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Abstract

We consider the computation of equilibria for exchange economies. The general
problem is unlikely to admit efficient algorithms. We develop and adapt a number
of tools which allow us to take advantage of the structure of equilibria, when the
market satisfies a property, called weak gross substitutability, which guarantees that
the equilibria form a convex set. Using these tools we derive two polynomial time
algorithms: the first one is a simple and efficient discrete version of the tâtonnement
process, while the second one is based on the Ellipsoid method, and achieves a better
dependence on the approximation parameter. Our approach does not make use of
the specific form of the utility functions of the individual traders, and it is thus more
general than previous work.
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1 Introduction

The market equilibrium problem consists of finding a set of prices and allocations of goods to
economic agents such that each agent maximizes her utility, subject to her budget constraints,
and the market clears. The equilibrium equations, which are satisfied under mild assumptions
[1], express a static condition characterized by the fact that the market demand for each good
equals its market supply. This notion fails to predict any kind of dynamics leading to an
equilibrium, although it conveys the intuition that, in any process leading to a stable state
where demand equals supply, a disequilibrium price of a good will have to increase if the
demand for such a good exceeds its supply, and viceversa [3, 4].

The proofs of existence of equilibria [12] use general fixed point theorems and therefore
do not tell us how an equilibrium can be efficiently computed. An important question that
theoretical computer scientists have begun to address is whether there are efficient algorithms
for computing equilibria. The general problem seems to be computationally hard (see [13],
p.526), and the research has been focusing on markets which satisfy some economically
meaningful restrictions.

It has been shown that equilibria can be computed in polynomial time in various spe-
cial cases, the most important of which are exchange economies1 when traders have utility
functions that are linear [8, 11], Cobb-Douglas [9], or a range of CES functions [7]. These
important special cases are all instances where the market satisfies a property called weak
gross substitutability (WGS). Classical results in economics - see below - show that the price
equilibria in such markets are characterized by an infinite number of linear inequalities and
therefore form a convex set.

The combinatorial algorithm presented in [8] takes advantage of the special structure of
the demand when the traders have linear utility functions and proportional initial endow-
ments. The results in [11, 7] are based on explicit descriptions of the convex sets which
characterize the equilibria for linear and a range of CES functions.

In this paper, we show that under fairly general assumptions, there are polynomial-time
algorithms to compute equilibria in all markets that satisfy weak gross substitutability. To
show our results, we need to build on the proofs that characterize the equilibria as a convex
set using the right assumptions and ideas.

We present and analyze two algorithms:

1. A discrete version of the price-adjustment mechanism, known as tâtonnement, which
computes an approximation to the equilibrium in polynomial time, and with a poly-
nomial dependence on the approximation parameter. This algorithm is particularly
simple. A preliminary version of the result was presented in [6].

2. An algorithm based on the Ellipsoid algorithm, which approximates the equilibrium
in polynomial time, and which turns out to be exponentially better than algorithm 1.
in terms of the dependence on the approximation parameter. A preliminary version of
the result was presented in [5].

1Exchange economies are markets where the focus is on trading goods, while their actual production is
ignored.
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As a consequence, we obtain alternative polynomial time algorithms for computing equi-
libria for exchange economies with linear, Cobb-Douglas, and a range of CES utility func-
tions that satisfy weak gross substitutability. Unlike previously known polynomial time
algorithms, our approach does not make use of the specific form of these utility functions
and is in this sense more general.

Our results are built upon Lemma 1.1 below, which has been proven by Arrow, Block,
and Hurwicz [2] (the related definitions are in the next section).

Lemma 1.1 If an equilibrium price vector π̂ satisfies π̂j > 0, for each good j, if the market
satisfies gross substitutability (GS), positive homogeneity, and Walras’ law, then for any non-
equilibrium price vector π such that πj > 0 for each j, we have π̂TZ(π) > 0, where Z(π) is
the market excess demand at price π.

The Lemma generalizes to the case where there is only WGS [3, 4], and immediately
implies that the set of equilibrium prices form a convex set. It also gives, for any positive
price vector π that is not an equilibrium price vector, a separating hyperplane [10], that is,
a hyperplane that separates π from the convex set of equilibrium prices. Indeed we have∑

j π̂jZj(π) > 0, but
∑

j πjZj(π) = 0, by Walras’ law.
The Lemma can be used to show the convergence under WGS of the tâtonnement process

governed by the differential equation system:

dπk

dt
= Gk(Zk(π)), k = 1, 2, . . . , n, (1)

where Gk() is some continuous and differentiable, sign-preserving function.
The rest of this paper is organized as follows. In Section 2 we introduce the exchange

market model and provide some basic definitions. In Section 3 we describe a transformation
of the input market into another one with certain desirable properties. In Section 4 we
describe a computationally useful separation inequality.

In Section 5 we present and analyze a discrete version of the tâtonnement process that
runs in polynomial time. In Section 6 we present a different algorithm with a better depen-
dance on the approximation parameter, which uses the Ellipsoid algorithm.

Finally, in Section 7 we provide some concluding remarks.

2 Preliminaries

We first describe the exchange market model and provide some basic definitions.
Let us consider a market M with m economic agents who represent traders of n goods.

Let Rn
+ denote the subset of Rn with all nonnegative coordinates. The j-th coordinate in

Rn will stand for good j.
Each trader i has a concave utility function ui : Rn

+ → R+, which represents her
preferences for the different bundles of goods, and an initial endowment of goods wi =
(wi1, . . . , win) ∈ Rn

+.
The utility function ui is nonsatiable if for any x ∈ Rn

+ there is a y ∈ Rn
+ such that

ui(y) > ui(x). Nonsatiation is considered, in the theory of equilibrium, a standard and
extremely mild assumption (see [12], p. 42). We will assume that each trader is initially
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endowed with a strictly positive amount of at least one good, that is, wi ̸= 0. Let Wj =∑
iwij denote the total amount of good j in the market.
The input size of M is defined to be the number of traders plus the number of goods

plus the number of bits needed for encoding the rational numbers that describe the utility
functions and initial endowments.

An equilibrium is defined to be a vector of prices π = (π1, . . . , πn) ∈ Rn
+ at which there

is a bundle x̄i = (x̄i1, . . . , x̄in) ∈ Rn
+ of goods for each trader i such that the following two

conditions hold:

(i) For each trader i, the vector x̄i maximizes ui(x) subject to the constraints π ·x ≤ π ·wi

and x ∈ Rn
+, and

(ii) For each good j,
∑

i x̄ij ≤ Wj.

Note that the constraint2 π · x ≤ π ·wi in (i) says that the bundle x should cost no more
than the income π ·wi of trader i. Thus an equilibrium is a price vector at which the market
clears when traders exchange their initial endowments for a bundle of goods in an optimal
way.

For any price vector π, the vector xi(π) that maximizes ui(x) subject to the constraints
π · x ≤ π · wi and x ∈ Rn

+ is called the demand of trader i at prices π.
In this paper, we assume that the maximizing vector is unique if it exists. This is the

case with many of the commonly used utility functions. Notice that for any π ∈ Rn
+, the set

{x ∈ Rn
+|π · x ≤ π · wi} of feasible bundles for trader i is non-empty, since 0 is contained in

it. However, it can be unbounded if some of the prices in π are zero. In such a situation,
ui(x) may not attain its maximum, and if this happens we say that the demand xi(π) is
undefined. We stress that xi(π) can be undefined only if one or more components of π is
zero.

The excess demand of trader i is zi(π) = xi(π) − wi. Then Xk(π) =
∑

i xik(π) denotes
the market demand (or aggregate demand) of good k at prices π, and Zk(π) = Xk(π) −
Wk =

∑
i zik(π) the market excess demand of good k at prices π. The vectors X(π) =

(X1(π), . . . , Xn(π)) and Z(π) = (Z1(π), . . . , Zn(π)) are called market demand (or aggregate
demand) and market excess demand, respectively. Naturally, market demand and excess
demand are undefined if some individual demand is undefined. The nonsatiability of the
utility functions implies that at any price π for which the demand is well-defined, Walras’
Law holds: πTZ(π) = 0.

In terms of the excess demand function, the equilibrium is defined as a vector of prices
π = (π1, . . . , πn) ∈ Rn

+ such that Zj(π) ≤ 0, for each j.
In this article we assume that (the excess demand of) the market M satisfies weak gross

substitutability (WGS). That is, for any two sets of prices π and π′ such that 0 < πj ≤ π′
j, for

each j, and πj < π′
j for some j, we have that πk = π′

k for any good k implies Zk(π) ≤ Zk(π
′).

That is, increasing the prices for some of the goods while keeping some others fixed cannot
cause a decrease in the aggregate demand for the goods whose price is fixed. Clearly, a
market satisfies WGS if the excess demand of each individual trader does.

2Given two vectors x and y, we use x · y or xT y to denote their inner product.
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2.1 Approximate Equilibria

The algorithms we develop here compute approximate equilibria. To keep the definitions of
approximate equilibria simple, we assume that all the utility functions u() discussed in this
paper satisfy u(0) = 0.

Definition 2.1 A bundle xi ∈ Rn
+ is a µ-approximate demand (for µ ≥ 1) of trader i at

prices π if ui(xi) ≥ 1
µ
u∗ and πTxi ≤ µπTwi, where u∗ = max{ui(x)|x ∈ Rn

+, π
Tx ≤ πTwi}.

A price vector π ∈ Rn
+ is a weak µ-approximate equilibrium (µ ≥ 1) if there is a bundle

xi for each i such that (1) for each trader i, xi is a µ-approximate demand of trader i at
prices π, and (2)

∑
i xij ≤ µ

∑
i wij for each good j.

Observe that a 1-approximate equilibrium is just an equilibrium. For µ > 1, a µ-
approximate equilibrium relaxes the requirement that traders obtain optimal bundles to
the requirement that traders obtain nearly optimal bundles. The relaxation on other fronts
– approximate satisfaction of budget constraints, and approximate market clearance– are
only included for reasons of convenience. This is established in the following lemma.

Lemma 2.2 Let prices π be a weak µ-approximate equilibrium, and xi’s be the corresponding
allocations. Let yi =

1
µ
xi. Then yi is a µ2-approximate demand at π, satisfying (i) π · yi ≤

π · wi for each trader i, and (ii)
∑

i yij ≤
∑

iwij for each good j.

Proof: We have π · yi = 1
µ
π · xi ≤ π · wi, since xi is a µ-approximate demand at prices

π. This establishes (i). Similarly, we have
∑

i yij = 1
µ
xij ≤

∑
iwij, and thus we have (ii).

Finally, by the concavity of the ui’s it follows that

ui(yi) ≥ 1

µ
ui(xi) +

(
1− 1

µ

)
ui(0)

≥ 1

µ
ui(xi)

≥ 1

µ2
ui(xi(π)),

where xi(π) denotes the actual demand of trader i.
We also need a simple property of approximate demands that concerns their resilience to

small price changes.

Lemma 2.3 Let π and π′ be two sets of prices in Rn
+, and ε > 0 be such that for each j we

have (1) π′
j ≤ (1 + ε) · πj, and (2) πj ≤ (1 + ε) · π′

j. Let xi be a µ-approximate demand for
trader i at prices π. Then xi is a (1 + ε)2µ-approximate demand for trader i at prices π′.

Proof:
We will first show that xi approximately satisfies the budget constraint, to within a factor

of (1 + ε)2µ, at prices π′. Using (1) and the fact that π · xi ≤ µπ · wi, we get

π′ · xi =
∑
j

π′
jxij ≤ (1 + ε)

∑
j

πjxij ≤ (1 + ε)µπ · wi. (2)
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Using (2) we get

π · wi =
∑
j

πjwij ≤ (1 + ε)
∑
j

π′
jwij = (1 + ε)π′ · wi. (3)

Substituting (3) in (2), we get

π′ · xi ≤ (1 + ε)2µπ′ · wi.

We will now show that xi approximately maximizes trader i’s utility function at π′. Let
x∗ = xi(π) and y∗ = xi(π

′).
Set z = y∗

(1+ε)2
. By definition of y∗, we have

π′ · y∗ ≤ π′ · wi.

Using (1) and (2), we transform this into

1

(1 + ε)
π · y∗ ≤ (1 + ε)π · wi.

This implies that π · z ≤ π · wi. Since z ∈ Rn
+ and π · z ≤ π · wi, ui(x

∗) ≥ ui(z).
Therefore,

ui(x
∗) ≥ ui(z)

= ui

(
y∗

(1 + ε)2

)
= ui

(
y∗

(1 + ε)2
+ (1− 1

(1 + ε)2
) · 0

)
≥ 1

(1 + ε)2
ui(y

∗) +

(
1− 1

(1 + ε)2

)
ui(0) (by concavity of ui)

=
1

(1 + ε)2
ui(y

∗) (since ui(0) = 0).

Since ui(xi) ≥ 1
µ
ui(x

∗), it follows that

ui(xi) ≥
1

µ(1 + ε)2
ui(y

∗).

This completes the proof.

2.2 Demand Oracle

Our algorithms will assume a subroutine to compute the demand approximately at a given
price vector. This is a reasonable assumption, since the demand is computed by solving a
convex program for each trader.

Definition 2.4 An exchange market M is said to be equipped with a demand oracle if there
is an algorithm that takes as input a price vector π ∈ Qn

+ and a positive rational σ < 1, and
returns a vector Y = (Y1, Y2, . . . , Yn) such that |Yj − Zj(π)| ≤ σ for all j. The algorithm is
required to run in polynomial time in the input size and in log(1/σ).

We assume henceforth that the market M is equipped with a demand oracle.
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3 A Useful Transformation

We will now describe a transformation of the input market M (the one for which we wish to
compute an equilibrium) into a market M̂ whose excess demand function has some desirable
properties. Furthermore, the ratio of the maximum to minimum price at any equilibrium
price vector for M̂ is nicely bounded. The market M̂ can be thought of as a “perturbation”
of M , and readily inherits WGS as well as a demand oracle.

It is convenient to describe the transformation in two steps. In the first, we obtain an
intermediate marketM ′ in which the total amount of each good is 1. The new utility function
of the i-th trader is given by u′

i(x1, . . . , xn) = ui(W1x1, . . . ,Wnxn). It can be verified that, if
ui() is concave, then u′

i() is concave. The new initial endowment of the j-th good held by the
i-th trader is w′

ij = wij/Wj. Let w
′
i denote (w′

i1, . . . , w
′
in) ∈ Rn

+. Clearly, W
′
j =

∑
iw

′
ij = 1.

The following lemma summarizes some key properties of the transformation.

Lemma 3.1 1. For any µ ≥ 1, (xi1, . . . , xin) is a µ-approximate demand at prices (π1, . . . , πn)
for trader i in M ′ if and only if (W1xi1, . . . ,Wnxin) is a µ-approximate demand at prices
( π1

W1
, . . . , πn

Wn
) for trader i in M .

2. For any µ ≥ 1, (π1, . . . , πn) is a weak µ-approximate equilibrium for M ′ if and only if
( π1

W1
, . . . , πn

Wn
) is a weak µ-approximate equilibrium for M .

3. M ′ has a demand oracle if M does. The excess demand of M ′ satisfies WGS if the
excess demand of M does.

We transform M ′ into the market M̂ as follows. Let 0 < η ≤ 1 be a parameter. For each
trader i, the new utility function and initial endowments are the same, that is, ûi() = u′

i(),
and ŵi = w′

i. The new market M̂ has one extra trader, whose initial endowment is given by
ŵm+1 = (η, . . . , η), and whose utility function is the Cobb-Douglas3 function um+1(xm+1) =∏

j x
1/n
m+1,j. A trader with this Cobb-Douglas utility function spends 1

n
-th of her budget on

each good. Stated precisely, πjxm+1,j(π) = π · ŵm+1/n. The extra trader allows us to show

that at any equilibrium for M̂ the ratio between the largest price and the smallest price is
bounded above.

Note that the total amount of good j in the market M̂ is Ŵj =
∑m+1

i=1 ŵij = 1 + η.

Lemma 3.2 (1) The market M̂ has an equilibrium. (2) Every equilibrium π of M̂ satisfies
the condition

maxj πj

minj πj
≤ 2n/η. (3) For any µ ≥ 1, a weak µ-approx equilibrium for M̂ is a

weak µ(1 + η)-approx equilibrium for M ′. (4) M̂ satisfies WGS if M ′ does. (5) M̂ has a
demand oracle if M ′ does.

Proof: (1) follows from standard arguments. Briefly, a quasi-equilibrium π ∈ Rn
+ with

πj ̸= 0 always exists ([12], Chapter 17, Proposition 17.BB.2). A quasi-equilibrium π is
defined as a price vector at which there are allocations xi ∈ Rn

+ for each trader i so that
(a)

∑
i xij ≤

∑
i ŵij for each good j, and (b) for each trader i, any bundle y such that

ui(y) > ui(xi) should satisfy π ·y ≥ π ·ŵi. Observe that (b) is a weakening of the requirement

3The Cobb-Douglas utility function has the general form ui(x) =
∏

j(xij)
aij , where aij ≥ 0 and

∑
j aij =

1.
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that xi be a utility-maximizing bundle at price π; in particular, a trader whose income is 0
at price π is allowed to have an xi that is not utility maximizing.

However, at price π the income π · ŵm+1 of the (m+1)’th trader is strictly positive. This
ensures that that πj > 0 for each good j. Since each trader is assumed to have a strictly
positive amount of each good, this means that the income π · ŵi of each trader i is strictly
positive. From this it follows that each xi is actually utility maximizing (see [12], Chapter
17, Proposition 17.BB.1), and so π is an equilibrium.

For (2), assume that the equilibrium price vector π is scaled so that maxj πj = 1. At
price π, the income of the (m + 1)’th trader is π · ŵm+1 ≥ η. Since the (m + 1)’th trader
has the Cobb-Douglas utility function described above, she spends exactly a fraction 1/n of
her income on each good. For any good k, her demand for the good is therefore at least η

nπk
.

We must have η
nπk

≤ Ŵk = (1 + η) ≤ 2, which implies that πk ≥ η
2n
.

For (3), assume that π is a weak µ-approximate equilibrium for M̂ , and, for 1 ≤ i ≤ m+1,
let xi be the corresponding bundles. Evidently, for each 1 ≤ i ≤ m, xi is a µ-approximate
demand for i in the market M ′, and thus also a µ(1 + η)-approximate demand. For each
good k, we have

∑m+1
i=1 xik ≤ µŴk. Since xm+1,k ≥ 0, this implies that

∑m
i=1 xik ≤ µŴk =

µ(1 + η)W ′
k. Thus π is a weak µ(1 + η)-approx equilibrium for M ′.

For (4), note that the individual excess demand of the (m + 1)’th trader satisfies WGS.
The claim follows because the aggregate excess demand of M̂ is the sum of the aggregate
excess demand of M ′ and the individual excess demand of the (m+ 1)’th trader.

(5) follows for the same reason.

4 Computationally Useful Separation Inequalities

Our strategy is to compute a (1 + ε)-approximate equilibrium for M̂ . From Lemma 3.1
and Lemma 3.2 (applied with η = ε), this (1 + ε)-approximate equilibrium will then be a
(1 +O(ε))-approximate equilibrium for M .

We define ∆ = {π ∈ Rn
+|η/2n ≤ πj ≤ 1 for each j}. Note that Lemma 3.2 implies

that M̂ has an equilibrium price in ∆. We define ∆+ = {π ∈ Rn
+|η/2n − η/4n ≤ πj ≤

1 + η/4n for each j}.
Our algorithms aim to find an equilibrium for M̂ in ∆. In this section, we describe the

main tool that lets our algorithms make progress from an arbitrary candidate vector π ∈ ∆+.
Assuming that π is not a weak (1 + ε)-approx equilibrium for M̂ , the following two lemmas
show that the hyperplane normal to Z(π) and passing through π separates π from all points
within a distance δ of any equilibrium of M̂ in ∆. We henceforth let Z(π) and X(π) denote,
respectively, the excess demand vector and the aggregate demand vector in the market M̂ .

Lemma 4.1 For any π ∈ ∆+, ||Z(π)||2 ≤ 8n2/η.

Proof: In the following sequence, the third inequality follows from Walras’ Law using
simple manipulations, the fourth inequality holds because π ∈ ∆+, and the fifth inequality
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holds because Ŵj ≤ 2 for each j.

||Z(π)||2 ≤
∑
j

|Zj(π)|

≤
∑
j

Xj(π) +
∑
j

Ŵj

≤ maxk πk

mink πk

∑
j

Ŵj +
∑
j

Ŵj

≤ 2n

η

∑
j

Ŵj +
∑
j

Ŵj

≤ 4n2

η
+ 2n

≤ 8n2

η
.

The following lemma and its proof build upon classic work of Arrow et al. [2], and, in
particular, on Lemma 1.1 stated in the Introduction of this paper.

Lemma 4.2 Let π ∈ ∆+ be a price vector that is not a weak (1+ε)-approximate equilibrium
for M̂ , for some ε > 0. Then for any equilibrium π̂ ∈ ∆, we have π̂ · Z(π) ≥ δ > 0, where
δ ≤ 1 and 1/δ is bounded by a polynomial in n, 1

ε
, and 1

η
.

Proof:
Let us assume that the goods are indexed so that

π1

π̂1

≤ π2

π̂2

≤ · · · ≤ πn

π̂n

.

Let ti =
πi

π̂i
; we have t1 ≤ t2 ≤ · · · ≤ tn.

We are going to define a sequence of price vectors π1, . . . , πn. Let

πs = (π1, π2, . . . , πs−1, πs = tsπ̂s, tsπ̂s+1, tsπ̂s+2, . . . , tsπ̂n).

Thus πs is the component-wise minimum of the two vectors π and tsπ̂. Note that π1 is the
equilibrium vector t1π̂ and πn is the vector π.

It is helpful to imagine that the vector t1π̂ is being transformed to π in n − 1 steps via
the sequence of prices. We refer to the change in price from πs to πs+1 as the s’th step. Let
Gh

s = {1, . . . , s} and Gt
s = {s + 1, . . . , n}. Gh

s is the subset of goods whose prices remain
fixed during the s’th step, and Gt

s is the complement step. Using WGS, it is easy to argue
that Zj(π

s+1) ≥ Zj(π
s) for j ∈ Gh

s , and Zj(π
s+1) ≤ Zj(π

s) ≤ 0 for j ∈ Gt
s.

The claim for j ∈ Gh
s is immediate from the definition of WGS, as in going from πs to

πs+1 we keep j’s price fixed and only increase some other prices. For j ∈ Gt
s, let us consider

the vector

ts
ts+1

πs+1 = (
ts
ts+1

π1,
ts
ts+1

π2, . . . ,
ts
ts+1

πs, tsπ̂s+1, tsπ̂s+2, . . . , tsπ̂n).
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Since this is a scaling of πs+1, the demand for any good at this vector is the same as at πs+1.
In going from ts

ts+1
πs+1 to πs, the prices inGt

s are fixed while the prices inGh
s can only increase,

so the demand for any j ∈ Gt
s only increases. Thus Zj(π

s+1) ≤ Zj(π
s). Furthermore, since

j ∈ Gt
s implies that j ∈ Gt

s′ for s
′ < s, we have

Zj(π
s+1) ≤ Zj(π

s) ≤ · · · ≤ Zj(π
1).

For the sake of clarity, let us divide the rest of the proof into two steps.

Step 1. Here we will show that

π̂ ·
[
Z(πs+1)− Z(πs)

]
≥ 0 for each 1 ≤ s ≤ n− 1. (4)

From Walras’ law, we have

0 = πs+1 · Z(πs+1)− πs · Z(πs)

=
∑
j∈Gh

s

πj

[
Zj(π

s+1)− Zj(π
s)
]
+

∑
j∈Gt

s

ts+1π̂jZj(π
s+1)−

∑
j∈Gt

s

tsπ̂jZj(π
s)

= ts+1

∑
j

π̂j

[
Zj(π

s+1)− Zj(π
s)
]
−

∑
j∈Gh

s

(ts+1π̂j − πj)
[
Zj(π

s+1)− Zj(π
s)
]
+

∑
j∈Gt

s

(ts+1 − ts)π̂jZj(π
s).

Rearranging, we get

ts+1π̂ ·
[
Z(πs+1)− Z(πs)

]
=

∑
j∈Gh

s

(ts+1π̂j − πj)
[
Zj(π

s+1)− Zj(π
s)
]
−

∑
j∈Gt

s

(ts+1 − ts)π̂jZj(π
s).

Since ts+1π̂j − πj = ts+1π̂j − tjπ̂j ≥ ts+1π̂j − tsπ̂j for j ∈ Gh
s , Zj(π

s+1) − Zj(π
s) ≥ 0 for

j ∈ Gh
s , and Zj(π

s) ≤ 0 for j ∈ Gt
s, we obtain

ts+1π̂ ·
[
Z(πs+1)− Z(πs)

]
≥ (ts+1 − ts)

∑
j∈Gh

s

π̂j

[
Zj(π

s+1)− Zj(π
s)
]
.

Rearranging, we obtain

π̂ ·
[
Z(πs+1)− Z(πs)

]
≥ ts+1 − ts

ts+1

∑
j∈Gh

s

π̂j

[
Zj(π

s+1)− Zj(π
s)
]
. (5)

Since the right hand side of the inequality is non-negative, we have shown (4).

Step 2. Here we show that for at least one s, the right hand side of inequality (5) is
significantly larger than 0.

We say that the k’th step is a big step if tk+1 − tk ≥ εt1
3n
. We first claim that there must

be a big step. For otherwise, we have tn − t1 ≤ εt1
3
, and this implies that for each j,

t1π̂j ≤ tjπ̂j = πj ≤ tnπ̂j ≤ (1 + ε/3)t1π̂j.

9



Applying Lemma 2.3 to the vectors t1π̂ and π, we see that the demand at t1π̂ is a (1 + ε)-
approximate demand at π. Since the market clears with the demand at equilibrium t1π̂, this
implies that π is a weak (1 + ε)-approximate equilibrium, a contradiction.

Suppose that the s’th step is a big step. We have the following lower bound on the
increase of the income of the (m+ 1)’th trader when prices change from πs to πs+1.

πs+1 · wm+1 − πs · wm+1 ≥ πs+1
n wm+1,n − πs

nwm+1,n

= (ts+1 − ts)π̂nwm+1,n.

Recall that the (m + 1)’th trader is a Cobb-Douglas trader with a utility function that
ensures that she spends 1

n
th of her income on each good. As a result we have

xm+1,1(π
s+1)− xm+1,1(π

s) =
πs+1 · wm+1

nπs+1
1

− πs · wm+1

nπs
1

=
1

nπ1

(πs+1 · wm+1 − πs · wm+1)

≥ ts+1 − ts
nπ1

π̂nwm+1,n.

Since the original market M satisfies WGS and 1 ∈ Gh
s , we have

m∑
i=1

xi,1(π
s+1)−

m∑
i=1

xi,1(π
s) ≥ 0.

Adding the two inequalities, we get

Z1(π
s+1)− Z1(π

s) ≥ ts+1 − ts
nπ1

π̂nwm+1,n.

Since the transformed market M̂ satisfies WGS (Lemma 3.2), we have Zj(π
s+1)−Zj(π

s) ≥
0 for each j ∈ Gh

s and j ̸= 1. Thus, we have∑
j∈Gh

s

π̂j(Zj(π
s+1)− Zj(π

s)) ≥ ts+1 − ts
nπ1

π̂1π̂nwm+1,n.

This completes Step 2 of the proof. Plugging this inequality into Equation 5, and using
the fact that ts+1 − ts ≥ εt1

3n
, we have

π̂ ·
[
Z(πs+1)− Z(πs)

]
≥ ts+1 − ts

ts+1

∑
j∈Gh

s

π̂j

[
Zj(π

s+1)− Zj(π
s)
]

≥ ts+1 − ts
ts+1

ts+1 − ts
nπ1

π̂1π̂nwm+1,n

≥ ε2t21
9n3π1ts+1

π̂1π̂nwm+1,n.
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Adding to this inequality the sequence of inequalities

π̂ ·
[
Z(πs′+1)− Z(πs′)

]
≥ 0 for each 1 ≤ s′ ≤ n− 1, s′ ̸= s,

we obtain

π̂ ·
[
Z(πn)− Z(π1)

]
≥ ε2t21

9n3π1ts+1

π̂1π̂nwm+1,n.

Since πn = π, and π̂ · Z(π1) = π̂ · Z(t1π̂) = 0 by Walras’ law,

π̂ · Z(π) ≥ ε2t21
9n3π1ts+1

π̂1π̂nwm+1,n.

Since π, π̂ ∈ ∆+, each component of these vectors is bounded above by a polynomial in
n and 1

η
, and below by the inverse of such a polynomial. The same is therefore true for the

ti. Note that wm+1,n = η. Thus the proof of the lemma is completed.

5 Computing Equilibria via Tâtonnement

We now present an efficient algorithm, which is a discrete version of tâtonnement, for com-
puting an approximate equilibrium for a market M . The algorithm does this by computing
an approximate equilibrium for the transformed market M̂ . We start with an arbitrary price
vector in the region ∆. In each iteration, if the current vector is an approximate equilibrium,
we are done. Otherwise, we compute the excess demand vector at the current price and take
a step in the direction of the excess demand vector. A special case occurs when the current
vector is not in ∆+; in this case, we “manually” move to a vector within ∆.

5.1 The Algorithm

Let π0, the initial price, be any point in ∆. Suppose we have computed a sequence of prices
π0, . . . , πi−1. We compute πi as follows. If πi−1 ̸∈ ∆+, we let πi be the point in ∆ closest
to πi−1. In other words, πi

j = πi−1
j if η/2n ≤ πi−1

j ≤ 1; πi
j = 1 if πi−1

j > 1; πi
j = η/2n if

πi−1
j < η/2n.

If πi−1 ∈ ∆+, then we use the demand oracle to compute a vector Y i−1 = (Y i−1
1 , . . . , Y i−1

n )
such that |Y i−1

j − Zj(π
i−1)| ≤ δ/4n for each j. We let

πi = πi−1 +
δ

2
· 1

(9n2/η)2
Y i−1.

5.2 Analysis

Let us fix an equilibrium π∗ of M̂ in ∆. We argue that in each iteration, the distance to π∗

falls significantly so long as we don’t encounter an approximate equilibrium in ∆+. If the
current iteration started off from a vector not in ∆+, this decrease in distance follows from
direct inspection. On the other hand, if the current iteration started off from a vector in
∆+, the decrease in distance is derived from Lemma 4.2. The details follow.
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Let us consider the i’th iteration where we move from πi−1 to πi. If πi−1 ̸∈ ∆+, we have
|πi−1

j − π∗
j | − |πi

j − π∗
j | ≥ 0 for each j, while |πi−1

j − π∗
j | − |πi

j − π∗
j | ≥ η/4n for some j. From

this it follows that
||π∗ − πi−1||2 − ||π∗ − πi||2 ≥ (η/4n)2.

Now suppose that πi−1 ∈ ∆+ and that πi−1 is not a weak (1 + ε)-approx equilibrium for
M̂ . By Lemma 4.2, π∗ · Z(πi−1) ≥ δ. Since πi−1 · Z(πi−1) = 0 by Walras’ Law, we have
(π∗ − πi−1) · Z(πi−1) ≥ δ. Now

(π∗ − πi−1) · Y i−1 ≥ (π∗ − πi−1) · Z(πi−1)−
∑
j

|Y i−1
j − Zj(π

i−1)| ∗ |π∗
j − πi−1

j |

≥ δ −
∑
j

δ

4n
· 2

≥ δ/2.

Also note that since ||Z(πi−1)||2 ≤ 8n2/η (Lemma 4.1), and ||Z(πi−1)− Y i−1||2 ≤ 1, the
triangle inequality implies that ||Y i−1||2 ≤ 9n2/η.

Let q denote the vector δ
2

1
(9n2/η)2

Y i−1, the step taken in the i’th iteration. We have

(π∗ − πi−1 − q) · q = (π∗ − πi−1) · q − q · q

=
δ

2

1

(9n2/η)2

(
(π∗ − πi−1) · Y i−1 − δ

2

1

(9n2/η)2
Y i−1 · Y i−1

)
≥ δ

2

1

(9n2/η)2

(
δ/2− δ

2

1

(9n2/η)2
(9n2/η)2

)
≥ 0.

Thus,

||π∗ − πi−1||2 − ||π∗ − πi||2 = ||π∗ − πi−1||2 − ||π∗ − πi−1 − q||2

= (π∗ − πi−1) · q + (π∗ − πi−1 − q) · q
≥ (π∗ − πi−1) · q

=
δ

2
· 1

(9n2/η)2
(π∗ − πi−1) · Y i−1

≥ δ2

4(9n2/η)2
,

Suppose that every vector in the sequence π0, . . . , πk is either (a) not in ∆+, or (b) in
∆+ but is not a weak (1 + ε)-approx equilibrium. We then have

||π∗ − πi−1||2 − ||π∗ − πi||2 ≥ min{ δ2

4(9n2/η)2
, (η/4n)2},

for 1 ≤ i ≤ k. Let µ denote min{ δ2

4(9n2/η)2
, (η/4n)2}. Adding these inequalities, we get

kµ ≤ ||π∗ − π0||2 − ||π∗ − πk||2 ≤ n.
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Thus k ≤ n
µ
. We conclude that within n

µ
+ 1 iterations, the algorithm computes a price

in ∆+ which is a weak (1 + ε)-approximate equilibrium for M̂ . It can be verified that the
bound on µ is polynomial in the input size of the original market M , 1/ε, and 1/η. Setting
η = ε in the transformation corresponding to Lemma 3.2, and putting everything together,
we obtain:

Theorem 5.1 Let M be an exchange market whose excess demand function satisfies WGS,
and suppose that M is equipped with a demand oracle. For any 0 < ε < 1, the tâtonnement
based algorithm computes, in time polynomial in the input size of M and 1/ε, a sequence of
prices one of which is a weak (1 + ε)-approx equilibrium for M .

In order to actually pick the approximate equilibrium price from the sequence of prices,
we need an efficient algorithm that recognizes an approximate equilibrium of M . In fact,
it is sufficient for this algorithm to assert that a given price π is a weak (1 + 2ε)-approx
equilibrium provided π is a weak (1+ε)-approx equilibrium. Since the problem of recognizing
an approximate equilibrium is an explicitly presented convex programming problem, such
an algorithm is generally quite easy to construct.

6 Algorithm Based on Ellipsoid Method

In this section, we describe an algorithm that computes a (1+ε)-approximate equilibrium for
market M in time that is polynomial in the input size of M and in log 1

ε
. This is in contrast

to the tâtonnement based algorithm of the previous section, whose running time depends
polynomially on 1

ε
. As before, we will focus on computing a (1+ ε)-approximate equilibrium

for the transformed market M̂ . We will use the Ellipsoid algorithm. In order to apply this
method, we will first define a suitable size convex body that contains an equilibrium price
vector.

Let π∗ be some equilibrium for M̂ in ∆+. Let

λ = min{ η

4n
,

δ

4n(9n2/η)
} ,

where δ is as in Lemma 4.2. Let D denote the cube

{σ ∈ Rn | |σj − π∗
j | ≤ λ}.

The cube D is small enough to have several useful properties listed below, while having
large enough volume for the Ellipsoid method.

Lemma 6.1 We have (i) D ⊆ ∆+; (ii) for any π ∈ ∆+ that is not a weak (1+ε)-approximate
equilibrium, σ ∈ D, and Y ∈ Rn such that |Yj − Zj(π)| ≤ δ

8n
for 1 ≤ j ≤ n, we have

π · Y ≤ σ · Y .

Proof: That D ⊆ ∆+ is a consequence of π∗ ∈ ∆ and λ ≤ η
4n
. To show (ii), we first note

that

π∗ · Y ≥ π∗ · Z(π)− π∗ · (Y − Z(π)) ≥ π∗ · Z(π)−
∑
j

δπ∗
j

8n
≥ δ −

∑
j

2δ

8n
≥ 3δ

4
,

13



where in the penultimate inequality we use Lemma 4.2 and the fact that that π∗
j ≤ 2.

Similarly,

π · Y ≤ π · Z(π) +
∑
j

δπj

8n
≤ 0 +

δ

4
≤ δ

4
.

Finally, for σ ∈ D, we bound

σ · Y ≥ π∗ · Y − |(σ − π∗) · Y |

≥ 3δ

4
− nλ ∗ ||Y ||2

≥ 3δ

4
− δ

4

≥ δ

2
.

where we used the bound from Lemma 4.1:

||Y ||2 ≤ ||Z(π)||2 + ||Y − Z(π)||2 ≤
8n2

η
+ 1 ≤ 9n2

η
.

Since σ · Y ≥ δ
2
> δ

4
≥ π · Y , we have completed the proof of (ii).

The Ellipsoid Application

We are now ready to apply the central-cut ellipsoid method, Theorem 3.21 from [10]. Here
is the central-cut ellipsoid theorem, slightly modified to suit our purpose:

Theorem 6.2 There is an algorithm, called the central-cut ellipsoid method, that solves the
following problem:

Input: A rational number µ > 0 and a closed convex set C ⊆ Rn contained in a ball of
radius R. There is an oracle that for any π ∈ Qn either accepts π or finds a vector c ∈ Qn

such that c · σ ≤ c · π for any σ ∈ C.
Output: Either (i) a vector a ∈ Qn that the oracle accepts, or (ii) an ellipsoid E such

that C ⊆ E and vol(E) ≤ µ.
The number of calls that the algorithm makes to the oracle is polynomial in n and the

encoding length of its input parameters R and µ. The number of bits used to represent the
rational numbers in the vectors given to the oracle is also bounded by such a polynomial.

To apply the theorem, we let the closed convex set C be the cube D. We choose R = 2n
since D ⊆ ∆+ is contained in a ball of radius 2n centered at the origin. We let µ be a positive
rational number that is smaller than the volume of D, and its decimal representation has a
number of bits that is polynomial in n, log 1/η, and log 1/ε. Note that such a µ does exist
and is readily computed.

As for the oracle, it works as follows. If π ∈ ∆+ and π is a (1+ε)-approximate equilibrium
for M̂ , the oracle accepts. Otherwise, there are two cases:
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• π ̸∈ ∆+: Then there is a j such that either πj < η
4n

or πj > 1 + η
4n
. If πj < η

4n
,

the oracle returns c = −ej, where ej is the coordinate vector in the j-th direction. If
πj > 1 + η

4n
, the oracle returns c = ej. From Lemma 6.1 (i), it follows that c · σ ≤ c · π

for any σ ∈ D.

• π ∈ ∆+: We consult the demand oracle to find a Y ∈ Rn
+ such that |Yj − Zj(π)| ≤ δ

8n

for 1 ≤ j ≤ n. The oracle returns c = −Y . From Lemma 6.1 (ii), it follows that
c · σ ≤ c · π for any σ ∈ D.

What is the output of the central-cut ellipsoid method on the input we have described?
One possibility is that it is an ellipsoid E such that D ⊆ E and vol(E) ≤ µ. But this is
impossible since µ < vol(D). Thus we can conclude that the ellipsoid algorithm produces a
vector that the oracle accepts, that is, a weak (1 + ε)-approximate equilibrium in ∆+.

As for the running time, we observe that the number of calls that the ellipsoid algorithm
makes to its oracle is bounded by a polynomial in n, log 1/η, and log 1/ε. This oracle may
in turn call the demand oracle, but the overall running time of this call is bounded by a
polynomial in the input size of market M , log 1/η, and log 1/ε. We may conclude that the
running time of the overall algorithm is also bounded by such a polynomial.

Setting η = ε, we obtain a weak (1 + O(ε))-approximate equilibrium for the original
market M (Lemmas 3.1 and 3.2).

Theorem 6.3 Let M be an exchange market whose excess demand function satisfies WGS,
and suppose that M is equipped with a demand oracle. For any 0 < ε < 1, the above
algorithm computes, in time polynomial in the input size of M and in log 1/ε, a sequence of
prices one of which is a weak (1 + ε)-approx equilibrium for M .

7 Conclusions

We have developed a quite general framework which allowed us to introduce two efficient
algorithms for the computation of equilibria in exchange markets where the traders have
linear, Cobb-Douglas, or some CES utility functions. We expect our framework to work or
be readily adaptable to handle other exchange markets, provided that the utility functions
satisfy weak gross substitutability.
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