

C

Consiglio Nazionale delle Ricerche

Minimizing the Message Waiting Time in
Single-Hop Multichannel Systems

AA.. MMaarrtteellllii,, MM.. BBoonnuucccceellllii

IIT TR-24/2010

Technical report

Settembre 2010

Iit

Istituto di Informatica e Telematica

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PUblication MAnagement

https://core.ac.uk/display/37831867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Minimizing the Message Waiting Time in
Single-Hop Multichannel Systems

Francesca Martelli and Maurizio A. Bonuccelli

Abstract—In this paper, we examine the problem of packet
scheduling in a single-hop multichannel systems, with the goal of
minimizing the average message waiting time. Such an objective
function represents the delay incurred by the users before
receiving the desired data. We show that the problem of finding
a schedule with minimum message waiting time, is NP-complete,
by means of polynomial time reduction of the time table design
problem to our problem. We present also several heuristics which
result in outcomes very close to the optimal ones. We compare
these heuristics by means of extensive simulations.

Index Terms—packet scheduling, minimum message waiting
time, NP-completeness, heuristics.

I. I NTRODUCTION

Single-hop multichannel systems are commonly used in
telecommunication networks. Examples of this kind of systems
are: satellite-switched time division multiple access, optical
networks with passive stars, internet routers and also some
wireless networks, such as WiMax and some WiFi LAN (for
example, IEEE802.11e) [1], [2], [3], [4], [5], [6], [7].

A system is single-hop when entities share the communica-
tion medium and they can communicate directly each other,
i.e. without store and forward of messages in intermediate
entities. On the converse, in multi-hop systems, entities are
distributed on several media and the communication happens
through intermediate stations that store and relay the messages.

A single-hop system can be of two types:singlechannelor
multichannel. In a singlechannel system, only one transmission
at time can be carried out correctly, like in Ethernet LANs.
In a multichannel system instead, the available communica-
tion bandwidth is split in several parallel channels (e.g. by
dividing the frequency spectrum into subchannels, or by using
orthogonal codes) and then multiple stations can communicate
simultaneously. So, the systems under investigation in this
paper will use FDMA/TDMA or CDMA/TDMA medium
access control protocols. In this kind of systems, the packet
scheduling problem is of crucial importance to achieve good
performances in terms of both bandwidth utilization and delay
perceived by the final users.

Packet scheduling problems arise in many different settings,
so much work is present in literature. There are papers about
the optimization of an objective function, with respect to aset
of constraints on the physical switch, such as the number of
channels [8], or the bandwidth of the channels [9], or, in case
of real-time traffic, the compliance of the deadlines [4]. The
typical objective function is the minimization of the schedule
length, which is equivalent to maximize the throughput of the

F. Martelli and M. A. Bonuccelli are with the Department of Computer
Science, University of Pisa, Pisa, Italy e-mail:{f.martel,bonucce}@di.unipi.it.

systems. Other objective functions are: fairness among users,
or minimizing the average packet waiting time.

Depending on the type of traffic and the system model,
scheduling problems can be divided inoffline and online:
in offline models, schedules computation is performed after
a packet transmission requests gathering, while in online
models, a packet is scheduled as soon as it arrives at the
switch, or at the queues before the switch. In online setting,
much work has been done about the stability of the system,
namely to find conditions and algorithms which avoid the input
queues (of finite size) to grow indefinitely [10], [11]. The
time a packet remains in the queue before being transmitted,
represents the delay that it incurs until it is received by the
final user. So the minimization of the packet delay represents
a measure of system performance from the point of view of
the users [10], [12], [13].

Offline algorithms offer better systems performances, since
the schedule is computed on a frame basis. Of course, con-
sidering a set of time slots instead of one for user alloca-
tions, brings to a better overall utilization of the system.For
instance, WiMax systems show how to take advantage of
offline scheduling algorithms [14]. Although performance op-
timization is often possible only by means of slow algorithms,
frequently good performances are achieved also with fast sub-
optimal heuristics.

In this paper, we consider offline algorithms and explore
the waiting time problem, focusing on the delay affected by
messages, instead of packets. Usually, the final users exchange
variable-length messages, which are splitted in equal length
packets for being transmitted on the networks. So, from the
point of view of the users, it is more important the delay of
the last packet of a message, since he/she can not use the
message information before receiving it completely (think, for
instance, to typical web applications browsing text or images,
which are displayed only after being totally received).

This problem has been studied mainly in optical networks,
since in such systems the tuning latency is a relevant param-
eter: in that setting, preemptive schedules are likely longer
than non-preemptive ones, because of the tuning latencies for
swapping from a wavelength to another one [3], [15].

The problem we face is modeled as follows: time is divided
in slots, and a set of consecutive slots forms a frame. For each
variable length frame, a traffic matrix represents the requests
for data transmission, and on it the scheduling algorithm is
applied. A schedule is a set of switching matrices, each one
representing the amount of traffic which could be transmitted
without conflicts, in one or more consecutive time slots: more
precisely, the problem constraints are equivalent to the physical
limits of the systems, namely, an input (output) can transmit

2

(receive) only one packet at time, and each channel can carry
only one packet at time. The scheduling goal is to minimize
the average message waiting time, namely the delay incurred
in transmitting the last packet of each message.

In spite of its importance, this problem has received little
attention till now, probably for its hardness. In particular, in
[12], the minimum packet waiting time problem has been
studied in a satellite setting. In that paper, an optimal algorithm
which produces minimum length schedules with minimum
average packet waiting time has been presented. Such an
algorithm is computationally infeasible, since it is basedon
a branch and bound technique and the running time grows
exponentially with the size of the input. In the same paper,
some fast heuristics are proposed, which produce solutions
very close to the optimal one. For these heuristics, worst case
performance bounds are provided, but simulations show that
they perform (on the average) much better than the predicted
bounds, and produce schedules very close to the optimal one.

In [10], the problem of minimizing the packet delay has
been studied from a theoretical point of view, by considering
input queued crossbar switches. In such switches, arriving
packets are stored in the queues at the inputs before being
transmitted. In the paper, the authors show that any scheduling
strategy, which does not consider the queue backlog infor-
mation, produces average delay which is at leastO(N) (N
being the size of the switch). By contrast, they show that an
O(logN) delay is achievable with random inputs, under some
constraints on the queue size and the maximum traffic load
for the inputs.

The problem of efficiently sequencing variable-length mes-
sages has been studied in case of optical networks with
passive star [15]. Such a network has a number of channels
(wavelengths), and the main scheduling problem is to assign
channels to the users. They show that if the channel assignment
problem is considered together with the message sequencing
problem (namely the transmission order among messages),
a better overall system performance can be achieved. About
the message sequencing problem, two techniques are taken
under consideration for imposing a priority on the order in
which messages are transmitted:longest-job-first, andshortest-
job-first. The first technique allows better load balancing
among the transmission channels, while the second one allows
reduced average delays. In [15] it is shown that the best system
performances can be achieved by a proper tradeoff between
the two techniques.

The paper is organized in this way: in Section II, we define
the model of the system under consideration and formulate
the problem to solve; in Section III, we give some properties
on the value of the objective function and on the optimal
schedules. In Section IV we show that the problem of find-
ing optimal schedules is NP-complete, while in Section V
we present some sub-optimal heuristics, that are evaluated
by means of simulations in Sections VI and VII . Finally,
Section VIII terminates the paper.

II. PROBLEM DEFINITION

For the sake of simplicity, we define in this paper the
problem of single messages between any pair(i; j), but all

results hold for multiple messages, i.e. in the case in which
input i has more than one message for outputj. Multiple
messages between any pair of inputs and outputs has been
considered in the simulation experiment. Atraffic matrix D

is an N × N matrix with nonnegative entries. Let entry
dij = x > 0, then we say that inputi has amessagedestined
to outputj which is x packets long. Aline in a matrix is a
column or a row. Aswitching matrixSk is anN ×N matrix
with nonconflicting entries, i.e. no two non-zero entries are
on the same line, and it represents a switch configuration for
one or more consecutive time slots. Given a traffic matrixD,
a scheduleS is a decompositionS = {Sk}, 1 ≤ k ≤ LS of
the traffic matrix, such that

D =

LS
∑

k=1

Sk

where Sk are switching matrices, andLS is the schedule
length. From [16], [8], we recall that the lower boundLBL

on the schedule lengthLS is given by

LBL = max{ri, cj, 1 ≤ i, j ≤ N}

where

ri =

N
∑

j=1

dij andcj =

N
∑

i=1

dij ,

i.e. it is the maximum line sum of the traffic matrixD.
We definewS(i, j) = max{k|Sk(i, j) > 0} as thewaiting

time of the messagefrom input i to outputj in scheduleS,
which is equal tok wheneverSk is the switching matrix in
which the last packet of that message is scheduled.

We define as thetotal message waiting timeof a schedule
S, the following quantity

WS =

N
∑

i=1

N
∑

j=1

wS(i, j)

Now, we can state the problem subject of this paper:
Minimum Message Waiting Time (MMWT):Given a traffic

matrix D, find a scheduleS such that the total waiting time
WS is minimum.

In the following we state some properties of the problem,
and in Section IV we show that this problem is NP-complete.

III. PROPERTIES

In this section, we investigate some properties, such as a
lower bound on theWS value.

We definemodified by rows traffic matrixD′, an N × N

matrix built in the following way: we consider each row at
time, and we rearrange the non-zero entries in non-decreasing
order. Similarly, we definemodified by columns traffic matrix
D′′, an N × N matrix built by rearranging the non-zero
entries of each column in non-decreasing order. In Figure 1,
an example ofD, D′, D′′ is shown.

We definewaiting time of rowi (columnj) wtr(i) (wtc(j))
the progressive sum of the non-zero entries in rowi (column
j) of matrixD′ (D′′). Specifically: letnri (ncj) be the number

3

3 2
2

1 1 1
(a) Traffic matrix,
LBL = 5,
LBW = 15

1
1

1
1

1

1

1

1 1 1

(b) Optimal scheduleS1, with non minimum length:WS1
= 1 + 2 + 2 + 3 + 4 + 6 = 18

1
1

1

1
1

1

1

1

1

1

(c) Minimum length optimal scheduleS2: WS2
= 1 + 2 + 3 + 3 + 4 + 5 = 18

1

1

1
1

1

1
1

1

1

1

(d) Minimum length not optimal scheduleS3: WS3
= 1 + 2 + 3 + 4 + 5 + 5 + 6 = 25

Fig. 2. Examples of schedules: a bold entry in positionSk
ij

represents the last packet of the message betweeni and j, and gives a contribute ofk to the
W value.

3 2
2

1 1 1
(a) D

nr1 = 2
nr2 = 1
nr3 = 3

2 3
2
1 1 1

wtr(1) = 2 + 5 = 7
wtr(2) = 2
wtr(3) = 1 + 2 + 3 = 6

(b) D′

nc1 = 2
nc2 = 3
nc3 = 1

1 1 1
3 2

2

wtc(1) = 1 + 4 = 5
wtc(2) = 1 + 3 + 5 = 9
wtc(3) = 1

(c) D′′

Fig. 1. Lower bound computation

of non-zero entries in rowi (column j) of matrix D′ (D′′).
Then

wtr(i) =

nri
∑

p=1

p
∑

q=1

d′iq

and

wtc(j) =

ncj
∑

p=1

p
∑

q=1

d′′qj .

In particular, the inner sum represents the sum of the waiting
times of the messages shorter than thepth one, since it would
be scheduled after those. An example ofwtr(i) and wtc(j)
computation is given in Figure 1. Now, we are able to state
the following lemma on the lower bound.

Lemma 1:Given a traffic matrixD, a lower boundLBW

on the total waiting time for that matrix, when the number of
channels available is equal toN , is

LBW = max

N
∑

i=1

wtr(i),

N
∑

j=1

wtc(j)

where wtr(i) and wtc(j) are computed onD as described
before.

Proof: Clearly, since the contribution toLBW of a traffic
entry (i.e. a message) is given by the position in the schedule of
the switching matrix in which the last packet is scheduled, the
best way to keepW as low as possible is to schedule smaller
entries before larger entries of the traffic matrix. So, consider
a row of D: the smallest entry, saydij , will be scheduled
in the first dij switching matrices; the second smallest, say
dik, will be scheduled afterdij , namely the last packet of
dik will be at least in the(dij + dik)-th switching matrix;
and so on. Then, considering the traffic entries by rows (i.e.
not considering the constraints on the columns of switching
matrices) the contribution of each rowi to the total waiting
time is given at least bywtr(i), and for the whole matrix by
∑N

i=1
wtr(i). A similar reasoning can be done by considering

the columns of the traffic matrix. Then, the lower bound value
LBW for the total waiting timeW is given by the maximum
value between the two sums.

This lower bound on the total waiting time is not tight,
namely there are traffic matrices for which it is not achieved.
For instance, for the traffic matrix shown in Figure 2,LBW =
15, but a schedule withW smaller than 18 does not exists.
In [12], some properties on the schedules for the problem
of minimizing the average packet waiting time are given.
In particular, it is proved that optimal schedules are always
of minimum length. This is not true for the problem of
minimizing the average message waiting time, considered in
this paper (see Figure 2(b)).

The previous lower bound does not hold when the system
has a number of channels (sayC) smaller thanN . In such a
case, no more thanC packets can be transmitted simultane-
ously in the same time slot. In this case, we can compute a
lower bound by ignoring the row and column constriants, and
considering the availability ofC channels in each time slot.
Traffic entries are rearranged in increasing order. Then, we
build a matrixP of sizeC×2∗LBL and fill it by consideringC
traffic entries at time, disregarding the constraints on rows and
columns. In Figure 3, we show the computation of this lower
bound on traffic matrix of Figure 1(a), when the number of
channels available is equal to 2. A bold entry inPij represents

4

1 2 3 4 5 6 7 8 9 10
1 1 1 1
1 1 1 1 1 1

Fig. 3. Lower bound computation in caseC < N . In the example,N = 3,
C = 2, andD is that one in Figure 1 (a). The lower bound value is given
by summing the slot numbers of the last packet of each message: LBW =

1 + 1 + 2 + 3 + 4 + 6 = 17.

a contribution ofj units to the lower bound value.
By means of examples, we show in Figure 2 the following

two properties:
Property 2: A schedule can be optimal even if it is not of

minimum length.
In Figure 2(b), an optimal schedule is shown which is not of
minimum length.

Property 3: A minimum length schedule can be not opti-
mal.
In Figure 2(d), a minimum length schedule is shown which is
not optimal. As we can see, minimum length schedules can
produce very high values of total message waiting time. This
makes our problem significantly different from that in [12],in
which minimum length schedules are always optimal.

IV. PROBLEM COMPLEXITY

In this section, we show that the MMWT problem is
NP-complete, and in the next section we present some fast
heuristics which suboptimally solve the problem in polynomial
time. Finally, in Section VI we show that the outputs of the
heuristics are close enough to the optimal solution.

Before proving the NP-completeness of the MMWT prob-
lem, we notice that the complexity of theminimum packet
waiting timeproblem is still open, namely, neither a proof of
NP-completeness is given for that problem, nor a polynomial
time optimal algorithm is known.

Theorem 4:MMWT problem is NP-complete.
Proof: Clearly, MMWT problem is in NP. To prove the

NP-completeness, it is sufficient to find a polynomial time
reduction of a known NP-complete problem to it. Consider
the following problem [17]:

Timetable Design:Given
1) a finite setH = {h1, ..., hp},
2) a collection{T1, ..., Tn} whereTi ⊆ H , 1 ≤ i ≤ n,
3) a collection{C1, ..., Cm} whereCj ⊆ H , 1 ≤ j ≤ m,
4) ann×m matrix R with nonnegative integer entriesrij .

Question:We ask for a function

f(Ti, Cj , hk) : {T1, ..., Tn} × {C1, ..., Cm} ×H → {0, 1}

such that
1) f(Ti, Cj , hk) = 1⇒ hk ∈ Ti ∩ Cj ;
2)

∑p

k=1
f(Ti, Cj , hk) = rij for all i and j, 1 ≤ i ≤ n,

1 ≤ j ≤ m;
3)

∑n

i=1
f(Ti, Cj , hk) ≤ 1 for all j and k, 1 ≤ j ≤ m,

k ≤ p;
4)

∑m

j=1
f(Ti, Cj , hk) ≤ 1 for all i and k, 1 ≤ i ≤ n,

k ≤ p.
This formulation of the timetable design models the problem
of scheduling the teaching program of a school, whereH is

n = 5, m = 4 R =

1 1 1
1 1

1 1
1 1

1 1 1

T1 = {1, 2, 3}
T2 = {1, 3}
T3 = {1, 2}
T4 = {2, 3}
T5 = {1, 2, 3}

(a) RTT instance

1 2 3 4 y2 z2 x4 x4 + 1

1 2 2 2
2 2 2 1 1
3 2 2
4 2 2 1 1
5 2 2 2
a2 1 1
b2 1 1

(b) Matrix D, after trasformation

Fig. 4. Example of transformation

the set of teaching hours in a week,Ti is the availability of the
ith teacher,Cj is the availability of thejth classroom, andrij

is the number of hours theith teacher must spend in classroom
j. The timetable design problem is NP-complete even in the
following restricted case [17]:

Restricted Timetable Design (RTT):

1) p = 3
2) Cj = H , for all j, 1 ≤ j ≤ m

3) rij ∈ {0, 1}, for all i andj, 1 ≤ i ≤ n, 1 ≤ j ≤ m

4) |Ti| =
∑m

j=1
rij , for all i, 1 ≤ i ≤ n

5) |Ti| ∈ {2, 3}.

We transform a generic instance of the restricted timetable
design problem into an instance of the MMWT problem in
the following way.

We build a traffic matrixD, where initially we have one
row for each teacher, and one column for each classroom.
The matrix is initially filled with zeroes. Then, for eachi and
j, if rij = 1, we change the value ofdij to 2. Besides, for
each teacheri, we add extra lines as follows:

• if Ti = {2, 3}, then we add two extra columns called
columnxi and columnxi+1, and setdi,xi

= di,xi+1 = 1;
• if Ti = {1, 3}, then we add two extra columns, sayyi, zi,

and two extra rows, sayai and bi. Then, we setdai,yi
,

dbi,yi
, dai,zi

, dbi,zi
, and di,yi

and di,zi
to 1. All other

entries in extra rows and columns are set to 0;
• if Ti = {1, 2} or Ti = {1, 2, 3}, then no line is added.

Let the number of teachers with availability set equal to{v, w}
be nvw, (v ∈ {1, 2, 3}, w ∈ {1, 2, 3} and v < w), and those
available in all three hours ben123. Obviously,n12 + n13 +
n23 + n123 = n. The final traffic matrixD will then have
n + 2n13 rows andm + 2n13 + 2n23 columns.

In Figure 4, an example of the above transformation is
given.

We end the transformation by selecting a target valueW

for the waiting time of matrixD:

W = 6n12 + 21n13 + 13n23 + 12n123.

5

Now, we show that the given restricted timetable design
problem instance has a solution if and only if the MMWT
instance obtained by the above transformation has a schedule
whose waiting time is not larger thanW . The idea behind the
proof is to let the selected teaching hour of teacheri in class
j (when rij = 1) correspond to the scheduling of entrydij

(i ≤ n, j ≤ m): if teacheri is assigned to classj in the h-th
hour, thendij (i ≤ n, j ≤ m) will be scheduled in time slots
2h− 1 and2h, and vice versa.

Let us first present some properties of the way entries inD

will be scheduled.
If row i of D corresponds to a teacher such thatTi = {1, 2},

then the only two non-zero entries in such row, saydij and
dik (d3,1 = d3,4 in Figure 4 (b)), will be scheduled in this
way:

slot number 1 2 3 4
entry scheduled dij dij dik dik

and this leads to a contribution to the waiting time of2+4 =
6.

If Ti = {1, 3} (in Figure 4(b), entries ared2,2 = d2,3 = 2,
and da2,y2

= da2,z2
= db2,y2

= db2,z2
= d2,y2

= d2,z2
= 1),

then the scheduling will be:

1 2 3 4 5 6
dij dij di,yi

di,zi
dik dik

dai,yi
dbi,yi

dbi,zi
dai,zi

Fig. 5. Schedule for entries related toTi = {1, 3}

which contributes2 + 3 + 4 + 6 + 1 + 1 + 2 + 2 = 21 to
the waiting time.

If Ti = {2, 3} (d4,2 = d4,4 = 2, andd4,x4
= d4,x4+1 = 1

in Figure 4(b)), the scheduling will be

1 2 3 4 5 6
di,xi

di,xi+1 dij dij dik dik

with a contribution of1 + 2 + 4 + 6 = 13 to the waiting
time.

Finally, whenTi = {1, 2, 3} (in our example of Figure 4 are
the entries related toT1 andT5), we will schedule the entries
in this way:

1 2 3 4 5 6
dij dij dik dik dil dil

with a contribution of2 + 4 + 6 = 12 to the waiting time.
Notice that the entries with value 2 (those in the non-extra
lines) can be swapped without altering the schedule.

Let us assume now that the given instance of RTT has a
solution. Then, if teacheri is assigned to classj during hour
h, we schedule the corresponding entrydij in time slots2h−
1 and 2h whenever the case, we schedule the entries in the
extra rows or columns according to the above schemata. For
instance, ifTi = {1, 3}, then we scheduledij (dik) in time
slots 1 and 2, iff(Ti, Cj , 1) = 1 (f(Ti, Ck, 1) = 1), and we
schedule it in slots 5 and 6 iff(Ti, Cj , 3) = 1 (f(Ti, Ck, 3) =
1). In order for the above scheduling to be legal, in each time
slot we must have at most one entry from the same line.

This is true for the extra lines, by construction, since, if
Ti = {2, 3} we have only one entry per extra column, and if

Ti = {1, 3}, the scheduling shown in Figure 5 meets the above
constraint, becausedi,yi

, di,zi
, dai,yi

, dbi,yi
, dai,zi

, dbi,zi
are

the only non-zero entries in such extra lines.
The same holds for the entries not in extra lines, also. In

fact, entries in the same row are scheduled in different time
slots (see the above figures). If two entries in the same column,
say dij and dlj , are scheduled in the same slots, then both
teachersi and l would have been assigned to classj during
the same hour, and so RTT would have not been solved, a
contradiction. The total waiting time of the above schedule
is W = 6n12 + 21n13 + 13n23 + 12n123, as can be easily
checked.

Let us assume now that the scheduling problem obtained
from the above transformation applied to the given RTT
problem instance, has a solution with a waiting time not larger
thanW . Then, the only way of obtaining a schedule of waiting
time not larger thanW is by scheduling the entries according
to the above schemata: this is obvious for all the cases but for
Ti = {1, 3}. For such a case, the alternative schedules would
schedule the entries equal to 1 in rowi earlier, or later. In the
case they are both scheduled earlier, or if one is scheduled
earlier and the other later, then the waiting time would be at
least 22 instead of 21 (see Figures 6 and 7).

1 2 3 4 5 6
di,yi

di,zi
dij dij dik dik

dai,zi dbi,yi
dai,yi

dbi,zi

Fig. 6. Both earlier: waiting time contribution= 22.

1 2 3 4 5 6
di,yi

dij dij di,zi
dik dik

dai,zi dai,yi
dbi,yi

dbi,zi

Fig. 7. One earlier and one later: waiting time contribution= 22.

It is easy to see that if we letdij correspond torij , and if
we assign teacheri to classj in hourh whendij is scheduled
in slots2h−1 and2h, the RTT instance has a solution. In fact,
all the four constraints of RTT are met: no teacher is assigned
when not available, all requirementsrij are met, and at most
one teacher is assigned to a class in each hour.

The above NP-completeness result practically leaves us
with the choice between a slow (exponential time) optimal
algorithm, or fast but suboptimal heuristics. In the next section,
we present some simple heuristics which bring to sub-optimal
solutions.

V. HEURISTICS

In this section, we describe three simple heuristics which
solve the MMWT problem in polynomial time. Two of them
are of “greedy” type, while the third one is based on maximum
cardinality minimum weight matching algorithm.

A. Greedy (GRE)

This is a very simple heuristic. The schedule is built in this
way: non-zero entries in the traffic matrix are considered in

6

5 3 1
1 1 4
2 2 1

(a) Traffic matrix
D

9 6 2
2 2 6
5 5 2

(b) Q matrix as-
sociated withD

Fig. 8. Example ofQ matrix

increasing order. A switching matrix is composed by choosing
the minimum values first that are in lines both currently
exposed (namely, with only zero entries) in such matrix. After
building it, the switching matrix is subtracted from the traffic
matrix, and the procedure is repeated until the traffic matrix is
empty (only zero entries). Pseudocode of this heuristic follows.

Greedy Algorithm:
Step 1: initialization
k ← 1;
Step 2: main loop
while(D not empty)

Step 3: variables setup
D′ ← D;
Step 4: build thekth switching matrix
while(D′ not empty)

Step 5: entry selection for thekth switching matrix
find i, j such thatD′

ij is minimum;
Sk

ij = Dij ;
Step 6: clear rowi and columnj of D′

for (p = 1 to N) D′

pj = 0;
for (p = 1 to N) D′

ip = 0;
end while
Step 7: variables update
cut non-zero entries inSk to the minimum valuex;
D ← D − Sk;
k ← k + x;

end while

About the time complexity of this algorithm, the main loop
runs at mostr times, wherer is the number of non zero entries
in the traffic matrixD, since at each time at least one of them
becomes zero. Given that each computation in the main loop
is O(N2), andr is at mostN2, the total time complexity of
GRE heuristic isO(N4).

B. Dynamic greedy (DG)

This heuristic is similar to the previous greedy algorithm,
with the following difference: instead of considering the non-
zero entries for their value, we build a matrixQ which
represents the lower bound on the contribution of each entry
to the total waiting time. Specifically, each non-zero entrydij

is replaced with a valueqij which is obtained by chosing the
maximum value between the sum ofdij with lower or equal
values in its row, and the sum ofdij with lower or equal values
in its column.

An example ofQ matrix is shown in Figure 8. MatrixQ
is then re-computed after each switching matrix generationon
the residual traffic matrix.Step 3and Step 5of the previous
greedy algorithm are modified in the following way:

Dynamic Greedy Algorithm:
Step 3: variables setup
D′ ← D;
computeQ(D′);

Step 5: entry selection for thekth switching matrix
find i, j such thatQij is minimum;
Sk

ij = Dij ;

The time complexity of this heuristic isO(N4 log N), since
the computing ofQ requiresO(N2 log N) time.

C. Max-Min Matching (MMM)

This heuristic follows a different approach with respect
to the previous ones. Instead of greedy selection of entries,
switching matrices are computed by applying the maximum
cardinality minimum weight matching algorithm [18]. For
keeping the total waiting time as much low as possible, it
is needed to schedule small entries in the traffic matrix before
larger entries. This heuristic aims to build the first switching
matrices with the largest number of small entries. To do that,
it recursively applies the max-min matching algorithm to the
traffic matrix until it is empty.

Max-min Algorithm:
Step 1: initialization
k ← 1;
Step 2: main loop
while(D not empty)

Step 3: build thekth switching matrix
find a max-min matchingM on D;
Step 4:Sk computation
Sk

ij = Mij ;
Step 5: variables update
cut non-zero entries inSk to the minimum valuex;
D ← D − Sk;
k ← k + x;

end while

In the best of our knowledge, max-min matching can be
computed inO(N2.5) [19], and it is performed at mostO(N2)
times. So, the time complexity of this heuristic isO(N4.5),
namely greater than the previous greedy algorithms, but it
achieves better performance, as we shall see in the next
section.

VI. SIMULATIONS

In this section, we show the behaviour of the above heuris-
tics compared among them, with respect to an exponential
time optimal algorithm, and also with other known heuristics.

We implemented the algorithms in C language, compiled
with gccon a linux machine with Fedora as operating system.
For each heuristic, we also implemented anon-preemptive
version, to evaluate their behavior when used in those systems
in which preemption has a high cost in terms of time [2],
[3]. For that case, we shall call themGRENP , DGNP ,

7

MMMNP , respectively. Non-preemption is achieved in the
following way: when the first packet of a message is assigned
to switching matrixSk, also the subsequentm − 1 packets
of that message are assigned to switching matricesSk+i,
1 ≤ i ≤ m − 1. Consequently, for the greedy heuristics
GRENP and DGNP , Step 3is modified such that thekth

D′ matrices have zero lines wheneverSk has already covered
lines. In Step 5, when a messageDij has been selected, a
packet is placed in each one of theDij subsequent switching
matrices. And inStep 7, each scheduled message is removed
from Dij . Below, the details in pseudo-code.

Step 3: variables setup
D′ ← D;
for (i = 1; i < N ; i + +)

for (j = 1; j < N ; j + +)
if (Sk

ij ! = 0) then D′

ij = 0;

Step 5: entry selection for thekth switching matrix
find i, j such thatD′

ij (or Qij) is minimum;
for (p = 0; p < D′

ij ; p + +)
S

k+p
ij = 1;

Step 7: variables update
D ← D− messages scheduled inStep 5;
k ← k + 1;

Similarly, for the heuristic based on max-min matching.
For comparison purposes, besides an optimal algorithm, we

implemented also:

• the BCW algorithm [8], which always produces minimum
length schedules;

• an heuristic which builds the schedule in a totally random
way.

In the following, we give some details about these algorithms,
and the optimal one.

A. Optimal algorithm (OPT)

For the sake of completeness, we describe here an
exponential-time optimal algorithm to find an MMWT sched-
ule. It is based on a branch-and-bound procedure, where each
node of the tree represents the residual traffic matrix after
the generation of a switching matrix. The root is the initial
traffic matrix, and each node has a number of sons equal
to the number of possible switching matrices, namelyN !.
The algorithm starts with a total waiting time valueWS0

computed offline by an heuristic (for instance, the previous
greedy algorithm). When a switching matrix is generated, we
compute the waiting time of the messages scheduled so far,
and the lower bound on the residual traffic matrix: if the sum
of these values is greater thanWS0

, then that node becomes a
leaf, and that branch is pruned since of course the schedules
obtained from that branch will not be optimal. Otherwise, the
computation is continued on that branch with the new value
of WS0

.

Due to the exponential nature of this algorithm, it has been
evaluated only in those simulation tests for which the switch
sizeN is small.

B. BCW algorithm (BCW)

This algorithm [8] always produces minimum length sched-
ules. It has been implemented to show that, in this problem,
long computations for producing minimum length schedules
result in performances which are worse than the fast greedy
heuristics. This algorithm is based on the Birkoff-Von Neu-
mann theorem which asserts that a quasi-double stochastic
matrix (namely, one in which the line sums are all equal to the
same value) is decomposable in permutation matrices, which
represent the switching matrices of a schedule. The algorithm
adds some dummy traffic to the traffix matrix for making
it a quasi-doubly stochastic one. This dummy traffic is then
removed from the output. Time complexity isO(N4.5). For
more details on this algorithm, see [8].

C. Random algorithm (RAND)

This heuristic is the simplest algorithm that could be imple-
mented to solve our problem. Regardless of its size, a non zero
entry in the traffic matrix is randomly chosen and placed in
the schedule, by meeting only the constraints on the switching
matrix lines.

Time complexity of this heuristic is equal to that one of
greedy algorithm, namelyO(N4). This algorithm is compared
with the others to see if it is worthwhile the effort of using
some intelligence, or not.

VII. S IMULATION RESULTS

We performed extensive simulations, by tuning all possible
problem parameters. In particular, we tuned the following
parameters:

• the size of the switchN ;
• the number of available transmission channelsC, C ≤ N ;
• the maximum number of messagesK between any pair

of input/output;
• the maximum length of the messages,M ;
• the traffic matrixsparsity, namely the percentage of zero

entries.
We show the results by means ofefficiencyE as performance
metric, which is defined as the ratio between the total message
waiting timeWS and the lower boundLBW given in Section
III.

Traffic entries inD matrices have been generated always
following the uniform distribution, according to thesparsity

set for each test. Each test ran 100 times and we show in the
graphs the average efficiency values. We computed also the
95% confidence intervals: due to space limitations, we show
the values for one test case in Table I.

A. Message waiting time vs. switch size

In Figures 9 and 10 we show the average behavior of
heuristics by varying the switch sizeN , when traffic matrix
sparsity is equal to 75% and 0%, respectively.

8

Algorithm 95% confidence interval

GRE 1368561.43 ± 2572.57

DG 1364624.27 ± 2562.03

MMM 1336687.17 ± 2538.58

GRENP 1553142.79 ± 3130.06

DGNP 1554936.59 ± 3048.75

MMMNP 1345057.36 ± 2546.63

BCW 2148887.78 ± 5131.77

RAND 2146724.61 ± 4189.08

TABLE I
AVERAGE TOTAL MESSAGE WAITING TIMES WITH95%CONFIDENCE

INTERVALS. N = 128, C = 128, K = 1, M = 5, sparsity = 25%.

 1

 1.2

 1.4

 1.6

 1.8

 2

 20 40 60 80 100 120

E

N

GRE
DG

MMM
BCW

RAND

Fig. 9. Efficiency vsN , C = N , K = 1, M = 5, sparsity = 75%.

As we can see, with very sparse traffic matrices, the
algorithms efficiencies are worse than with very dense traffic
matrices. We notice also that the efficiency increases with the
increasing of the switch size and of the decreasing of the traffic
matrix sparsity.

B. Message waiting time vs. channel availability

In Figures 11 and 12, we show the behaviour of the
efficiency of the algorithms by varying the number of channels
available for transmission. We have considered a switch of size
N = 32 and we tuned the number of channelsC from 2 to
32. Notice that our MMWT problem is not much sensitive to
this parameter.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 20 40 60 80 100 120

E

N

GRE
DG

MMM
BCW

RAND

Fig. 10. Efficiency vsN , C = N , K = 1, M = 5, sparsity = 0%.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 5 10 15 20 25 30

E

C

GRE
DG

MMM
BCW

RAND

Fig. 11. Efficiency vs number of channels availableC, N = 32, K = 1,
M = 5, sparsity = 25%.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 5 10 15 20 25 30

E

C

GRE
DG

MMM
GRE_NP

DG_NP
MMM_NP

Fig. 12. Efficiency vs number of channels availableC, N = 32, K = 1,
M = 5, sparsity = 25%.

C. Message waiting time vs. number of messages

In Figure 13, we plotted only the three proposed heuristics
and their respective non preemptive versions with respect to
the number of messages between any pair of input/output. We
notice that theMMMNP heuristic is not much sensitive to
this parameter, and its performance is a little lower than the
MMM heuristic. For the greedy heuristics instead, non pre-
emptive versions perform worse than preemptive algorithms,
with a loss of about 15% in terms of efficiency.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 2 3 4 5 6 7 8 9 10

E

K

GRE
DG

MMM
GRE_NP

DG_NP
MMM_NP

Fig. 13. Efficiency vs number of messagesK, N = C = 32, M = 5,
sparsity = 25%.

9

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1 2 3 4 5 6 7 8 9 10

E

M

GRE
DG

MMM
GRE_NP

DG_NP
MMM_NP

Fig. 14. Efficiency vs message sizeM , N = C = 32, K = 3, sparsity =

25%.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0 10 20 30 40 50 60 70

E

Sparsity (%)

GRE
DG

MMM
GRE_NP

DG_NP
MMM_NP

Fig. 15. Efficiency vs traffic matrixsparsity, N = C = 128, K = 1,
M = 5.

D. Message waiting time vs. length of messages

In Figure 14, we show the efficiency values obtained by
changing the message size parameter. We note that the MMWT
problem is not sensitive to this parameter.

E. Message waiting time vs. traffic matrix sparsity

Figure 15 shows the behaviour of the efficiency for four
values of traffic matrix sparsity: 0%, 25%, 50% and 75%.
Notice that for all the heuristics, efficiency decreases with very
sparse traffic matrices.

F. Optimal algorithm

In Figure 16, we show the behavior of the heuristics together
with the optimal algorithm, for small values ofN . As we can
see, the efficiency of theMMM heuristic is very close to that
one of the optimal algorithm.

G. Other statistical data

In this section, we present other metrics that have been
evaluated in the simulations. We have computed, for each
heuristic, the following amounts:

• the number of schedules with optimalWS value (Wopt);
• the maximum gap between the lower boundLBW and the

obtained total message waiting timeWS (MaxGapW);

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 3 4 5 6

E

N

OPT
GRE

DG
MMM

GRE_NP
DG_NP

MMM_NP
BCW

RAND

Fig. 16. Efficiency vsN (small values),C = N , K = 1, M = 2,
sparsity = 0%.

• the average gap betweenLBW and WS , expressed in
percentage (AveGapW);

• the number of schedules of minimum length (Lopt);
• the maximum gap between the minimum length schedule

and the length of obtained schedules (MaxGapL);
• the average gap betweenLBL and the length of obtained

schedules, expressed in percentage (AveGapL).

For the sake of conciseness, we summarize these results in
Tables II and III. Notice thatMMM heuristic improves its
performance with high values ofN , leading to a less than
1% of performance degradation with respect to the lower
bound, both in terms of total waiting time values and of
schedule lengths. Remember that the AveGapW is computed
on the lower bound, and not on the optimal value. A similar
consideration holds forMMMNP heuristic also, which results
to provide good schedules even with the non preemption
constraint. So, we conclude that these heuristics give verygood
sub-optimal solutions to the MMWT problem.

VIII. C ONCLUSIONS

In this paper we studied the problem of minimizing the
average message waiting time in a single-hop multichannel
system. We have shown that this problem is NP-complete,
and we proposed and analyzed three fast heuristics. By means
of simulations, we have obtained the performances of the pro-
posed heuristics, compared with other algorithms. We realized
that the MMWT problem can be solved with algorithms which
produce schedules very close to the optimal one. In particular,
the MMM heuristic is the most suitable for optimizing the
efficiency both for the system and for the users: for the system,
because it produces schedules very often of minimum length,
and for the users, since the average message waiting time is
very close to the optimal one.

Some problems are still open: for instance, the complexity
of minimizing the average packet waiting time (studied in [12])
is unknown. A stimulating research is the MMWT problem in
a real-time setting, namely when messages have deadlines to
be met.

10

Algorithm Wopt MaxGapW AveGapW (%) Lopt MaxGapL AveGapL (%)

OPT 100 7 3.54 100 0 0.0
GRE 3 18 9.36 43 2 7.77
DG 1 17 8.95 42 3 9.05
MMM 27 12 5.53 69 2 3.86
BCW 0 64 33.43 100 0 0.0
RAND 0 38 25.27 65 2 4.21
GRENP 0 39 18.88 1 5 28.3
DGNP 1 32 17.77 2 6 31.33
MMMNP 21 13 6.17 65 2 3.99

TABLE II
COMPARISON FOR OTHER METRICS, WITH N = 5, C = 5, K = 1, M = 2 AND sparsity = 0%.

Algorithm Wopt MaxGapW AveGapW (%) Lopt MaxGapL AveGapL (%)

GRE 0 61166 2.52 2 21 1.8
DG 0 56120 2.3 0 22 2.59
MMM 0 15242 0.62 38 7 0.31
BCW 0 1513630 58.91 100 0 0.0
RAND 0 1472956 61.66 53 4 0.15
GRENP 0 383038 15.45 0 122 21.87
DGNP 0 409422 16.81 0 153 27.87
MMMNP 0 27014 1.08 31 7 0.39

TABLE III
COMPARISON FOR OTHER METRICS, WITH N = 128, C = 128, K = 1, M = 5 AND sparsity = 0%.

REFERENCES

[1] M. Bonuccelli, I. Gopal, and C. Wong, “Incremental time slot assign-
ment in ss/tdma satellite systems,”IEEE Transactions on Communica-
tion, vol. 39, no. 7, pp. 1147–1156, July 1991.

[2] H. Choi, H. Choi, and M. Azizoglu, “Efficient scheduling of trans-
missions in optical broadcast networks,”IEEE/ACM Transactions on
Networking, vol. 4, no. 6, pp. 913–920, December 1996.

[3] R. Cruz and S. Al-Harthi, “A service-curve framework forpacket
scheduling with switch configuration delays,”IEEE/ACM Transactions
on Networking, vol. 16, no. 1, pp. 196–205, February 2008.

[4] Y. Lee, J. Lou, J. Luo, and X. Shen, “An efficient packet scheduling algo-
rithm with deadline guarantees for input-queued switches,” IEEE/ACM
Transactions on Networking, vol. 15, no. 1, pp. 212–225, February 2007.

[5] H-Y.Wei, S. Ganguly, R. Izmailov, and Z. Haas, “Interference-aware ieee
802.16 wimax mesh networks,” vol. 5, 2005, pp. 3102–3106.

[6] A. Zaki and A. Fapojuwo, “Efficient scheduling algorithms for multi-
service multi-slot ofdma networks,” vol. 1, April 2009, pp.1–6.

[7] Q. Zhao and D. H. K. Tsang, “An equal-spacing-based design for qos
guarantee in ieee 802.11e hcca wireless networks,”IEEE Transactions
on Mobile Computing, vol. 7, no. 12, pp. 1474–1490, December 2008.

[8] G. Bongiovanni, D. Coppersmith, and C. K. Wong, “An optimal time
slot assignment algorithm for a SS/TDMA system with variable number
of transponders,”IEEE Transactions on Communications, vol. 29, no. 5,
pp. 721–726, May 1981.

[9] P. Barcaccia and M. Bonuccelli, “A polynomial time optimal algorithm
for time slot assignment in variable bandwidth systems,”ACM/IEEE
Transactions on Networking, vol. 2, no. 3, pp. 247–251, March 1994.

[10] M. J. Neely, E. Modiano, and Y.-S. Cheng, “Logarithmic delay forn×n
packet switches under crossbar constraint,”IEEE/ACM Transactions on
Networking, vol. 15, no. 3, pp. 657–668, June 2007.

[11] P. R. Kumar and S. P. Meyn, “Stability of queueing networks and
scheduling policies,”IEEE Transactions on Automatic Control, vol. 40,
no. 2, pp. 251–260, February 1995.

[12] I. Gopal, D. Copperswmith, and C. K. Wong, “Minimizing packet
waiting time in a multibeam satellite system,”IEEE Transactions on
Communications, vol. COM-30, no. 2, pp. 305–316, February 1982.

[13] J. Bruno, E. C. Jr., and R. Sethi, “Scheduling independent tasks to reduce
mean finishing time,”Communications of the ACM, vol. 17, no. 7, pp.
382–387, July 1974.

[14] I. S. 802.16-2004,IEEE standard for local and metropolitan area
networks part 16: air interface for fixed broadband wirelessaccess
systems, 2004.

[15] B. Hamidzadeh, M. Maode, and M. Hamdi, “Efficient sequencing
techniques for variable-length messages in WDM networks,”Journal
of Lightwave Technology, vol. 17, no. 8, pp. 1309–1319, August 1999.

[16] T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,”
IEEE Transactions on Communications, vol. 27, no. 10, pp. 1449–1455,
October 1979.

[17] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and
multicommodity flow problems,”SIAM Comput., vol. 5, pp. 691–703,
December 1976.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[19] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network flows. Prentice
Hall, 1993.

