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Abstract

A significant challenge for researchers analysing the Internet AS-level
topology graph is how to interpret the global organization of the graph as
the coexistence of its structural blocks (communities) associated with more
highly interconnected parts. While a huge number of papers have already
been published on the issue of community detection, very little attention
has so far been devoted to the discovery and interpretation of Internet com-
munities at the various levels of abstractions.

We believe that by discovering and interpreting a priori these unknown
building blocks (i.e. communities), this will then pave the way for new
types of analysis which are crucial in understanding of the structural and
functional properties of the Internet at least at the AS level of abstraction.

We thus propose a novel type of analysis of the Internet AS-level topology
graph by exploiting the k-clique community definition. First, we show that
detected communities can be described by a tree representation. Then we
show the presence of two classes of k -clique communities: those that are
strictly affected by the nesting process which is embedded in the k -clique
community definition, and, on the other hand, those that appear as branches
in the tree. We conclude our analysis by highlighting the properties that
characterize k -clique communities with different k values by exploiting both
geographical data and information related to IXPs.



Chapter 1

Introduction and Related
Work

The identification of communities within complex networks is an interesting
methodology which provides an insight into the structural characteristics
of the overall network. Knowledge of community structures can help to
reveal the functional organization in networks [18]. In addition, the inter-
actions of many components and the topological properties fundamentally
affect the dynamics of the network [27]. Thus, the study of the structural
and functional properties of complex networks through the identification of
their community structure is a hot research topic. Although there is no
broadly accepted definition of a community, many methods have been pro-
posed to reveal the community structure of complex networks. According
to [27] there are two categories of community detection methods: those that
provide a partition of the network and those that provide a cover of the
network. The main difference between these two techniques is that the for-
mer category does not allow communities to overlap, while the latter does.
Regarding the Internet topology graph at the Autonomous System (AS)
level of abstraction, we are interested in exploiting the second category of
community detection methods since we believe that Internet AS-level com-
munities should satisfy the following properties: communities should identify
dense subgraphs of the graph indicating that each community AS is really
interested in connecting to other community ASes, in addition overlapping
communities should be allowed (e.g. consider for instance worldwide ASes
or ASes that take part in many IXPs). There are many studies on the
structural properties of the Internet AS-level topology graph that partition
the network into communities. For instance, k -core decomposition [26] and
k -dense methods [25] have been used in [6], [3],[10] and [12]. In contrast,
there are several works that present the structural properties of the network
by adopting covers, for instance, [23], [18], [27], [21] and [16]. See [9] and
[17] for a detailed survey on community detection algorithms.
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The Clique Percolation Method (CPM) [23], the Greedy Clique Expan-
sion (GCE) algorithm [18] and the EAGLE (agglomerativE hierarchicAl
clusterinG based on maximaL cliquE) algorithm [27] detect communities
within complex networks starting from maximal-cliques, hence they are
likely to identify very dense zones of the overall graph. However, we decided
to consider the k -clique community definition and to avoid using GCE and
EAGLE algorithms for the following reasons: the community fitness function
used in GCE is not compliant with an Internet AS-level environment since
it searches for sub-graphs where nodes have more internal connections than
external connections, EAGLE neglects all maximal cliques with a k smaller
than a threshold, hence it discards small cliques which could otherwise rep-
resent local communities within the Internet AS-level graph. In addition,
the authors themselves admit that EAGLE is more time-consuming than
the k-clique algorithm.

In this paper we study the structural properties of the Internet AS-level
topology by using the k -clique communities defined in [23]. This approach
enables us to detect overlapping communities with a high internal density.
Although communities are often thought of as a set of nodes that has more
connections between its members than with the rest of the network [19], we
believe that this feature is not required in the Internet AS-level environ-
ment. Consider, for instance, a group of regional transit providers who are
really interested in connecting to each other in order for the traffic to remain
localized and to prevent traffic from unnecessarily traversing other transit
networks. This set of ASes is likely to form a community although, it is
highly probable that the vast majority of their connections will be directed
to customer ASes, i.e. outside the community. In order to illustrate this
concept further, let us look at another example. Consider the set of Tier-1
ASes. By definition this set is made up of ASes that can reach every other
network on the Internet without purchasing IP transit, hence they have
to form a full-mesh topology and can be regarded as an Internet AS-level
community. On the other hand, Tier-1 ASes are characterized by a huge
number of connections (e.g. thousands of connections) that are directed
to their customers. Thus, like the previous example, a community detec-
tion method based on the-more-connections-between-members property [19]
would not provide for this kind of community. k -clique communities are not
affected by this issue. In terms of an analysis of the community structure
of the Internet AS-level topology we considered the following papers: [21]
and [16]. [16] uses inconsistent community detection methods as its start-
ing point, such as [5], [7] and [28], and provides a solution for improving
consistency without compromising the modularity. On the other hand [21]
analyses 12 real networks by adopting the methodology described in [16].
[16] proposes an interesting method to interpret communities extracted from
the Internet AS-level topology. Specifically, by using the RIPE Data Search
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tool1 it shows that there are communities made up of ASes which are geo-
graphically close, and it also uses the AS type dataset of [29]. [21] provides
a more detailed analysis of Internet AS-level communities by studying com-
munities extracted from [8] and [22] using the z-P analysis [13]. In our
analysis of Internet k -clique communities we avoided using methods such
as [13], since they rely on threshold based on heuristics. Nevertheless, we
interpret the detected communities by exploiting both the geographical and
the IXP datasets (see Chapter 2 for more details) as done in [10] and [12].

To the best of our knowledge k -clique communities have never been ex-
tracted from the Internet AS-level topology graph due to the computational
requirements of the Clique Percolation Method (CPM is the algorithm pro-
posed by [23], which enables k -clique communities to be extracted from a
graph). However, by using the algorithm described in [11] we were able
to extract the k -clique communities from our Internet AS-level topology
dataset in about 93 hours by running the Lightweight Parallel Clique Perco-
lation Method on a 48-core computer. The main contributions of this paper
are as follows:

• An analysis of the structural properties of the Internet AS-level topol-
ogy graph by exploiting the k -clique communities definition [23];

• An analysis of the relationships between overlapping communities of
a given order k ;

• An interpretation of the driving factors behind such structural prop-
erties by means of two additional datasets, i.e. the IXP and the geo-
graphical datasets.

The remainder of this paper is organized as follows: in Chapter 2 we describe
the topological dataset we used to compute the k -clique communities and the
additional datasets in order to interpret the results of community detection.
In Chapter 3 we describe the main characteristics of k -clique communities.
In Chapter 4 we present our analysis of the k -clique communities detected
within the Internet AS-level topology graph, and we summarize our results
in Chapter 5.

1http://www.db.ripe.net/whois
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Chapter 2

Data sources

In this section we describe the datasets we used to study the structural
properties of the Internet AS-level topology graph. All the datasets, i.e. the
topology, the IXP and the geographical datasets, were obtained at the end
of April 2010. Thus, data belonging to different datasets are compliant and
can be correlated by means of tags.

2.1 Topology dataset

The Internet AS-level topology dataset, hereinafter Topology dataset, is a
collection of connections between ASes that describes the Internet AS-level
topology as an undirected unweighted graph. This dataset was built accord-
ing to the methodology described in [10], briefly: a) we downloaded three
public available datasets (the IPv4 Routed /24 AS Links dataset [15], the
Distributed Internet MEasurements and Simulations dataset [1] and the In-
ternet Topology Collection at the Internet Research Lab dataset [2]) consid-
ering the measurement campaigns performed in April 2010; b) we merged
the three datasets; c) we then removed spurious data from the topology.
The resulting Topology dataset is made up of 35,390 ASes and 152,233
connections.

2.2 IXP dataset

Internet Exchange Points (hereinafter IXPs) make up a physical infrastruc-
ture that allows its participants, i.e. ASes, to easily establish connections
with each other. ASes can reduce their costs by participating in these fa-
cilities (i.e. a part of their network is in the colocation center) since they
can connect directly with other participants and settle BGP connections on
the IXP rather than setting up multiple ad-hoc point-to-point connections
or exploiting one or more third party networks. Over the last few years, re-
searchers have proved the fundamental role of IXPs in Internet connectivity
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([14], [4]). In addition, [10] and [12] highlighted that ASes participating at
IXPs are responsible for the creation of well-connected zones of the Internet
AS-level topology. In this paper we use the IXP dataset that was exploited
in [10] and [12]. This dataset is a collection of information related to 232
IXPs, from all over the world, that were active in April 2010. Each IXP is
associated with a geographical location and a list of ASes which participate
in it. See [10] for an exhaustive description of IXP data gathering process.

2.3 Geographical dataset

ASes are made up of networks that can be placed in more than one location.
Currently, ASes can be present in more than one city, country or, sometimes,
in more than one continent. This information, which it is often correlated
to the business profile of the considered AS, can be useful in order to under-
stand how geography can affect the creation of communities. We thus used
a Geographical dataset which enabled us to associate to each AS with a list
of countries in which it has at least one point of presence. This collection
was created in April 2010 by exploiting the MaxMind Geolite data1 follow-
ing to the method described in [12]. The resulting geographical database
associates 34,190 ASes with at least one country code.

2.4 Tags

The Topology dataset and the IXP and Geographical datasets were corre-
lated by defining two kinds of tags. The first category of tags is related to
the IXP dataset: an AS is called an on-IXP AS if it belongs to at least one
IXP participant list; otherwise, an AS is referred to as a not-on-IXP AS.
The second category of tags refers to the Geographical dataset: an AS is
called a national AS if all of its geographical locations belong to the same
country, i.e. its networks are placed within a single country. An AS is called
a continental AS if all of its geographical locations are placed within the
same continent. An AS is called a worldwide AS if it owns at least two
geographical locations that are located in two different continents.

on-IXP not-on-IXP

4,462 30,928

Table 2.1: Summary of tagging results.

In Table 2.1 and in Table 2.2 we show the number of ASes of the Topology
dataset that belong to each category. Please note that we refer to those ASes

1In this work we use GeoLite data created by MaxMind, available from
http://www.maxmind.com/.
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National Continental Worldwide Unknown

31,228 1,115 1,568 1,479

Table 2.2: Summary of tagging results.

whose geographical locations have not been discovered (i.e. they are not part
of the Geographical dataset) as unknown ASes. These ASes are mostly
stub ASes with a low degree [12].

In the following we will also exploit the concept of the tag-induced
subgraph. According to [24], a subgraph of G (i.e. a generic graph) induced
by the tag α is made up of all the edges of G whose endpoints are both
tagged with the tag α. If we apply this definition to the previously described
datasets, we can build, for instance, an IXP-induced subgraph or a country-
induced subgraph by considering all the participant ASes of a single IXP or
all the ASes with a geographical location in a given country respectively.
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Chapter 3

k-clique Communities
Detection

As introduced in Chapter 1, in this paper we analyse the structural proper-
ties of the Internet AS-level topology graph by using k -clique communities.
The definition of a k -clique community reported in [23] is the following: a
k -clique community is a union of all k -cliques (complete subgraphs of size
k) that can be reached from one or the other through a series of adjacent
k -cliques (where adjacency means sharing k−1 nodes). These k -clique com-
munities have the following properties: a) their definition is deterministic;
b) overlapping is allowed; c) each community identifies a set of cohesive
nodes, since it can be described as a chain of fully-connected subgraphs
(i.e. k -cliques). This is mainly why we adopted k -clique communities to
analyze of the Internet AS-level topology. On the basis of the k -clique com-
munity definition we can prove that, for each k -clique community of order k,
communityi(k), there exists one and only one k -clique community of order
k-1 (or k-1 -clique community), communityj(k − 1), such that:

communityi(k) ⊆ communityj(k − 1), (3.1)

i.e. communityi(k) is a subgraph of communityj(k − 1) (A proof of this is
shown in Section 3.1). Thus, if we have a single community for each k, we can
model the graph as a set of nested communities. On the other hand, when
we have more than a single community for each k, there can exist k-1 -clique
communities that do not include any of the k -clique communities.

The k -clique communities studied in this paper were extracted from our
Topology dataset by applying the Lightweight Parallel Clique Percolation
Method [11]. Although this process of community detection took about
four days to complete on a 48-core machine (see [11] for more details), the
Lightweight Parallel Clique Percolation method, to the best of our knowl-
edge, was the only algorithm that would enable us to obtain these k -clique
communities, at least with our Topology dataset. This large execution time
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depends on the number of maximal k -clique found in the Topology dataset
and their distribution. In the Topology dataset there are 2,730,916 maximal
k -cliques, 88% of which have k values in the range [18 : 28].

3.1 k-clique nesting proof

Graph G is an undirected graph without self-links, i.e.:

G =

{
VG = {1, . . . , N}
EG = {e1, . . . , eM}

(3.2)

where VG is a set of nodes and EG is a set of edges where em = {i, j} ⊂ VG
and i 6= j.

k-clique We define k -clique as the subgraph clique(k) ⊂ G such that:

clique(k) =

{
Vclique(k) = {1, . . . , Nclique(k)}
Eclique(k) = {e1, . . . , eMclique(k)

} (3.3)

where:

•
∣∣Vclique(k)∣∣ = Nclique(k) = k ;

•
∣∣Eclique(k)

∣∣ = Mclique(k) = k · (k − 1);

• em = {i, j} ⊂ Vclique(k).

Since clique(k) ⊂ G, it follows that i 6= j, hence: each node i ∈ Vclique(k) con-
nects to each other node j ∈ Vclique(k), i.e. it is involved in k−1 connections.

k-clique community We define k -clique community a connected compo-
nent of the graph C(k):

C(k) =

{
VC(k) = {1, . . . , NC(k)}
EC(k) = {e1, . . . , eMC(k)

} (3.4)

where:

• i ∈ VC(k) is a k -clique, i.e. i = cliquei(k) ⊂ G;

• em = {i, j} ⊂ VC(k) such that
∣∣∣Vcliquei(k) ∩ Vcliquej(k)∣∣∣ = k − 1.

Hereafter, we will refer to a k -clique community as communitync(k), where
nc has values in the range [1 : NC(k)] ( NC(k) is the number of distinct
k -clique communities of order k within a graph G).
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Theorem 1. For each k-clique community, communityi(k), there exists a
unique k-1-clique community, communityj(k − 1) such that:

communityi(k) ⊆ communityj(k − 1)

Proof. communityi(k) is a connected component of the graph C(k) (see Ex-
pression 3.4). communityi(k) can be represented as a graph whose nodes
are k -cliques and edges connect k -cliques that share k − 1 members. Each
connection em of a k -clique-community connects two distinct k -cliques, sup-
pose they are cliqueI(k) and cliqueII(k). Hence, each em, or eI−II can be
thought of as a set of k + 1 distinct nodes:

• nodeI∗ is part of cliqueI(k) but it does not belong to cliqueII(k);

• nodeII∗ is part of cliqueII(k) but it does not belong to cliqueI(k);

• there are k−1 nodes that make up cliqueI(k)∩cliqueII(k). Hereinafter,
we will refer to this set of nodes as VI∩II .

Figure 3.1: Connection between cliqueI(k) and cliqueII(k).

Each subset of a clique(k) is a complete subgraph by definition. Hence
nodes belonging to VI∩II form a clique(k − 1). Hereinafter we will refer
to this k-1 -clique as cliqueI∩II(k − 1). Now select a node within the set
VI∩II and refer to it as node(I∩II)∗. There can be individuated 3 distinct
k-1 -cliques:
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• cliqueI(k − 1) is a subset of cliqueI(k) composed of this set of nodes:
VcliqueI(k−1) =

{
VcliqueI(k) \ node(I∩II)∗

}
= {nodeI∗ ∪ VI∩II}.

• cliqueII(k−1) is a subset of cliqueII(k) composed of this set of nodes:
VcliqueII(k−1) =

{
VcliqueII(k) \ node(I∩II)∗

}
= {nodeII∗ ∪ VI∩II}.

• cliqueI∩II(k − 1) = cliqueI(k) ∩ cliqueII(k).

cliqueI(k − 1) and cliqueI∩II(k − 1) share k − 2 nodes. cliqueII(k − 1)
and cliqueI∩II(k − 1) share k − 2 nodes too. Then these three k-1 -cliques
are part of a common connected component within the graph C(k − 1).
Hence they are part of a common k-1 -clique community. We can extend this
reasoning to all the connections that make up the communityi(k) and find
that communityi(k) is a subset of a communityj(k − 1). communityj(k −
1) is unique since there cannot exist two distinct connected components
within the C(k − 1) graph sharing edges by definition of distinct connected
components.

Figure 3.2: Translation of a connection belonging to a C(k) graph into two
connections within the C(k − 1) graph.
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Chapter 4

Analysis of the k-clique
Communities within the
Internet AS-level Topology
Graph

When the Lightweight Parallel Clique Percolation Method is applied to the
Topology dataset the result is 627 k -clique communities. In Figure 4.1 we
show the number of k -clique communities for each k. While low k values are
characterized by the presence of several communities, high k values present
a small number of communities. Note that, since the Topology dataset
corresponds to a single connected component, it follows that there is a single
2-clique community.

If we analyse Figure 4.1 bearing in mind Expression 3.1, we can state
that all those k -clique communities that are unique (i.e. there is a single
community for that k) include all the relative k-1 -clique communities. Con-
sider, for instance, k equal to 25, since Expression 3.1 holds, all the three
26-clique communities are subgraphs of the 25-clique community. In ad-
dition, since for each 27-clique community, there exists one and only one
26-clique community that includes it, it follows that the 25-clique commu-
nity considered also contains all the 27-clique communities. If we extend
this to the higher k values, then the 25-clique community can be said to
include all the k -clique communities with a k value higher than 25. This
property holds for all unique k -clique communities (i.e. 2, 21, 22, 25, 36).

On the other hand, by applying Expression 3.1 recursively, we can assert
that given a k -clique community of order k̃, there is a k -clique community
that completely contains it for each k < k̃. Thus, there are 34 k -clique
communities that contain the 36-clique community. Hereinafter, we refer to
these communities as main communities (the 36-clique community is also
part of this set), and we refer to the remaining communities as parallel com-
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Figure 4.1: Number of k -clique communities vs. k.

munities. The relationships discussed above can be summarized with a tree
representation, namely a k -clique community tree. We can represent each k -
clique community with a node and we can plot an edge connecting a k -clique
community with its relative k-1 -clique community (i.e. the k-1 -clique com-
munity which fully contains it). For each k there is a main community (the
node filled with black) and, very often, more than one parallel community
(unfilled nodes). The k -clique community tree is shown in Figure 4.2. We
found that the properties that characterize main communities and parallel
communities can be very different, unless we observe k -clique communities
with a high k value close to 36.

We can start our analysis of k -clique communities by considering the size
of the community, i.e. the number of ASes which belong to a community.
In Figure 4.3 we plot the size of each community using two different point
styles in order to distinguish the values related to main communities from
the values related to parallel communities. The main community is made
up of all the Topology dataset for k = 2, i.e. its size is equal to 35,390, then
its size decreases rapidly as k increases. The size of the main community
is comparable to that of parallel communities only for k close to 36. The
vast majority of parallel communities have a size value which is close to the
k value, i.e. they are made up of a small number of maximal cliques. Their
size trend obviously increases as the minimum size of a k -clique community
is k by definition. Those decreasing trends for the parallel communities with
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Figure 4.2: k -clique community tree (for readability no k -clique communities
with a k ≤ 5 are shown).

k in one of these ranges, [11 : 17] or [18 : 20] or [26 : 29] or [31 : 35], appear
as branches of the tree.

In order to better understand the role of k -clique communities, both main
and parallel, within the Internet AS-level topology graph, we plot in Figure
4.4(a) their link density [17] and in Figure 4.4(b) their average Out Degree
Fraction [20], hereinafter ODF. Link density is defined as the fraction of
existing connections (within the community) to possible connections. This
metric has values in the range [0 : 1] and indicates how densely-connected a
subgraph (community) is by comparing its number of edges with the number
of edges of a relative full mesh topology. ODF also has values in the range
[0 : 1]. Given a node i, its ODF is the ratio between its degree within
the subgraph (community) and its overall degree, i.e. its degree within the
Internet AS-level topology graph. Thus, the average ODF of a subgraph
(community) expresses the tendency of community nodes to direct their
degree inside or outside the community.

By analysing Figure 4.3, Figure 4.4(a) and Figure 4.4(b), we can identify
three behaviors. The first case refers to those main communities with a k
value in the range [2 : 30]. These communities are likely to be made up
of long k -clique chains, thus, although ASes are locally well-connected, we
are very unlikely to find full-mesh-like topologies. This structural property
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Figure 4.3: Size of k -clique communities vs. k.

implies a low link density. On the other hand, many members of these com-
munities are likely to have more connections within their community than
connections directed outside. Note that for k equal to 3, the number of ASes
within the main community is equal to 69% of the Topology dataset ASes
while the remaining 31% of ASes belong to the main 2-clique community
or to the parallel 3-clique communities. Thus ASes of the main 3-clique
community are very unlikely to have a high average ODF. The second case
refers to the main k -clique communities with a size comparable to the k
value, such as those with a k in the range [31 : 36], and several parallel k -
clique communities that present a high link density value. From a structural
point of view, these k -clique communities are very similar to clique topolo-
gies. These k -clique communities also present a high average ODF, hence,
even if they appear as cohesive sets of ASes, they have a very large num-
ber of connections directed outside the community. The third case refers to
those parallel k -clique communities with a low k value and a very variable
link density and ODF. This can be justified by observing that, since these
communities are made up of a very small number of ASes (see for instance
the size of the parallel k -clique communities with a k in the range [3 : 7])
the presence or the absence of few connections can strongly influence both
the link density and the average ODF values.

The properties described above provide some insight into the differences
between main and parallel k -clique communities and their connections in
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(a)

(b)

Figure 4.4: Link density, Figure 4.4(a) and Average ODF, Figure 4.4(b) vs.
k.
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the Internet AS-level graph. We will now extend our analysis by investi-
gating the relationships between these communities. To do this we exploit
the overlapping between communities sharing the same k. At the same time
we avoid computing the overlap between communities with a different k,
since the nesting process provides results that are very difficult to interpret.
Overlap is defined as the number of members that are shared by two commu-
nities. This metric has values in the range [0 : maxoverlap] (maxoverlap is the
size of the smaller community. In fact, the maximum overlap occurs when
all the members of a community are also members of the other community).
In order to compare overlap values related to different pairs of communi-
ties, we define the overlap fraction as the ratio between the overlap and the
maxoverlap value. The computation of the overlap fraction between commu-
nities with the same k value provides the following results: a) every parallel
community shares at least one AS with its relative main community1; b)
there are parallel communities that do not overlap with other parallel com-
munities; c) we can identify small sets of parallel communities with a pretty
high overlap fraction. We found that the average overlap fraction between
the main k -clique community is always larger than 0.432 for each k. In ad-
dition by averaging this metric over k we obtain 0.704 and a variance equal
to 0.023. Since, for the vast majority of k -clique communities the size of
parallel communities is always lower than the relative main community, we
can interpret the previous overlap fraction as follows: on average, the 70.4%
of ASes belonging to a parallel community also participate in the main com-
munity. On the other hand, the average overlap fraction between the parallel
k -clique communities can vary a lot. There are parallel communities that
do not share any member as well as communities sharing the vast majority
of their ASes. Due to a high variance value (i.e. 0.136) we avoid reporting
the overlap fraction value averaged over k.

In order to understand which factors might lead to these structural prop-
erties we study the k -clique community tree using tags (see Chapter 2).
Firstly, we computed the percentage of on-IXP ASes in each k -clique com-
munity. As in [10] and [12], we found that the most well-connected com-
munities are made up of a large number of ASes participating in IXPs. We
found that all the k -clique communities with a k greater than or equal to 16
have more than 90% on-IXP ASes. For those communities with a k lower
than 16, the percentage of on-IXP ASes is highly variable. We then refined
our analysis of IXP tags by building an IXP-induced subgraph for each IXP
and then computing the overlap between these subgraphs and k -clique com-
munities. We discovered that 35 k -clique communities were subgraphs of
an IXP-induced subgraph. This means that there are communities made up

1As a matter of fact, there are 6 exceptions: there is a 6-clique community, a 5-clique
community, three 4-clique communities and a 3-clique community that do not share any
AS with their respective main community.
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of ASes belonging to a common IXP. There are essentially three behaviors:
a) if k > 28 we can find communities that are fully included in DE-CIX-
or LINX- induced subgraphs only; b) if k < 14 there are communities that
are fully included in small IXPs; c) if k ∈ [14 : 28] none of the communi-
ties are fully included in an IXP-induced subgraph. On the basis of these
three ranges, we extend our analysis of the k -clique communities by study-
ing crown communities (i.e. k > 28), trunk communities (i.e. k ∈ [14 : 28])
and root communities (i.e. k < 14) separately. These three categories can
be associated with three separate parts of the k -clique community tree as
shown in Figure 4.2. Hereinafter, we will refer to the IXP with the maximum
number of participants in common with a community as its max-share-IXP.
In addition, if the community is fully included in the IXP-induced-subgraph,
this IXP is called full-share-IXP for that community. A community with a
full-share-IXP can be interpreted as follows: the community considered is
made up of a subset of the full-share-IXP participants.

4.1 Crown k-clique communities

This category is made up of 42 k -clique communities with a k value in the
range [29 : 36]. We pay special attention to the 36-clique community, since
it is the most dense subgraph in our Topology dataset according to the
k -clique community definition. Although this community is made up of 38
on-IXP-ASes participating in several IXPs worldwide, it does not have a full-
share-IXP. However, it shares the 89% of its members (ASes) with AMS-IX,
which is also its max-share-IXP. Since all the main communities include, by
definition, the 36-clique community, none of the main communities will have
a full-share-IXP. All the ASes belonging to crown k -clique communities are
in Europe and participate in at least one IXP. The only exceptions are the
following four ASes: 2905 (TICSA), 3.236 (MIT-GATEWAYS), 3.392 (MIT-
GATEWAYS) and 37179 (AFRICAINX), at least with our datasets, are not
present in Europe. In addition, there are three that do not participate in
any IXPs. Another common feature of the crown k -clique communities is
their max-share-IXP which is always one of these three: AMS-IX, DECIX
or LINX. In order to gain insight into the presence of these three IXPs
within the most well-connnected part of the Internet AS-level topology, let
us now analyse the 34-clique communities in detail. There are nine 34-clique
communities which can be described as follows: the main community shares
92% of its members with AMS-IX; four communities have LINX as their
full-share IXP, three communities have DE-CIX as their full-share IXP and
one community shares 98% of its members with DE-CIX. Although these
nine communities have different max-share-IXPs, they overlap with each
other. This can be explained by considering that AMS-IX, DE-CIX and
LINX share several participants (119). On the other hand, if we observe the
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overlap fraction values of the 34-clique communities, it is clear that those
couples of communities with the same max-share-IXP have a higher overlap
fraction than the other couples.

4.2 Trunk k-clique communities

This category is made up of 30 k -clique communities with a k value in the
range [15 : 28]. This part of the tree is characterized by a small number
of communities sharing the same k value (compared to the other parts of
the tree). Although the percentage of on-IXP ASes in each community is
very high (higher than 90%) there are no full-share-IXPs. If we consider
the percentage of ASes shared between communities and their max-share-
IXP, we find that parallel communities have high percentages, while main
communities do not. Consider for instances the branch made up of the three
parallel nested communities with k equal to 20, 19 and 18. These three
nested communities have a size equal to 21, 32, 39 respectively, moreover all
have the same max-share-IXP, MSK-IX and share more than 95% of their
ASes with it. Since the size of the main community is now much larger
than the size of its relative parallel communities, it is unlikely to find main
communities fully included in an IXP-induced-subgraph. From a structural
point of view, these main communities are large and dense k -clique chains.
In addition, their ASes present a pretty high average Internet degree, i.e.
500.2. By exploiting our Geographical dataset we also found that a high
percentage of trunk k -clique community ASes are worldwide or continental.
These characteristics, suggest that there are Internet providers within this
category of communities.

4.3 Root k-clique communities

This category is made up of 554 k -clique communities with a k value in the
range [2 : 14]. With the exception of the main communities, their average
size is very low, i.e. 5.09 ASes per community. As mentioned before, there
are 14 parallel communities with a full-share IXP. In contrast to crown
communities, there are several IXPs acting as a full-share IXP, and some
of them are not European. We identified parallel communities that were
fully included in one of the following IXPs: WIX (New Zealand), KhIX
(Russia), SIX (United States of America), SIX.SK (Slovakia), PIPE-NSW
(Australia), NIXI-Delhi (India), SPB-IX (Russia), PTTMETRO Sao Paulo
(Brasil), NIX (Czech Republic), SWISS-IX (Switzerland), MIX-IT (Italy)
and VIX (Austria). Very often, parallel communities are fully included in
country-induced-subgraphs. If this happens, it means that all the members
of the considered community have a geographical location in a common
country. We discovered 382 root communities with this property. Thus,
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most of the root k -clique communities are likely to be originated by regional
environments.
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Chapter 5

Discussion and Conclusion

In this work we have analysed the community structure of the Internet AS-
level topology graph by adopting the k -clique community definition and by
exploiting both the IXP and the Geographical datasets.

We propose a novel approach to represent Internet k -clique communities
and how the nesting process affects them: the k -clique community tree. In
addition, we define two classes of k -clique communities, main and parallel
communities. The Internet AS-level topology community structure can be
broadly described as a system made up of these two classes of communities:
as k decreases we can always find a growing main community including all
the previous main communities. In addition, there are parallel branches of
the tree (i.e. parallel communities) characterized by a limited size which are
rapidly incorporated into a main community with a lower k. Main commu-
nities and parallel communities present very different characteristics unless
we consider k -clique communities with a k value close to 36. Main com-
munities are typically large and have a low ODF and link density values.
On the other hand, parallel communities are usually small and with a large
ODF and link density values.

We extended our analysis of k -clique communities by using our additional
datasets (i.e. those containing geographical information and data related
to the IXPs) and by studying three categories of communities separately:
crown, trunk and root communities. Crown communities, which represent
the most dense Internet subgraphs, are made up almost exclusively of ASes
participating in AMS-IX, DE-CIX and LINX IXPs. Trunk communities are
also made up of several on-IXP ASes.Unlike the other categories, none of
the trunk communities can be thought of as a subgraph of an IXP-induced
graph. ASes populating these communities present a high average degree
and typically have several geographical locations in more than one country.
Thus these ASes are likely to be service providers (e.g. CDNs, IBPs, transit
providers). Root parallel communities can be thought of as a small set
of ASes that form regional dense subgraphs. Using our datasets we found
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that there are 382 k -clique communities made up of ASes with a common
geographical location in a country. These communities are likely to be made
up of small groups of customers and providers forming a clique because of
multi-homing.
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