
ping channels 1 and 2 in the above line of reasoning, and
considering that n1 > H+

1 ⇒ n2 < H−
2 . Finally, let us

consider the case in which H−
1 ≤ n0

1 ≤ H+
1 . Note that

this implies H−
2 ≤ n0

2 ≤ H+
2 as well. This means that

in state (n0
1, n

0
2) nodes consider the channel they are sub-

scribed to as the most useful. Therefore, the process reaches
state (Mz1, Mz2) in one step. As H−

1 ≤ Mz1 ≤ H+
1 and

H−
2 ≤ Mz2 ≤ H+

2 , the state (Mz1, Mz2) is absorbing, and
thus all states (n1, n2) such that H−

1 ≤ n1 ≤ H+
1 are tran-

sient.
To conclude the proof, we have to show that if the state

(Mz1, Mz2) is absorbing, the class {(0, M), (M, 0)} is recur-
rent and periodic with period 2, and all the other states are
transient, then 0 < H−

1 ≤ Mz1 and Mz1 ≤ H+
1 < M . This

can be easily shown by recalling Lemmas 1 and 3. Specifi-
cally, if H−

1 ≤ 0 or H+
1 ≥ M then Lemma 1 shows that the

states (0, M) and (M, 0) are both transient. Furthermore, if
0 ≤ Mz1 < H−

1 ≤ H+
1 < M , or 0 < H−

1 ≤ H+
1 < Mz1 < M

hold true, then Lemma 3 shows that the state (Mz1, Mz2)
is transient.

We are also in the position to proove Lemma 4.

Lemma 4. Under the conditions of Lemma 2, the absorb-

ing state (Mz1, Mz2) is reached in at most in one step from

any initial state (n0
1, n

0
2) such that H−

1 ≤ n0
1 ≤ H+

1 . The pe-

riodic recurrent class {(0, M), (M, 0)} is reached in at most

one step from all the other initial states.

Proof. This has been already shown by prooving Lemma 2.

Finally, we derive the conditions on the parameter (λ) of
both exponential and linear cost functions, under the hy-
potheses of Lemmas 1, 2, and 3, respectively.

Corollary 1. When fc(ni) = e−λ
ni

M then:

• H−
1 = M

2

“

1 − 1
λ

ln 1+z2

z1

”

;

• H+
1 = M

2

“

1 + 1
λ

ln 1+z1

z2

”

.

Furthermore, the data dissemination process converges to

one of the following stationary regimes:

• nodes store the channel they are subscribed to iff λ ≤

max
n

ln 1+z1

z2
, ln 1+z2

z1

o

;

• nodes either store the channel they are subscribed to, or

oscillate between storing all channel 1 and channel 2, iff

max
n

ln 1+z1

z2
, ln 1+z2

z1

o

< λ ≤ max



ln
1+z1

z2

2z1−1
,

ln
1+z2

z1

2z2−1

ff



• nodes oscillate between storing all channel 1 and chan-

nel 2 iff λ > max



ln
1+z1

z2

2z1−1
,

ln
1+z2

z1

2z2−1

ff

.

Proof. We just provide the line of reasoning of the proof,
as most of it then consists in straightforward algebraic ma-
nipulations.

The values of H+
1 can be found by recalling that in H+

1

U11 = U21, which results in the equation (1 + z1)e
−λ

H
+
1

M =

z2e
−λ

M−H
+
1

M . Solving this equation for H+
1 yields the expres-

sion in the corollary. The expression of H−
1 can be similarly

found by recalling that in H−
1 U22 = U12.

The three conditions on λ to reach the alternative station-
ary regimes are derived by substituting the expressions of
H+

1 and H−
1 in the constraints of Lemmas 1, 2 and 3. Specif-

ically, the constraints of Lemma 1 are H−
1 ≤ 0 ∨ H+

1 ≥ M .
The first constraint yields the condition λ ≤ ln 1+z2

z1
. The

second constraint yields the condition λ ≤ ln 1+z1

z2
. Since

the overall condition of the Lemma results by the logical
or of the two conditions, the Lemma is satisfied iff λ ≤

max
n

ln 1+z1

z2
, ln 1+z2

z1

o

.

The overall constraint of Lemma 2 can be written as 0 <
H−

1 ≤ Mz1 ≤ H+
1 < M , which can be broken down in

two sub-constraints that have to be met. The first sub-
constraint is 0 < H+

1 ≤ H+
1 < M , which clearly yields

the sub-condition λ > max
n

ln 1+z1

z2
, ln 1+z2

z1

o

. The sec-

ond sub-constraint is H−
1 ≤ Mz1 ≤ H+

1 . Recall from the
proof of Lemma 1 that H−

1 ≤ M/2 and H+
1 ≥ M/2 al-

ways hold true. Therefore, if z1 ≥ 1/2 the part of the
sub-constraint H−

1 ≤ Mz1 is always verfied. In this case,
by substituting the expression of H+

1 , the sub-constraint

yields the sub-condition λ ≤
ln

1+z1
z2

2z1−1
. On the other hand,

if z1 < 1/2 the part of the sub-constraint Mz1 ≤ H+
1

is always verified, and the sub-constraint yields the sub-

condition λ ≤
ln

1+z2
z1

2z2−1
. Considering the unique condition

λ ≤ max



ln
1+z1

z2

2z1−1
,

ln
1+z2

z1

2z2−1

ff

the dependence on the value of

z1 can be dropped. Finally, the condition shown in Corol-
lary 1 corresponding to the constraints of Lemma 2 can be
derived by taking the logical and of the sub-conditions on λ.

Finally, the overall constraint of Lemma 3 is the logical
or of the sub-constraints H−

1 > Mz1 and H+
1 < Mz1. The

first one is never verified when z1 > 1/2, and yilds the condi-

tion λ >
ln

1+z2
z1

2z2−1
when z1 < 1/2. The second sub-constraint

is never verified for z1 < 1/2 and yields the sub-condition

λ >
ln

1+z1
z2

2z1−1
for z1 > 1/2. Taking the logical or of the sub-

condition yields the condition λ > max



ln
1+z1

z2

2z1−1
,

ln
1+z2

z1

2z2−1

ff

.

Corollary 2. When fc(ni) = 1 − λni

M
then:

• H−
1 = M

2

`

1 − 2−λ
λ

z2

´

;

• H+
1 = M

2

`

1 + 2−λ
λ

z1

´

.

Furthermore, the data dissemination process converges to

one of the following stationary regimes:

• nodes store the channel they are subscribed to iff λ ≤
2 max{z1,z2}
1+max{z1,z2}

;

• nodes either store the channel they are subscribed to, or

oscillate between storing all channel 1 and channel 2,

iff
2 max{z1,z2}
1+max{z1,z2}

< λ ≤ 2 max{z1,z2}
3 max{z1,z2}−1

• nodes oscillate between storing all channel 1 and chan-

nel 2 iff λ > 2 max{z1,z2}
3 max{z1,z2}−1

.

Proof. As in Corollary 1, the expressions of H+
1 and H−

1

are straightforward by recalling the properties of the utility
functions in these points. Furthermore, the line of reason-
ing to obtain conditions on λ starting from the constraints
of Lemmas 1, 2 and 3 are exactly the same described in
the proof of Corollary 2. The precise expressions of these
conditions follow from simple algebraic manipulations.

B. SENSITIVENESS TO THE DATA POPU-
LARITY: GENERAL FINDINGS

In this Appendix we discuss a general behaviour of the
system with respect to the data popularity. Specifically, we
focus on the case of linear and exponential cost functions,
and investigate how the values of λ in the transition points
between the different stationary regimes depend on the data
popularity. Also in this case we are assuming that H+

1 > H−
1

and H+
2 > H−

2 hold true.
This can be easily performed by analysing the functions

λ(z1, z2) in the transition points between the different sta-
tionary regimes, shown in Section 3.5. Let us focus on the
linear case, and on the transition point between the condi-
tions of Lemma 1 and Lemma 2 (hereafter, first transition
point). It is easy to show that, when channel 1 is the most
popular (z1 > z2 ⇒ z1 > 1/2), then the first transition
point is defined by λ(z1) = 2z1

1+z1
. Increasing the data popu-

larity (i.e., the z parameter of the Zipf distribution) results
in increasing z1. As λ(z1) is always increasing with z1, the
value of λ in the first transition point always increases with
the data popularity. The same remark holds true also when
channel 2 is the most popular, as in this case i) z2 > z1 and
z2 > 1/2; ii) increasing z results in increasing z2, and iii) the
transition point is defined by λ(z2) = 2z2

1+z2
. The transition

point between the conditions of Lemma 2 and Lemma 3
(hereafter, second transition point) can be similarly anal-
ysed. When channel 1 is the most popluar the transition
is defined by λ(z1) = 2z1

3z1−1
, while when channel 2 is the

most popular it is defined by λ(z2) = 2z2

3z2−1
. Both functions

are decreasing with z. This shows that, in the linear case,
the value of λ in the first transition point always increases
with the data popluarity, and always decreases in the second
transition point.

The analysis when the cost function is exponential can be
carried out exactly with the same methodology. The first
transition point is defined by λ(z1) = ln 1+z1

1−z1
when channel

1 is the most popular, and by λ(z2) = ln 1+z2

1−z2
when channel

2 is the most popular. In both cases, the value of λ in the
first transition point always increases with the data popu-
larity. However, the value of λ in the second transition point
is not monotonic with z. Specifically, the transition point

is defined either by λ(z1) =
ln

1+z1
1−z1

2z1−1
or by λ(z2) =

ln
1+z2
1−z2

2z2−1
.

In both cases, λ is initially decreasing and the increasing.
The threshold between the two behaviours is provided by
the equations ln 1+z1

1−z1
= 2z1−1

1−z2
1

and ln 1+z2

1−z2
= 2z2−1

1−z2
2

. This

shows that in the exponential case the value of λ in the first
transition point alwasy increases, but in the second tran-



sition point decreases up to a certain point, and increases
afterwards.


