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Abstract Categories and Subject Descriptors  C.4 [Performance of

It is commonly perceived that the design principles of the SyStems C.2.1 [Network Architecture and Design
future Internet might be drastically different from tod#ys General Terms Performance
natural to ask what will be the impact of such evolution on ) ) _
the design of future Online Social Networks (OSNs). There Keéwords — online social networks, human social networks,
is evidence thahumansocial networks may be invariant modelling, information diffusion
with respect to the underlying online technology support- .
ing them. Furthermore, the increasing pervasiveness of com 1. Introduction
munication technologies is likely to enable any two users to Current Online Social Networks (OSNSs) are a striking ex-
communicate anytime and anywhere. Thus, a possible evo-ample of the potentiality of a tight synergy between Inter-
lution of OSN design could map directly the structure of hu- net and services/applications naturally supporting husean
man social networks, and build future OSN services on top cial interactions. It is commonly argued that the Internet
of a network whose edges represent “communication chan-technology may drastically change in the (near) future, due
nels” between users sharing social relationships, and acti to the ever increasing diffusion of pervasive devices with
vated when they interact because of their social ties. B thi communication capabilities and emerging paradigms such
paper we look, in the perspective of future OSN designed as content-centric [Koponen 2007] and opportunistic [Sielu
according to this concept, at how the patterns of interastio  2006] networking. It is thus sensible to consider the impact
between people in human social networks impact on infor- of these possible evolutions on the design of future OSNS.
mation dissemination properties. Based on well-estabtish There is, on the other hand, significant evidence suggest-
theories from the anthropology field, we study the propsertie ing thathumansocial networks (i.e. the set of social rela-
of inter-contact times between users, i.e. the time betweentionships people maintain with each other) are not particu-
successive communication opportunities. This is a crucial |arly affected by specific communication technologies {Pol
feature for information dissemination, as previous resoft let 2010]. Therefore, it is reasonable to see the properties
tained in a conceptually similar environment have shown and structures of human social networks as an invariant with
that the distribution of inter-contact times determines th respect to the evolution of the underlying means support-
convergence properties of information diffusion protscol ing social interactions. Assuming that the diffusion of-per
In the paper we investigate, by analysis, simulation and ex- vasive mobile technologies will enable, in principle, com-
perimental results, the impact of different users intéoact  munication between any two users anytime and anywhere, it
patterns on the properties of inter-contact times and,, thus might thus be possible to map the structures of human so-
on the convergence properties of information disseminatio cial networks in the core design of future OSNs technolo-
protocols. gies. Specifically, it would be possible to form a commu-
nication topology supporting OSNs, in which edges corre-
spond to communication channels activated because of a so-
cial relationship between the two endpoints (users), ahd on
when those users communicate due to their social relation-
ship. Any OSN service/application would then be built on
top of such a topology. The advantage of such an approach
would be to make future OSNs less dependent on the spe-
cific communication technologies, and closer to the social
[Copyright notice will appear here once ‘preprint’ option is removed.] interactions they are designed to support. Another adganta
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of such an OSN design paradigm would be that activated same), highlighting when this assumption is accurate and
communication channels will naturally inherit the trustde when it is not. Characterising this dependence and highligh
between their users. As establishing trust between commu-ing when the aggregate inter-contact time can be the right
nication endpoints might be hard in a pervasive networking figure to analyse is very important, as the aggregate distrib
environment where everyone could communicate with any- tion is a much easier and more compact figure to describe the

one else, this would be another significant advantage. network, with respect to the distributions of all the indival
In this paper we refer to this possible evolution of OSNs pairs’ inter-contact times.
aspervasive social networks®nd start investigating some Differently from [Passarella 2011], in this paper we

fundamental properties of information diffusion in perva- study the dependence between individual pairs and aggre-
sive social networks. Specifically, we study conditions un- gate inter-contact times in pervasive social networks, i.e
der which information diffusion protocols mailjverge i.e. when contact events are not determined by the users move-
yielding infinite expected delay in delivering information ment patterns, but by their social relationships and, thus,
when implemented on top of pervasive social networks. by the properties of the underlying human social network.
Similar to the concept of “systemic communication” high- Specifically (as described in Section 2) we focus on well es-
lighted in [Kossinets 2008], information diffusion in per- tablished models of human social networks available in the
vasive social networks will occur by exploitingontacts anthropology literature. Based on these models we derive
between users, i.e. communication events between socialn analytical model showing the dependence between indi-
peers. The literature on opportunistic networking has-anal vidual pairs and aggregate inter-contact times in pereasiv
ysed the properties of information diffusion in a similar en social networks (Section 3). Then, we exploit the model to
vironment, i.e., when diffusion happens via direct corgact highlight under which conditions a heavy tail in the aggre-
between user devices coming within single-hop communi- gate distribution is representative (or not) of heavy tails
cation range (e.g. [Chaintreau 2007, Karagiannis 2016, Pas the individual pairs inter-contact times distributionse¢S
sarella 2011]). It has been found that the distribution ef in tion 4). Overall, we find that also in the case of pervasive
dividual pairs inter-contact times (i.e. the time betwegot  social networks the distribution of aggregate inter-conta
communication events between a pair of users) plays a keytimes is not necessarily representative of individualgdis-
role in determining the convergence properties of mulf-ho tributions, and that a heavy tailed aggregate distributiay
forwarding protocols. In pervasive social networks, the-co  emerge from non-heavy tailed individual pairs distribngo
cept of contact is generalised, as physical proximity is not Beyond the specific results presented in Section 4, the key
necessary. However, similar convergence problems may becontribution of this paper is to fully characterise the depe
present, as communication events will still be separated by dence between individual pairs and aggregate inter-cbntac
inter-contact times between users. Therefore, in this pape times, thus providing a design tool for understanding which
we start analysing the possible effect of inter-contacem  distribution to analyse on a case-by-case basis, in order to
on information diffusion protocols in pervasive social-net assess the convergence properties of information diffusio
works. protocols.

[Chaintreau 2007] has shown that when individual pairs
. . : ) 1.1 Related work
inter-contact times feature a particularly heavy tail {sas
a Pareto distribution with shape < 2), a large family Although with a different focus than this paper, properties
of forwarding protocols may not converge. This has been Of information diffusion in social networks have been anal-
a foundational result in the opportunistic networkingrite ~ ysed, e.g., in [Holme 2005, Kossinets 2008, Onnela 2007].
ture. In order to characterise the distribution of intentemt ~ For example, [Kossinets 2008] considers real social nétwor
times, real traces have been analysed extensively by the subtraces, and studies how information disseminates through
sequent literature. The vast majority of the literature fo- multi-hop social paths. Furthermore, [Gruhl 2004, Kempe
cused on the distribution afggregateinter-contact times, ~ 2003] analyse the locations in a social networks where to
i.e., the distribution ofall inter-contact times between any Place information to optimise the diffusion process. With r
two pairs considered altogether. This distribution, whigh  spect to this body of work, we focus on a problem not yet
clearly much simpler to measure and analyse than the distri-analysed, i.e. the impact of inter-contact times distrdng
butions of individual pairs, has been considered as represe ©n fundamental information diffusion properties.
tative of any pair’s distribution, such that finding a heaaiy t Information diffusion properties in mobile social net-
in the aggregate distribution has been perceived as an indi-Works have also been analysed (see, e.g.,[Boldrini 2010,
cation of possible divergence of forwarding protocols. Bor loannidis 2009a;b] and references herein). Specifically,
recently [Passarella 2011] has characterised much more pre[loannidis 2009b] studies optimal strategies for dissemin
cisely the dependence between individual pairs and aggre-ing information through encountered nodes in opportunis-
gate inter-contact times in heterogenous networks (WheretiC networks. The work in [Boldrini 2010] tackles a similar

not all individual pairs inter-contact times are distrietithe ~ problem, and investigates how information about social re-
lationships can be exploited from this standpoint. Finally
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[loannidis 2009a] analyses the specific impact of weak so- of communication between the ego and the alter. Therefore,
cial ties in the information dissemination problem. it follows that the structure of the ego network depicted in
To the best of our knowledge, none of the above work Figure 1 naturally determines the contact rates between the
studied information diffusion problems considering madel ego and alters in its social network. Specifically, contacts
of human social networks as we do in this paper. Further- are more frequent with alters in the inner-most layer (usu-
more, the dependence between the different distributionsally referred to astrong tie$, while the frequency progres-
characterising inter-contact times in pervasive socidl ne sively declines for external layers, resultingvieakerties.
work, and the resulting impact on information diffusion pro  This property is one of the starting points of the analysés pr

tocols, has not been analysed before. sented in Section 3.
. Finally, it is worth pointing out that, for our purposes,
2. Human social networks model focusing on ego networks is sufficient. In general a social

For the purpose of this paper, we consider a particu|ar mode|netW0rk contains more information than the set of ego net-
of human social networks, based on the concept of ego net-works of its members, as the latter does not capture correla-
work. An ego network is the network seen from the stand- tions. However, it is straightforward to note that intentarct
point of a single individual (ego). It includes only othelpe  times between any pair of users can be fully described by
ple (alters) the ego has social relationships with (repriese ~ looking at ego networks only, because they depend on the
by an edge in the ego network). relationship between the users only.

mamaty .+ support clique 3. Inter-contact times model
e P sympathy group

-

2N e
-~ ,-band
.

In this section we study, through an analytical model, the
dependence between the distributions of the individuakpai
and aggregate inter-contact times, in a network where con-
tacts can be described with ego network models.

[Karagiannis 2010] has already analysed this dependence
in the case when the contaettes(the reciprocal of the av-
erage inter-contact times) between a given set of pairs is
known a priori. To make the model general, in this paper we
relax this assumption, and study the dependence when the
contact rates are random variables (r.v.) following a known

Ego networks have been extensive|y studied in the an- distribution (hereaftemp denotes the contact rate of the
thropology literature [Dunbar 1995; 1998, Hill 2003, Rdiser ~ generic paip). Furthermore, we assume that individual pairs
2010, Zhou 2005], resulting in a detailed model of their inter-contact times are distributed according to a knovpety
structure (Figure 1). [Zhou 2005] has shown that ego net- Of distribution (e.g., Pareto, exponential, ...). For epalr
works can be represented as a series of concentric |ayer§, the parameters of the inter-contact times distributian ar
centred around the ego. Starting from the inner-most layer, @ function ofA,, i.e., the parameters are set such that the
layers are characterised by a decreasing levehtihacy ~ average inter-contact time is equalltpA,,. This allows us
with the ego. On the other hand, teizeof the layers (the 10 model heterogeneous environments in which not all indi-
number of alters within the |ayer) increases with a factor vidual inter-contact times are identica”y diStribUteddaO
approximately equal to 3. Extensive studies have identified control the type of heterogeneity through the r.v. desogbi
four layers, i.e. the support clique, the sympathy group, th the contact rates.
band and the active network, with size approximately equal ~ Therefore, three distributions play a key role in our anal-
to 5, 15, 45 and 150 [Dunbar 1995; 1998, Hill 2003]. The ysis, i.e. i) the distributions of individual pairs intepitact
size of the active network (150) is usually referred to as the times (whose CCDF is hereafter denotedragz)), ii) the
Dunbar’s numberand represents the maximum number of distribution of individual pairS contact rates (Whose d@ns
alters an ego can - on average - maintain social relatioaship is hereafter denoted g§)), and iii) the distribution of the
with [Hill 2003]. This is a limit related to cognitive capa- adgregate inter-contact times (whose CCDF is hereafter de-
bilities of the human brain [Dunbar 1998]. Note that this hoted asF ().
hierarchical structure depends very little on the commamic .
tion means supporting social relationships [Pollet 2010]. ~ 3-1 Modelling human networks contact patterns

[Hill 2003] has also shown that themotional closeness  Before deriving the model, we describe how we account for
of the ego with a given alter is the key parameter deter- the human social network structures described in Section 2.
mining the position of the alter in the layers. Furthermore, This is taken into consideration in the definition of the con-
[Hill 2003, Roberts 2010] show that there is a strong cor- tact rates distribution. Figure 2 provides a schematic rep-
relation between the emotional closeness and the frequencyesentation of a generic distribution. As, in any given ego

-~ active network

Figure 1. Ego-network’s hierarchical structure.
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network, contacts with peers in inner shells occur more fre-
guently than contacts with peers in outer shells, contaesra
with peers in inner-most shell should be drawn from the
tail of the distribution, while contact rates with peers et

outer-most shell should be drawn from the head. Based on

this observation, we divide the possible range of ratek in
sectors, wherd. is the number of layers of a ego network,
and layer 1 denotes the inner-most layer. Given the aver-
age number of relationships in each layerl = 1,...,L
and the total number of relationshipé, we can compute
the fraction of relationships in each layerag N (note that

= N). Let us then denote with, ..., A\ the values
of A that identify the sectors of the contact rates distribution
corresponding to the layers. The values\gfi = 1,...,L
can be computed as th{¢ — %t )-th percentile of the rates
distribution (note thah;, and\q are the minimum and max-
imum possible values of, respectively). Therefore, contact
rates with a peer in laydr= 1, ..., L are drawn from the
sector identified by, \;_;. It thus follows that the density
of contact rates for relationships in layles as follows

_ 0 A< NVA>N_1
fild) = { Cif(A) N<A< N (1)
where C; is a constant such thaf™ fi(\)d\ = 1, i.e

Cr=[GN-1) —

G,

G(A) being the CDF of\.

f(A)

AN

}\L AL-l }\0 A

Figure 2. A representative contact rates distribution in hu-
man social networks

Note that we consider the distribution of contact rates for
alters with a contact rate greater than 0, only. In pringithle
distribution of contact rates presents a significant magis-pr
ability in 0, corresponding to the fact that an ego “knowns”
alters also outside the active network layer, but relatigrs
are so weak that the contact rate is zero.

3.2 General inter-contact times model

The starting point of our model is a result originally pre-
sented in [Karagiannis 2010] (and recalled in Lemma 1),

LEMMA 1. In a network whereP pairs of nodes exist for

which inter-contact times can be observed, the CCDF of the
aggregate inter-contact times is:

>
= T

>

Yp
0

2

lim
T—o00

- 0-3

p=1

Fy(x

Lemma 1 is rather intuitive. The distribution of aggre-
gate inter-contact times is a mixture of the individual pair
distributions. Each individual pair “weights” in the mixai
proportionally to the number of inter-contact times that ca
be observed in any given interval (or, in other words, prepor
tionally to the rate of inter-contact times).

The result in Lemma 1 can be generalised to the case con-
sidered in this paper, where contact rates are r.v. disé&tbu
as described in Section 3.1. Specifically, we can derive the
following Theorem.

THEOREM 1. In a pervasive social network where contact
rates are determined by the hierarchical structure of ego
networks, the CCDF of the aggregate inter-contact times is:

L
mCi

=1 Zlel plE[Al]
wherep;, is the probability that a social relationship of any

given user is in layei of its ego network, and; is a r.v.
denoting the contact rates with peers in layer

F(z)

Al—1
/ MVEs(@)dN  (3)

Proof. See Appendix A.

In Appendix A we provide the complete proof of Equa-
tion 3. Hereafter, we briefly discuss its physical meaning.
First of all, Equation 3 can be seen as the weighted sum of
components related to the individual layers of human social
networks. Specifically, by defining; («) as follows:

Al—1
Ao = g [ MOIB@D @
we can writeF (z) as
L
Fay=3 2EM £, 5
D=2 e ©

Equation 5 highlights an intuitive result. In appendix A
we show thatF;(z) is actually the CCDF of the aggregate

which describes the dependence between the distributfons ointer-contact times over layéronly. Each such component

the individual pairs and aggregate inter-contact timesrwh
the contact rates are known a priori. Let assume khpdirs
are present in the network, that,(1") contact events be-
tween pairp occur during an observation timE. Let us
denote withN(T) the total number of contact events over
T, with 6, the contact rate of paj, with ¢ the total contact
rate ¢ = > 0,), and withF,(x) the CCDF of inter-contact
times of pairp. Then, the following lemma holds.

“weights” in the aggregate proportionally to the fractidn o
pairs falling in the layer;), and to the average contact
rates of the layer (i.e., to the average number of interamint
events that is generated by a pair in that layer).

Besides a more formal derivation shown in Appendix A,
the form of the individual layer's component in Equation 4
has a more intuitive derivation, starting from the result in
Lemma 1. Specifically, it can be obtained by considering
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a modified network in which we assume that all rates 4.1 Study of a measured case

[Ai, i—1] are possibly available (for pairs in lay8; each  gjgyre 3 shows a visual comparison of the samples obtained
with a probability fy(A)dA. Fi(x) is thus the aggregate over  om [Roberts 2010] and the ML fittings of the considered
all the resulting individual pairs inter-contact timestdisu- contact rates distributions (ML estimators of the paransete

tions.. As the number of such distributions becqmes infinite 5.0 provided in Table 1). As for the gamma distribution we
and is indexed by\; (a continuous random variable), the .,,sider the following definition (for the density)
summation in Equation 2 becomes an integral oveFur-

thermore, the weight of each distributiof, (in Equation 2) O = Ao 1pae=bA ©)
becomes\-p(A) = Afi(A)d\, while the total ratefin Equa- o I'(a)
tion 2) becomes/;” Afi(A)dA = E[A;]. The expression in
Equation 4 follows immediately.

Theorem 1 shows the dependence between the three dis
tributions that characterise the properties of inter-aont

wherea andb are the shape and rate parameters, respec-
tively. For the exponential distribution we considered the
standard definition (resulting in the density in Equation 7)

times. The key property we study in the following is under FON) = be—bX @)
which conditions, and starting from which distributions of
individual inter-contact times and contact rates, therithist whereb is the rate parameter. As for the Pareto distribution,

tion of aggregate inter-contact times features a heavy tail we consider the two possible definitions resulting in the
This allows us to check whether focusing on the aggregate CCDFs below:

inter-contact times is sufficient for assessing the corerrg o

properties of information dissemination, or not. To thislen FA) = (3) & >0, A>b

it is sufficient to study the aggregate inter-contact timies d F(X) = b%) ;a>0, A>0
tribution over individual layers only, provided by Equatid.

It is, in fact, sufficient that one such aggregate presents aWhere« and b are the shape and scale parameters. The
heavy tail for the whole aggregate to be heavy tailed. Thus, difference between the two forms is that in the first case

Equation 4 is the key starting point for the following analy- _cannot take yalues arbitrari_ly close to 0, While_ in the selcon
sis. it can. We will show that this has a profound impact on the

distribution of the aggregate inter-contact times. Heaszaf
we denote with “Pareto” the first form, and with “Pareto0”
the second form.

©)

1-- K

™ O samples
gamma

4. Study of representative pervasive social

networks e _ ‘"'ﬁ_\_}.\ A g);r;gtr;)emial
[Passarella 2011] has analysed the relationship betwelenin g~ | S Pareto0
vidual pairs’ inter-contact times and aggregate intertaci Qo4f
times for face-to-face contacts in mobile opportunistit- ne o :

works. When individual inter-contact times are exponen- _
tially distributed, very interesting results about thetiiis ol
bution of the aggregate inter-contact times can be high- 020001 D00
lighted when the distribution of contact rates is, respety;
gamma, exponential and Pareto. Therefore, in the following Figure 3. Fitting distributions
we consider the same distributions for contact rates.

First of all, we analyse the dataset presented in [Roberts ~ The intuition from Figure 3 is that the gamma distribution

2010], which has been one of the basis for the results sum-iS the best fit. This is confirmed by the AIC test, whose
marised in Section 2. The dataset collects information fibou vValues are shown in Table 1. Remember that in AIC tests the

251 ego networks. Each re|ati0nship in each network pro- best alternative is the one with the lowest AIC value [Aka”(e

vides a sample of contact rate. We fit the resulting empirical 1974]-

distribution to the reference distributions of this papsing Based on this result, we study in detail the properties of
the Maximum Likelihood (ML) method XXX, and compare the aggregate inter-contact times distribution assuntiag t
the fitted distributions against the data using the Akaike In the contact rates distribution is gamma, and the individual
formation Criterion (AIC, [Akaike 1974]). As we find that a inter-contact times distributions are exponentidemma 2
gamma distribution provides the best fit, we carry on a de- and Theorem 2 characterises the distribution of the agtgega
tailed analysis of this case (Section 4.1). For completenes inter-contact times in this case.

the study with the other reference contact rates distob8ti  1note that exponential individual inter-contact times hagerbfound, for

is presented in Section 4.2. example, in face-to-face contacts traces, e.g. [Conan Z&&3 2009].

0.001  0.01 0.1 1 10 100
contact rate (contacts/day)
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Distribution  Best fit parameters AIC value
Gamma a=0.34,b=1.63 -50280.62
Exponential b = 4.86 -23505.08
Pareto a=0.16,b=5.5x10"° -31289.34
Pareto0 a=0.16,b=5.5x10"° -28841.84

Table 1. AIC values for the tested distributions.

LEMMA 2. When contact rates follow a gamma distribution
and individual inter-contact times an exponential distrib
tion, the CCDFs of inter-contact times aggregated over in-
dividual layers (F;(x)) all decay, for largez, faster than

a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri
bution with shapex and rateb, the following relations hold

true, for largex:
]:l(x) S Re

{ Frl(z) ~ A5

whereR and K do not depend om.

=X (b4a)

l=1,...,L—1

Proof. See Appendix B.

THEOREM 2. In a pervasive social network where individ-
ual pairs inter-contact times are exponentially distribdt
and contact rates follow a gamma distribution, the distri-
bution of the aggregate inter-contact times features a fieav
tail. Specifically, the following relation holds true:

a—lpa —bA
FO) =2 Fa(a) = e
= F(z) ~ £ forlarge »

whereK does not depend on

Proof. This follows immediately from Lemma 2, by recalling
the relationships betweefi (x) andF (x) in Equation 5, and
noting that#, (z) dominates over all the other components
for largex.

Theorem 2 and Lemma 2 provide two interesting insights.
First, the presence of aggregate inter-contact times with a
heavy tail distribution does not necessarily mean thatrinfo
mation dissemination protocols risk divergence, as such a
heavy tail can emerge starting from exponentially disteldu
individual pairs. Therefore, when the contact rates follow
gamma distribution, looking at the distribution of aggrega
inter-contact times is not sufficient to check whether infor
mation dissemination protocols may diverge or not. Instead
the distributions of individual pairs inter-contact timasist
be analysed. Second, the power law/fx) appears be-
cause of the power law of the inter-contact times aggregated
over the outer-most layers;., (). Due to the shape of the
gamma distribution, in the outer-most layers contact rates
can be arbitrarily close to 0, thus resulting in arbitraléisge
inter-contact times. Intuitively, this actually suggestsiore
general behaviour: Whenever the distribution of the contact

rates is such that rates arbitrarily close to 0 can be drawn,
the distribution of the aggregate inter-contact timesufiezst

a heavy tail. This behaviour is confirmed also in the cases
with Pareto contact rates.

To validate our analysis, we compare the result of The-
orem 2 with simulations. Specifically, we simulate an ego-
network of 150 alters. Ego and each alter meet with expo-
nential inter-contact times, with rates drawn from a gamma
distribution. For each alter we generate at least 100 inter-
contact times. Specifically, each simulation run reproduce
an observation of the network for a time interiigldefined
according to the following algorithm. For each alter, wetfirs
generate 100 inter-contact times, and then compute the to-
tal observation time after 100 inter-contact times, as the
sum of the pair inter-contact timées.is defined as the max-
imum of T,,,a = 1,...,150. To guarantee that all alters are
observed for the same amount of time, we generate addi-
tional inter-contact times for each alter urifi] reachesr'.
Simulations have been replicated 20 times with independent
seeds, and confidence intervals (with 99% confidence level)
have been computed. Figure 4 shows a very good agree-
ment between the analytical and the simulation models. Re-
call that the analysis predicts that the tail of the aggeegat
inter-contact times distribution decays gyéﬁ wherea is
the shape parameter of the contact rates distribution. Fig-
ure 4 shows that - as also found in the analysis - the lower
the shape of the contact rates distribution, the heavier the
tail of the aggregate inter-contact times. This resultsnfro
the fact that lower shape parameters result in a higher mass
of probability of contact rates around 0, i.e., in an inciegs
probability of very long inter-contact times.

1w
0.1 F

0.01

0.001 Gamma(2,1)

1/(x"3)

CCDF

0.0001

0.00001

1x10°6 b=

1/(xM.5)
N | N

Gamma(1,1)
1/(x2)
Gamma(0.5,1)

0.1

1 10 100

inter-contact times (s)

Figure 4. Aggregate inter-contact times with gamma con-
tact rates

4.2 Study of other relevant cases

In this section we focus on the rest of the contact rates
distributions considered in [Passarella 2011]. Speciical
as the case of an exponential distribution is a special case
of a gamma distribution, we limit our analysis to Pareto
distributions, in both variants, “Pareto” and “ParetoQ&. i
when contact rates arbitrarily close to 0 are not and are
allowed, respectively.
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The case “Pareto” is analysed in Lemma 3 and Theo-
rem 3. With respect to the sectors corresponding to the lay-
ers of the ego networks, recall that in this cage = oo
and)\;, = b whereb is the minimum possible value of the
“Pareto” distribution.

LEmMMA 3. When contact rates follow a Pareto distribution
whose CCDF is in the forni’(\) = (£)%, A > band
individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers
(Fi(2)) all decay, for largez, at least as fast as a power
law with exponential cutoff. Specifically, the followindgre
tions hold true for larger:

{fwm<K;“zzzm

whereR and K do not depend om.

Az

fl(m) ~ %

L (10)

Proof. See Appendix B.

THEOREM 3. When contact rates follow a Pareto distribu-
tion whose CCDF is in the for(\) = (2)“, A > band
individual inter-contact times are exponential, the CCOF o
the aggregate inter-contact times decays, for largéaster
than a power law with exponential cutoff. Specifically, the
following relation holds true

FO) = (3)°, By(w) = e
= F(z) < K< for large z
whereK does not depend on

Proof. This comes immediately from Lemma 3, by noticing
that the slowest decaying component Bfx) is the one
related to the outer-most layer, and using the correspgndin
expression from Equation 10.

Lemma 3 and Theorem 3 show that even considering
contact rates with an heavy tail (such as a “Pareto”) is not
sufficient to obtain a heavy tail in the aggregate inter-aont
times distribution. This is due to the fact that the “Pareto”
distribution does not admit contact rates arbitrarily elés
0.

Finally, Lemma 4 and Theorem 4 analyse the case “Pareto0”

i.e. the case where the contact rates can be arbitrarilg clos
to 0.

LEMMA 4. When contact rates follow a P%reto distribution
whose CCDF is in the forn&'(\) 7 ) » A>0and
individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers
(Fi(x)) all decay, for largez, at least as fast as a power
law with exponential cutoff, but the CCDF corresponding to
the outer-most layer, which decays as a power law. Specifi-
cally, the following relations hold true for large:

-z

l=1,...,[—1

(11)

whereR, @ and K do not depend on.
Proof. See Appendix B.

THEOREM4. When contact rates follow a Pareto distribu-
tion whose CCDF is in the forni'(\) b ) ;A >

bEX
0 and individual inter-contact times are exponential, the

CCDF of the aggregate inter-contact times decays, for large
x, as a power law with shape equal to 2. Specifically, the
following relation holds true

FO) = (%), Fa(a) = e
= F(z) ~ % for large z

whereK does not depend on

Proof. This comes immediately from Lemma 4 by notic-
ing that the slowest decaying component/fx) is the one
corresponding to the outer-most layer, and using the corre-
sponding expression from Equation 11.

As anticipated, in the case “ParetoQ” the aggregate inter-
contact times distribution features a heavy tail. Inteityy
this is a side effect of the fact that contact rates can be
arbitrarily close to 0. Again, note that this is another eglem
(qualitatively similar to those of Theorem 2) where a heavy
tail in the aggregate inter-contact times distribution @& n
necessarily a symptom of possible divergence of informatio
dissemination protocols, as it can emerge from exponéntial
distributed individual inter-contact times.

As a final validation check of the analytical results pre-
sented in this section, Figure 5 shows the CCDFs of ag-
gregate inter-contact times in the “Pareto” and “Pareto0”
cases, comparing analytical and simulation results (gmul
tions where run as explained in Section 4.2). Also in thigcas
the agreement between the analytical and simulation sesult
is very good (remember that the analytical model describes
the behaviour of the tail of the aggregate inter-contaceésim
distribution).

1g
F Pareto(2,0.001)
K*e(-0.001*x)/x
Pareto0(2,0.001)
K/(x"2)

0.1E

CCDF

0.01 |

S~o
~~
~~.

0.001

b P - P -
20000 40000 60000

inter-contact times (s)

P -
80000

Figure 5. Aggregate inter-contact times with Pareto contact
rates

5. Conclusion

In this paper we have studied fundamental properties of
information diffusion algorithms in pervasive social net-
works. Pervasive social networks are a possible evolution
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A. Proof of Theorem 1

THEOREM 1. In a pervasive social network where contact

rates are determined by the hierarchical structure of human

social networks, the CCDF of the aggregate inter-contact
piC

times is:
13 /
=1 21:1 plE[Al] A

wherep; is the probability that a social relationship of any
given user is in layet of its human social network, ant);
is a r.v. denoting the contact rates with peers in lajer

L Al—1

F(x) Af(N)Fx(z)dA

l

Proof. In the proof we focus on a given ego-network only.
As users are supposed to be statistically equivalent asfar a
their social network is concerned, the distributions ofint
contact times aggregated over a given user or over all the
users are the same. With respect to the expressicfi(of

in Lemma 1, contact rates are not known, but are drawn from
a set of r.v. with density;(\) (Equation 1). The expression
of F(z) can be derived conditioning to a specific set of
rates\i, ..., Ay, and applying the law of total probability.
Without loss of generality, we can assume that the pairs
{1,..., N} are ordered according to their membership to
layers, i.e., the first, pairs belong to the inner-most layer,
etc. We thus obtain

F(x) = Say o agg F@IAL AN F s AN A dA N
SN Ap Fp (@)
= fy-hy ’E}vij}‘ffl(Al)‘.va(AmdAl...dAN ,
X

where we have assumed that rates of individual pairs inter-
contact times are independent. For a sufficiently large num-
ber of pairs in each layer, we can apply the law of large num-
bers, and approximafe -, \; asn, E[A,], andzzjfz1 A as
Zle n; E[A;]. Swapping the integrals and the summations,
and substituting; = ¢, we further obtain:

F(z)

> "zlE[Az]
30 Lay o iy A Fp@ LA fn (An)dAs.dan =

1 L 0
S B[] Z”l/o A\ () fi(AN)dX =
=1

< b o
R A1 AN Ey(x)d\
ZlL_lsz[Al]/O Ji(A) F(x)

>
piCi /A”
Al

=1
L
S mEA]

>

=1

AfA)Ex(z)dA

where we have exploited the assumption that rates of indi-
vidual pairs inter-contact times of the same layer are iden-
tically distributed, and that individual pairs inter-cant
times of the same layer follow the same type of distribu-
tion, F(z).

Note that the above methodology can also be applied to
show thatF;(x) in Equation 4 is the CCDF of the inter-
contact times aggregated over layamly. Specifically, ex-
ploiting again Lemma 1, we can conditidf(x) to a known
set of rates\y, ..., A,,. Thus, we can write:

Fi(z) = Iy oy @A ) F O A YA A
— ZZZ A Fi (=)
= Dy Jan, SRS 1Oy AN

By approximating) |, A\; asn; E[A;], and by recalling that
the contact rates in laydrare assumed to be identically
distributed, we obtain

1

TLZE[A[]

Cl/
A

E[A]
B. Proof of Lemmas in Section 4

LEMMA 2. When contact rates follow a gamma distribution
and individual inter-contact times an exponential distrib
tion, the CCDFs of inter-contact times aggregated over in-
dividual layers (F;(x)) all decay, for largez, faster than
a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri
bution with shaper and rateb, the following relations hold
true, for largex:

.ﬁ(x) < Re

{ Fr(z)

whereR and K do not depend om.

Fil) n /0 T AR (2)d)

Al—1

AF(N)F(z)dA

1

— X (b+z)
xr

=1 L—-1

PR

~ 2
— gotl

Proof. First of all, it should be noted that when contact rates
follow a gamma distribution, the values afthat limits the
sectors corresponding to the layers of the ego network are
such that\y = co and Ay = 0. Let us focus on the CCDF

of aggregate inter-contact times on intermediate layegs (i
excluding the inner- and the outer-most layers) first. From
Equation 4, by substituting the expressions fgf\) and
F(z) we obtain:

Al—1
)\ae—(b—i-x)kd)\

Fi(z) H A
Tla+1,Nb+x) —T(la+1,\_1(b+x))

" (b+ )t

where H does not depend an andT'(-, -) is the upper in-
complete Gamma function. For large I'(s, z) can be ap-
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proximated ag:*~!'e~* [Abramowitz 1964]. We thus obtain:  The component corresponding to the innermost layer can be

. £ (RN ) [ eha(bra)) written as
X ~ 00—z .
1(z) (b + z)at+1 fl(x):H/ e d/\:HF(l_a’)\ll)

Ref)\;,(b+:c) _ Wef)\l_l(ber) Ref)\l(ber) A\ A rl—o

=~ <
z z The expression in the Lemma follows immediately by ap-

For the inner-most sector, we can write plying the usual approximation &f(-, -) for largex.
Fie)=H o0 a4y HF(a + 1,2 (b 1+ x)) LEMMA 4. Wh-en. contact rates foIIow;'sl P%reto distribution

A (b+ x)ot whose CCDF is in the forn'(\) = (m) , A > 0and

individual inter-contact times are exponential, the CCDFs

For | lying th imation fb(-, - : .
or largex, applying the same approximation o, -), we of inter-contact times aggregated over individual layers

obtain
(Fi(x)) all decay, for largez, at least as fast as a power
File) ~ Mx"e—kl(b”) N Me—kl(””) law with exponential cutoff, but the CCDF corresponding to
1(x) = b4 g)oetl z the outer-most layer, which decays as a power law. Specifi-
(b+x)

) cally, the following relations hold true for large:
Finally, for the outer-most sectaf, () becomes:

{ Filw)< B L@ gL

AL-1 T z
fL(x) — H/ )\ae*(lH*I))\d)\ fL(Jj) CCKZ
0
_ gllat+tl) -Tla+1,Ap-1(b+2) whereR, Q and K do not depend on.
b+ z)ot!

o _ Proof. Let us consider components &f(x) other than the
Approximatingl'(-, -) we obtain one corresponding to the outermost layer. The following
equation holds true:

Flz) ~ ([l;f +al)1 B :z:aefAL_;(b:z) N
x)ot (b+ x)ot -1 A e
Ma+1) K Filz) = A et A
(b+z)ott = gotl e T —a, (N +b)2) —T(1 —a,(N_1 + b)z)
LEMMA 3. When contact rates follow a Pareto distribution - { zl-e "

individual inter-contact times are exponential, the CCDFs pl-o

of inter-contact times aggregated over individual layers

(Fi(z)) all decay, for largez, at least as fast as a power Applying the usual approximation &f(-, -) for large it is
law with exponential cutoff. Specifically, the followingere ~ €asy to obtain the following relation

tions hold true for larger:

whose CCDF is in the forni’(\) = (£)*, A > band N pp L0 N1 +b)7) = D=0, (A + b)x)}

N\ + b)a] " Yem Nt
- < bx [( l
Fi(z) < Ke;”z 1=2,...,L n be[(N—1 + b)z] o tem itz }
wlfoz

whereR and K do not depend on.
from which it is straightforward to derive the expression in
Equation 11. As for the component &f(x) corresponding
to the outermost layer, we obtain

Proof. Using the same methodology of Lemma 2, we obtain,
for all components ofF(z) but the one corresponding to the
inner-most layer, the following expression:

ot A Filz) = H A gy
Fi(z) = H L e dA E N (B At
_ H]_'\(]_ _ Oé,)\lx) _ 1'\(1 _ O[7>\l,1$) _ ebz {F(l - Oé,bZ‘) - F(117; «, (AL—l + b)$)+
rl-a X
IMN—a,(A—1 +b)z) = T(—a,b
Applying the usual approximation df(-, -) for largez we + bz (e, Az i}? (o, x)}
obtain x
Ke % — Qe=Ni-17 oM@ This time it is necessary to apply an approximation of
Fi(x) =2 o < — I'(s,z) that considers higher order terms (for larg i.e.
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z*~te~® (14 =1) [Abramowitz 1964]. We thus obtain the
final result shown in Equation 11:

pe (D7) e (a+ 1) — (bz) @ le Pa
e
rl-o

Fr(x)

1

[
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