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Abstract
It is commonly perceived that the design principles of the
future Internet might be drastically different from today.It is
natural to ask what will be the impact of such evolution on
the design of future Online Social Networks (OSNs). There
is evidence thathumansocial networks may be invariant
with respect to the underlying online technology support-
ing them. Furthermore, the increasing pervasiveness of com-
munication technologies is likely to enable any two users to
communicate anytime and anywhere. Thus, a possible evo-
lution of OSN design could map directly the structure of hu-
man social networks, and build future OSN services on top
of a network whose edges represent “communication chan-
nels” between users sharing social relationships, and acti-
vated when they interact because of their social ties. In this
paper we look, in the perspective of future OSN designed
according to this concept, at how the patterns of interactions
between people in human social networks impact on infor-
mation dissemination properties. Based on well-established
theories from the anthropology field, we study the properties
of inter-contact times between users, i.e. the time between
successive communication opportunities. This is a crucial
feature for information dissemination, as previous results ob-
tained in a conceptually similar environment have shown
that the distribution of inter-contact times determines the
convergence properties of information diffusion protocols.
In the paper we investigate, by analysis, simulation and ex-
perimental results, the impact of different users interaction
patterns on the properties of inter-contact times and, thus,
on the convergence properties of information dissemination
protocols.

[Copyright notice will appear here once ’preprint’ option is removed.]

Categories and Subject Descriptors C.4 [Performance of
Systems]; C.2.1 [Network Architecture and Design]

General Terms Performance

Keywords online social networks, human social networks,
modelling, information diffusion

1. Introduction
Current Online Social Networks (OSNs) are a striking ex-
ample of the potentiality of a tight synergy between Inter-
net and services/applications naturally supporting humanso-
cial interactions. It is commonly argued that the Internet
technology may drastically change in the (near) future, due
to the ever increasing diffusion of pervasive devices with
communication capabilities and emerging paradigms such
as content-centric [Koponen 2007] and opportunistic [Pelusi
2006] networking. It is thus sensible to consider the impact
of these possible evolutions on the design of future OSNs.

There is, on the other hand, significant evidence suggest-
ing thathumansocial networks (i.e. the set of social rela-
tionships people maintain with each other) are not particu-
larly affected by specific communication technologies [Pol-
let 2010]. Therefore, it is reasonable to see the properties
and structures of human social networks as an invariant with
respect to the evolution of the underlying means support-
ing social interactions. Assuming that the diffusion of per-
vasive mobile technologies will enable, in principle, com-
munication between any two users anytime and anywhere, it
might thus be possible to map the structures of human so-
cial networks in the core design of future OSNs technolo-
gies. Specifically, it would be possible to form a commu-
nication topology supporting OSNs, in which edges corre-
spond to communication channels activated because of a so-
cial relationship between the two endpoints (users), and only
when those users communicate due to their social relation-
ship. Any OSN service/application would then be built on
top of such a topology. The advantage of such an approach
would be to make future OSNs less dependent on the spe-
cific communication technologies, and closer to the social
interactions they are designed to support. Another advantage

1 2011/3/3



of such an OSN design paradigm would be that activated
communication channels will naturally inherit the trust level
between their users. As establishing trust between commu-
nication endpoints might be hard in a pervasive networking
environment where everyone could communicate with any-
one else, this would be another significant advantage.

In this paper we refer to this possible evolution of OSNs
as pervasive social networks, and start investigating some
fundamental properties of information diffusion in perva-
sive social networks. Specifically, we study conditions un-
der which information diffusion protocols maydiverge, i.e.
yielding infinite expected delay in delivering information,
when implemented on top of pervasive social networks.
Similar to the concept of “systemic communication” high-
lighted in [Kossinets 2008], information diffusion in per-
vasive social networks will occur by exploitingcontacts
between users, i.e. communication events between social
peers. The literature on opportunistic networking has anal-
ysed the properties of information diffusion in a similar en-
vironment, i.e., when diffusion happens via direct contacts
between user devices coming within single-hop communi-
cation range (e.g. [Chaintreau 2007, Karagiannis 2010, Pas-
sarella 2011]). It has been found that the distribution of in-
dividual pairs inter-contact times (i.e. the time between two
communication events between a pair of users) plays a key
role in determining the convergence properties of multi-hop
forwarding protocols. In pervasive social networks, the con-
cept of contact is generalised, as physical proximity is not
necessary. However, similar convergence problems may be
present, as communication events will still be separated by
inter-contact times between users. Therefore, in this paper
we start analysing the possible effect of inter-contact times
on information diffusion protocols in pervasive social net-
works.

[Chaintreau 2007] has shown that when individual pairs
inter-contact times feature a particularly heavy tail (such as
a Pareto distribution with shapeα < 2), a large family
of forwarding protocols may not converge. This has been
a foundational result in the opportunistic networking litera-
ture. In order to characterise the distribution of inter-contact
times, real traces have been analysed extensively by the sub-
sequent literature. The vast majority of the literature fo-
cused on the distribution ofaggregateinter-contact times,
i.e., the distribution ofall inter-contact times between any
two pairs considered altogether. This distribution, whichis
clearly much simpler to measure and analyse than the distri-
butions of individual pairs, has been considered as represen-
tative of any pair’s distribution, such that finding a heavy tail
in the aggregate distribution has been perceived as an indi-
cation of possible divergence of forwarding protocols. More
recently [Passarella 2011] has characterised much more pre-
cisely the dependence between individual pairs and aggre-
gate inter-contact times in heterogenous networks (where
not all individual pairs inter-contact times are distributed the

same), highlighting when this assumption is accurate and
when it is not. Characterising this dependence and highlight-
ing when the aggregate inter-contact time can be the right
figure to analyse is very important, as the aggregate distribu-
tion is a much easier and more compact figure to describe the
network, with respect to the distributions of all the individual
pairs’ inter-contact times.

Differently from [Passarella 2011], in this paper we
study the dependence between individual pairs and aggre-
gate inter-contact times in pervasive social networks, i.e.,
when contact events are not determined by the users move-
ment patterns, but by their social relationships and, thus,
by the properties of the underlying human social network.
Specifically (as described in Section 2) we focus on well es-
tablished models of human social networks available in the
anthropology literature. Based on these models we derive
an analytical model showing the dependence between indi-
vidual pairs and aggregate inter-contact times in pervasive
social networks (Section 3). Then, we exploit the model to
highlight under which conditions a heavy tail in the aggre-
gate distribution is representative (or not) of heavy tailsin
the individual pairs inter-contact times distributions (Sec-
tion 4). Overall, we find that also in the case of pervasive
social networks the distribution of aggregate inter-contact
times is not necessarily representative of individual pairs dis-
tributions, and that a heavy tailed aggregate distributionmay
emerge from non-heavy tailed individual pairs distributions.
Beyond the specific results presented in Section 4, the key
contribution of this paper is to fully characterise the depen-
dence between individual pairs and aggregate inter-contact
times, thus providing a design tool for understanding which
distribution to analyse on a case-by-case basis, in order to
assess the convergence properties of information diffusion
protocols.

1.1 Related work

Although with a different focus than this paper, properties
of information diffusion in social networks have been anal-
ysed, e.g., in [Holme 2005, Kossinets 2008, Onnela 2007].
For example, [Kossinets 2008] considers real social network
traces, and studies how information disseminates through
multi-hop social paths. Furthermore, [Gruhl 2004, Kempe
2003] analyse the locations in a social networks where to
place information to optimise the diffusion process. With re-
spect to this body of work, we focus on a problem not yet
analysed, i.e. the impact of inter-contact times distributions
on fundamental information diffusion properties.

Information diffusion properties in mobile social net-
works have also been analysed (see, e.g.,[Boldrini 2010,
Ioannidis 2009a;b] and references herein). Specifically,
[Ioannidis 2009b] studies optimal strategies for disseminat-
ing information through encountered nodes in opportunis-
tic networks. The work in [Boldrini 2010] tackles a similar
problem, and investigates how information about social re-
lationships can be exploited from this standpoint. Finally,
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[Ioannidis 2009a] analyses the specific impact of weak so-
cial ties in the information dissemination problem.

To the best of our knowledge, none of the above work
studied information diffusion problems considering models
of human social networks as we do in this paper. Further-
more, the dependence between the different distributions
characterising inter-contact times in pervasive social net-
work, and the resulting impact on information diffusion pro-
tocols, has not been analysed before.

2. Human social networks model
For the purpose of this paper, we consider a particular model
of human social networks, based on the concept of ego net-
work. An ego network is the network seen from the stand-
point of a single individual (ego). It includes only other peo-
ple (alters) the ego has social relationships with (represented
by an edge in the ego network).

Figure 1. Ego-network’s hierarchical structure.

Ego networks have been extensively studied in the an-
thropology literature [Dunbar 1995; 1998, Hill 2003, Roberts
2010, Zhou 2005], resulting in a detailed model of their
structure (Figure 1). [Zhou 2005] has shown that ego net-
works can be represented as a series of concentric layers
centred around the ego. Starting from the inner-most layer,
layers are characterised by a decreasing level ofintimacy
with the ego. On the other hand, thesizeof the layers (the
number of alters within the layer) increases with a factor
approximately equal to 3. Extensive studies have identified
four layers, i.e. the support clique, the sympathy group, the
band and the active network, with size approximately equal
to 5, 15, 45 and 150 [Dunbar 1995; 1998, Hill 2003]. The
size of the active network (150) is usually referred to as the
Dunbar’s number, and represents the maximum number of
alters an ego can - on average - maintain social relationships
with [Hill 2003]. This is a limit related to cognitive capa-
bilities of the human brain [Dunbar 1998]. Note that this
hierarchical structure depends very little on the communica-
tion means supporting social relationships [Pollet 2010].

[Hill 2003] has also shown that theemotional closeness
of the ego with a given alter is the key parameter deter-
mining the position of the alter in the layers. Furthermore,
[Hill 2003, Roberts 2010] show that there is a strong cor-
relation between the emotional closeness and the frequency

of communication between the ego and the alter. Therefore,
it follows that the structure of the ego network depicted in
Figure 1 naturally determines the contact rates between the
ego and alters in its social network. Specifically, contacts
are more frequent with alters in the inner-most layer (usu-
ally referred to asstrong ties), while the frequency progres-
sively declines for external layers, resulting inweakerties.
This property is one of the starting points of the analysis pre-
sented in Section 3.

Finally, it is worth pointing out that, for our purposes,
focusing on ego networks is sufficient. In general a social
network contains more information than the set of ego net-
works of its members, as the latter does not capture correla-
tions. However, it is straightforward to note that inter-contact
times between any pair of users can be fully described by
looking at ego networks only, because they depend on the
relationship between the users only.

3. Inter-contact times model
In this section we study, through an analytical model, the
dependence between the distributions of the individual pairs
and aggregate inter-contact times, in a network where con-
tacts can be described with ego network models.

[Karagiannis 2010] has already analysed this dependence
in the case when the contactrates(the reciprocal of the av-
erage inter-contact times) between a given set of pairs is
known a priori. To make the model general, in this paper we
relax this assumption, and study the dependence when the
contact rates are random variables (r.v.) following a known
distribution (hereafterΛp denotes the contact rate of the
generic pairp). Furthermore, we assume that individual pairs
inter-contact times are distributed according to a known type
of distribution (e.g., Pareto, exponential, . . . ). For eachpair
p, the parameters of the inter-contact times distribution are
a function ofΛp, i.e., the parameters are set such that the
average inter-contact time is equal to1/Λp. This allows us
to model heterogeneous environments in which not all indi-
vidual inter-contact times are identically distributed, and to
control the type of heterogeneity through the r.v. describing
the contact rates.

Therefore, three distributions play a key role in our anal-
ysis, i.e. i) the distributions of individual pairs inter-contact
times (whose CCDF is hereafter denoted asFλ(x)), ii) the
distribution of individual pairs contact rates (whose density
is hereafter denoted asf(λ)), and iii) the distribution of the
aggregate inter-contact times (whose CCDF is hereafter de-
noted asF(x)).

3.1 Modelling human networks contact patterns

Before deriving the model, we describe how we account for
the human social network structures described in Section 2.
This is taken into consideration in the definition of the con-
tact rates distribution. Figure 2 provides a schematic rep-
resentation of a generic distribution. As, in any given ego
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network, contacts with peers in inner shells occur more fre-
quently than contacts with peers in outer shells, contact rates
with peers in inner-most shell should be drawn from the
tail of the distribution, while contact rates with peers in the
outer-most shell should be drawn from the head. Based on
this observation, we divide the possible range of rates inL
sectors, whereL is the number of layers of a ego network,
and layer 1 denotes the inner-most layer. Given the aver-
age number of relationships in each layernl, l = 1, . . . , L
and the total number of relationshipsN , we can compute
the fraction of relationships in each layer asnl/N (note that
nL = N ). Let us then denote withλ0, . . . , λL the values
of λ that identify the sectors of the contact rates distribution
corresponding to the layers. The values ofλi, i = 1, . . . , L
can be computed as the(1 − nl

N
)-th percentile of the rates

distribution (note thatλL andλ0 are the minimum and max-
imum possible values ofλ, respectively). Therefore, contact
rates with a peer in layerl = 1, . . . , L are drawn from the
sector identified byλl, λl−1. It thus follows that the density
of contact rates for relationships in layerl is as follows

fl(λ) =

{

0 λ < λl ∨ λ > λl−1

Clf(λ) λl ≤ λ ≤ λl−1
(1)

where Cl is a constant such that
∫ ∞

0
fl(λ)dλ = 1, i.e.

Cl = [G(λl−1) − G(λl)]
−1, G(λ) being the CDF ofΛ.

Figure 2. A representative contact rates distribution in hu-
man social networks

Note that we consider the distribution of contact rates for
alters with a contact rate greater than 0, only. In principle, the
distribution of contact rates presents a significant mass prob-
ability in 0, corresponding to the fact that an ego “knowns”
alters also outside the active network layer, but relationships
are so weak that the contact rate is zero.

3.2 General inter-contact times model

The starting point of our model is a result originally pre-
sented in [Karagiannis 2010] (and recalled in Lemma 1),
which describes the dependence between the distributions of
the individual pairs and aggregate inter-contact times, when
the contact rates are known a priori. Let assume thatP pairs
are present in the network, thatnp(T ) contact events be-
tween pairp occur during an observation timeT . Let us
denote withN(T ) the total number of contact events over
T , with θp the contact rate of pairp, with θ the total contact
rate (θ =

∑

p θp), and withFp(x) the CCDF of inter-contact
times of pairp. Then, the following lemma holds.

LEMMA 1. In a network whereP pairs of nodes exist for
which inter-contact times can be observed, the CCDF of the
aggregate inter-contact times is:

F(x) = lim
T→∞

P
∑

p=1

np(T )

N(T )
Fp(x) =

P
∑

p=1

θp

θ
Fp(x) (2)

Lemma 1 is rather intuitive. The distribution of aggre-
gate inter-contact times is a mixture of the individual pairs
distributions. Each individual pair “weights” in the mixture
proportionally to the number of inter-contact times that can
be observed in any given interval (or, in other words, propor-
tionally to the rate of inter-contact times).

The result in Lemma 1 can be generalised to the case con-
sidered in this paper, where contact rates are r.v. distributed
as described in Section 3.1. Specifically, we can derive the
following Theorem.

THEOREM 1. In a pervasive social network where contact
rates are determined by the hierarchical structure of ego
networks, the CCDF of the aggregate inter-contact times is:

F(x) =
L

∑

l=1

plCl
∑L

l=1 plE[Λl]

∫ λl−1

λl

λf(λ)Fλ(x)dλ (3)

wherepl is the probability that a social relationship of any
given user is in layerl of its ego network, andΛl is a r.v.
denoting the contact rates with peers in layerl.

Proof.See Appendix A.
In Appendix A we provide the complete proof of Equa-

tion 3. Hereafter, we briefly discuss its physical meaning.
First of all, Equation 3 can be seen as the weighted sum of
components related to the individual layers of human social
networks. Specifically, by definingFl(x) as follows:

Fl(x) =
Cl

E[Λl]

∫ λl−1

λl

λf(λ)Fλ(x)dλ (4)

we can writeF(x) as

F(x) =

L
∑

l=1

plE[Λl]
∑L

l=1 plE[Λl]
Fl(x) (5)

Equation 5 highlights an intuitive result. In appendix A
we show thatFl(x) is actually the CCDF of the aggregate
inter-contact times over layerl only. Each such component
“weights” in the aggregate proportionally to the fraction of
pairs falling in the layer (pl), and to the average contact
rates of the layer (i.e., to the average number of inter-contact
events that is generated by a pair in that layer).

Besides a more formal derivation shown in Appendix A,
the form of the individual layer’s component in Equation 4
has a more intuitive derivation, starting from the result in
Lemma 1. Specifically, it can be obtained by considering
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a modified network in which we assume that all ratesλ ∈
[λl, λl−1] are possibly available (for pairs in layerl), each
with a probabilityfl(λ)dλ. Fl(x) is thus the aggregate over
all the resulting individual pairs inter-contact times distribu-
tions. As the number of such distributions becomes infinite
and is indexed byΛl (a continuous random variable), the
summation in Equation 2 becomes an integral overλ. Fur-
thermore, the weight of each distribution (θp in Equation 2)
becomesλ·p(λ) = λfl(λ)dλ, while the total rate (θ in Equa-
tion 2) becomes

∫ ∞

0
λfl(λ)dλ = E[Λl]. The expression in

Equation 4 follows immediately.
Theorem 1 shows the dependence between the three dis-

tributions that characterise the properties of inter-contact
times. The key property we study in the following is under
which conditions, and starting from which distributions of
individual inter-contact times and contact rates, the distribu-
tion of aggregate inter-contact times features a heavy tail.
This allows us to check whether focusing on the aggregate
inter-contact times is sufficient for assessing the convergence
properties of information dissemination, or not. To this end,
it is sufficient to study the aggregate inter-contact times dis-
tribution over individual layers only, provided by Equation 4.
It is, in fact, sufficient that one such aggregate presents a
heavy tail for the whole aggregate to be heavy tailed. Thus,
Equation 4 is the key starting point for the following analy-
sis.

4. Study of representative pervasive social
networks

[Passarella 2011] has analysed the relationship between indi-
vidual pairs’ inter-contact times and aggregate inter-contact
times for face-to-face contacts in mobile opportunistic net-
works. When individual inter-contact times are exponen-
tially distributed, very interesting results about the distri-
bution of the aggregate inter-contact times can be high-
lighted when the distribution of contact rates is, respectively,
gamma, exponential and Pareto. Therefore, in the following
we consider the same distributions for contact rates.

First of all, we analyse the dataset presented in [Roberts
2010], which has been one of the basis for the results sum-
marised in Section 2. The dataset collects information about
251 ego networks. Each relationship in each network pro-
vides a sample of contact rate. We fit the resulting empirical
distribution to the reference distributions of this paper using
the Maximum Likelihood (ML) method XXX, and compare
the fitted distributions against the data using the Akaike In-
formation Criterion (AIC, [Akaike 1974]). As we find that a
gamma distribution provides the best fit, we carry on a de-
tailed analysis of this case (Section 4.1). For completeness
the study with the other reference contact rates distributions
is presented in Section 4.2.

4.1 Study of a measured case

Figure 3 shows a visual comparison of the samples obtained
from [Roberts 2010] and the ML fittings of the considered
contact rates distributions (ML estimators of the parameters
are provided in Table 1). As for the gamma distribution we
consider the following definition (for the density)

f(λ) =
λα−1bαe−bλ

Γ(α)
(6)

whereα and b are the shape and rate parameters, respec-
tively. For the exponential distribution we considered the
standard definition (resulting in the density in Equation 7)

f(λ) = be−bλ (7)

whereb is the rate parameter. As for the Pareto distribution,
we consider the two possible definitions resulting in the
CCDFs below:

F (λ) =
(

b
λ

)α
, α > 0, λ > b

F (λ) =
(

b
b+λ

)α

, α > 0, λ > 0
(8)

where α and b are the shape and scale parameters. The
difference between the two forms is that in the first caseλ
cannot take values arbitrarily close to 0, while in the second
it can. We will show that this has a profound impact on the
distribution of the aggregate inter-contact times. Hereafter,
we denote with “Pareto” the first form, and with “Pareto0”
the second form.

Figure 3. Fitting distributions

The intuition from Figure 3 is that the gamma distribution
is the best fit. This is confirmed by the AIC test, whose
values are shown in Table 1. Remember that in AIC tests the
best alternative is the one with the lowest AIC value [Akaike
1974].

Based on this result, we study in detail the properties of
the aggregate inter-contact times distribution assuming that
the contact rates distribution is gamma, and the individual
inter-contact times distributions are exponential1. Lemma 2
and Theorem 2 characterises the distribution of the aggregate
inter-contact times in this case.

1 Note that exponential individual inter-contact times have been found, for
example, in face-to-face contacts traces, e.g. [Conan 2007,Gao 2009].
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Distribution Best fit parameters AIC value
Gamma α = 0.34, b = 1.63 -50280.62
Exponential b = 4.86 -23505.08
Pareto α = 0.16, b = 5.5x10−5 -31289.34
Pareto0 α = 0.16, b = 5.5x10−5 -28841.84

Table 1. AIC values for the tested distributions.

LEMMA 2. When contact rates follow a gamma distribution
and individual inter-contact times an exponential distribu-
tion, the CCDFs of inter-contact times aggregated over in-
dividual layers (Fl(x)) all decay, for largex, faster than
a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri-
bution with shapeα and rateb, the following relations hold
true, for largex:

{

Fl(x) ≤ Re−λl(b+x)

x
l = 1, . . . , L − 1

FL(x) ≃ K
xα+1

(9)

whereR andK do not depend onx.

Proof.See Appendix B.

THEOREM 2. In a pervasive social network where individ-
ual pairs inter-contact times are exponentially distributed
and contact rates follow a gamma distribution, the distri-
bution of the aggregate inter-contact times features a heavy
tail. Specifically, the following relation holds true:

f(λ) = λα−1bαe−bλ

Γ(α) , Fλ(x) = e−λx

⇒ F(x) ≃ K
xα+1 for large x

whereK does not depend onx.

Proof.This follows immediately from Lemma 2, by recalling
the relationships betweenFl(x) andF(x) in Equation 5, and
noting thatFL(x) dominates over all the other components
for largex.

Theorem 2 and Lemma 2 provide two interesting insights.
First, the presence of aggregate inter-contact times with a
heavy tail distribution does not necessarily mean that infor-
mation dissemination protocols risk divergence, as such a
heavy tail can emerge starting from exponentially distributed
individual pairs. Therefore, when the contact rates followa
gamma distribution, looking at the distribution of aggregate
inter-contact times is not sufficient to check whether infor-
mation dissemination protocols may diverge or not. Instead,
the distributions of individual pairs inter-contact timesmust
be analysed. Second, the power law ofF(x) appears be-
cause of the power law of the inter-contact times aggregated
over the outer-most layers,FL(x). Due to the shape of the
gamma distribution, in the outer-most layers contact rates
can be arbitrarily close to 0, thus resulting in arbitrarilylarge
inter-contact times. Intuitively, this actually suggestsa more
general behaviour: Whenever the distribution of the contact

rates is such that rates arbitrarily close to 0 can be drawn,
the distribution of the aggregate inter-contact times features
a heavy tail. This behaviour is confirmed also in the cases
with Pareto contact rates.

To validate our analysis, we compare the result of The-
orem 2 with simulations. Specifically, we simulate an ego-
network of 150 alters. Ego and each alter meet with expo-
nential inter-contact times, with rates drawn from a gamma
distribution. For each alter we generate at least 100 inter-
contact times. Specifically, each simulation run reproduces
an observation of the network for a time intervalT , defined
according to the following algorithm. For each alter, we first
generate 100 inter-contact times, and then compute the to-
tal observation time after 100 inter-contact times,Ta, as the
sum of the pair inter-contact times.T is defined as the max-
imum of Ta, a = 1, ..., 150. To guarantee that all alters are
observed for the same amount of time, we generate addi-
tional inter-contact times for each alter untilTa reachesT .
Simulations have been replicated 20 times with independent
seeds, and confidence intervals (with 99% confidence level)
have been computed. Figure 4 shows a very good agree-
ment between the analytical and the simulation models. Re-
call that the analysis predicts that the tail of the aggregate
inter-contact times distribution decays as1

xα+1 whereα is
the shape parameter of the contact rates distribution. Fig-
ure 4 shows that - as also found in the analysis - the lower
the shape of the contact rates distribution, the heavier the
tail of the aggregate inter-contact times. This results from
the fact that lower shape parameters result in a higher mass
of probability of contact rates around 0, i.e., in an increasing
probability of very long inter-contact times.

0.1 1 10 100 1000

inter-contact times (s)

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

C
C
D
F

Gamma(2,1)
1/(x^3)
Gamma(1,1)
1/(x^2)
Gamma(0.5,1)
1/(x^1.5)

Figure 4. Aggregate inter-contact times with gamma con-
tact rates

4.2 Study of other relevant cases

In this section we focus on the rest of the contact rates
distributions considered in [Passarella 2011]. Specifically,
as the case of an exponential distribution is a special case
of a gamma distribution, we limit our analysis to Pareto
distributions, in both variants, “Pareto” and “Pareto0”, i.e.
when contact rates arbitrarily close to 0 are not and are
allowed, respectively.
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The case “Pareto” is analysed in Lemma 3 and Theo-
rem 3. With respect to the sectors corresponding to the lay-
ers of the ego networks, recall that in this caseλ0 = ∞
andλL = b whereb is the minimum possible value of the
“Pareto” distribution.

LEMMA 3. When contact rates follow a Pareto distribution
whose CCDF is in the formF (λ) =

(

b
λ

)α
, λ > b and

individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers
(Fl(x)) all decay, for largex, at least as fast as a power
law with exponential cutoff. Specifically, the following rela-
tions hold true for largex:

{

F1(x) ≃ Re−λ1x

x

Fl(x) ≤ Ke−λlx

x
l = 2, . . . , L

(10)

whereR andK do not depend onx.

Proof.See Appendix B.

THEOREM 3. When contact rates follow a Pareto distribu-
tion whose CCDF is in the formF (λ) =

(

b
λ

)α
, λ > b and

individual inter-contact times are exponential, the CCDF of
the aggregate inter-contact times decays, for largex, faster
than a power law with exponential cutoff. Specifically, the
following relation holds true

F (λ) =
(

b
λ

)α
, Fλ(x) = e−λx

⇒ F(x) ≤ Ke−bx

x
for large x

whereK does not depend onx.

Proof.This comes immediately from Lemma 3, by noticing
that the slowest decaying component ofF(x) is the one
related to the outer-most layer, and using the corresponding
expression from Equation 10.

Lemma 3 and Theorem 3 show that even considering
contact rates with an heavy tail (such as a “Pareto”) is not
sufficient to obtain a heavy tail in the aggregate inter-contact
times distribution. This is due to the fact that the “Pareto”
distribution does not admit contact rates arbitrarily close to
0.

Finally, Lemma 4 and Theorem 4 analyse the case “Pareto0”,
i.e. the case where the contact rates can be arbitrarily close
to 0.

LEMMA 4. When contact rates follow a Pareto distribution

whose CCDF is in the formF (λ) =
(

b
b+λ

)α

, λ > 0 and

individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers
(Fl(x)) all decay, for largex, at least as fast as a power
law with exponential cutoff, but the CCDF corresponding to
the outer-most layer, which decays as a power law. Specifi-
cally, the following relations hold true for largex:

{

Fl(x) ≤ Re−λlx

x
+ Qe

−λl−1x

x
l = 1, . . . , L − 1

FL(x) ≃ K
x2

(11)

whereR, Q andK do not depend onx.

Proof.See Appendix B.

THEOREM 4. When contact rates follow a Pareto distribu-

tion whose CCDF is in the formF (λ) =
(

b
b+λ

)α

, λ >

0 and individual inter-contact times are exponential, the
CCDF of the aggregate inter-contact times decays, for large
x, as a power law with shape equal to 2. Specifically, the
following relation holds true

F (λ) =
(

b
bλ

)α
, Fλ(x) = e−λx

⇒ F(x) ≃ K
x2 for large x

whereK does not depend onx.

Proof. This comes immediately from Lemma 4 by notic-
ing that the slowest decaying component ofF(x) is the one
corresponding to the outer-most layer, and using the corre-
sponding expression from Equation 11.

As anticipated, in the case “Pareto0” the aggregate inter-
contact times distribution features a heavy tail. Intuitively,
this is a side effect of the fact that contact rates can be
arbitrarily close to 0. Again, note that this is another example
(qualitatively similar to those of Theorem 2) where a heavy
tail in the aggregate inter-contact times distribution is not
necessarily a symptom of possible divergence of information
dissemination protocols, as it can emerge from exponentially
distributed individual inter-contact times.

As a final validation check of the analytical results pre-
sented in this section, Figure 5 shows the CCDFs of ag-
gregate inter-contact times in the “Pareto” and “Pareto0”
cases, comparing analytical and simulation results (simula-
tions where run as explained in Section 4.2). Also in this case
the agreement between the analytical and simulation results
is very good (remember that the analytical model describes
the behaviour of the tail of the aggregate inter-contact times
distribution).

0 20000 40000 60000 80000

inter-contact times (s)

0.001

0.01

0.1

1

C
C
D
F

Pareto(2,0.001)
K*e^(-0.001*x)/x
Pareto0(2,0.001)
K/(x^2)

Figure 5. Aggregate inter-contact times with Pareto contact
rates

5. Conclusion
In this paper we have studied fundamental properties of
information diffusion algorithms in pervasive social net-
works. Pervasive social networks are a possible evolution
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of current Online Social Networks, where social network
services/applications are designed on top of a communica-
tion network that maps directlyhumansocial networks, i.e.,
where edges are activated between users that share social re-
lationships, when they communicate because of their social
tie. In pervasive social networks, information diffusion will
exploit contact eventsbetween users, i.e. events of commu-
nication between them. In such a scenario, it is fundamental
to characterise the properties of inter-contact times (i.e., the
time between two consecutive contact events), as this has
been shown to play a key role in determining convergence
properties of information diffusion algorithms.

In this paper we characterise the dependence between the
distribution of individual pairs inter-contact times (which
determine the convergence of information diffusion) and
the distribution of aggregate inter-contact times (which is
typically assumed to be the key feature to analyse). We
show specific cases where the latter is not representative
of the former, and where, therefore, focusing on the latter
only is not sufficient. From this standpoint, we highlight that
theheterogeneityof the network is a fundamental aspect to
take into consideration, as, together with the individual pairs
distributions, it determines the distribution of the aggregate
inter-contact times.

Beyond the specific results described in the paper, the key
contribution of this work is providing an analytical descrip-
tion of the relationship between the individual pairs and the
aggregate inter-contact times distribution, thus providing a
design tool for understanding, on a case-by-case basis, the
expected convergence properties of information diffusional-
gorithms in pervasive social networks.
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A. Proof of Theorem 1
THEOREM 1. In a pervasive social network where contact
rates are determined by the hierarchical structure of human
social networks, the CCDF of the aggregate inter-contact
times is:

F(x) =
L

∑

l=1

plCl
∑L

l=1 plE[Λl]

∫ λl−1

λl

λf(λ)Fλ(x)dλ

wherepl is the probability that a social relationship of any
given user is in layerl of its human social network, andΛl

is a r.v. denoting the contact rates with peers in layerl.

Proof. In the proof we focus on a given ego-network only.
As users are supposed to be statistically equivalent as far as
their social network is concerned, the distributions of inter-
contact times aggregated over a given user or over all the
users are the same. With respect to the expression ofF(x)
in Lemma 1, contact rates are not known, but are drawn from
a set of r.v. with densityfl(λ) (Equation 1). The expression
of F(x) can be derived conditioning to a specific set of
ratesλ1, . . . , λN , and applying the law of total probability.
Without loss of generality, we can assume that the pairs
{1, . . . , N} are ordered according to their membership to
layers, i.e., the firstn1 pairs belong to the inner-most layer,
etc. We thus obtain

F(x) =
R

λ1
...

R

λN
F(x|λ1,...,λN )f(λ1,...,λN )dλ1...dλN

=
R

λ1
...

R

λN

PN
p=1 λpFp(x)

PN
p=1 λp

f1(λ1)...fN (λN )dλ1...dλN ,

where we have assumed that rates of individual pairs inter-
contact times are independent. For a sufficiently large num-
ber of pairs in each layer, we can apply the law of large num-
bers, and approximate

∑nl

i=1 λi asnlE[Λl], and
∑N

p=1 λp as
∑L

l=1 nlE[Λl]. Swapping the integrals and the summations,
and substitutingpl = nl

N
, we further obtain:

F(x) = 1
P

l nlE[Λl]

P

p

R

λ1
...

R

λN
λpFp(x)f1(λ1)...fN (λN )dλ1...dλN=

=
1

∑

l nlE[Λl]

L
∑

l=1

nl

∫ ∞

0

λFλ(x)fl(λ)dλ =

=

L
∑

l=1

pl
∑L

l=1 plE[Λl]

∫ ∞

0

λfl(λ)Fλ(x)dλ

=

L
∑

l=1

plCl
∑L

l=1 plE[Λl]

∫ λl−1

λl

λf(λ)Fλ(x)dλ ,

where we have exploited the assumption that rates of indi-
vidual pairs inter-contact times of the same layer are iden-
tically distributed, and that individual pairs inter-contact
times of the same layer follow the same type of distribu-
tion, Fλ(x).

Note that the above methodology can also be applied to
show thatFl(x) in Equation 4 is the CCDF of the inter-
contact times aggregated over layerl only. Specifically, ex-
ploiting again Lemma 1, we can conditionFl(x) to a known
set of ratesλ1, . . . , λnl

. Thus, we can write:

Fl(x) =
R

λ1
...

R

λnl
F(x|λ1,...,λnl

)f(λ1,...,λnl
)dλ1...dλnl

=
R

λ1
...

R

λnl

Pnl
i=1

λiFi(x)
Pnl

i=1
λi

f1(λ1)...fnl
(λnl

)dλ1...dλnl
.

By approximating
∑

i λi asnlE[Λl], and by recalling that
the contact rates in layerl are assumed to be identically
distributed, we obtain

Fl(x) =
1

nlE[Λl]
nl

∫ ∞

0

λfl(λ)Fλ(x)dλ

=
Cl

E[Λl]

∫ λl−1

λl

λf(λ)Fλ(x)dλ

B. Proof of Lemmas in Section 4
LEMMA 2. When contact rates follow a gamma distribution
and individual inter-contact times an exponential distribu-
tion, the CCDFs of inter-contact times aggregated over in-
dividual layers (Fl(x)) all decay, for largex, faster than
a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri-
bution with shapeα and rateb, the following relations hold
true, for largex:

{

Fl(x) ≤ Re−λl(b+x)

x
l = 1, . . . , L − 1

FL(x) ≃ K
xα+1

whereR andK do not depend onx.

Proof.First of all, it should be noted that when contact rates
follow a gamma distribution, the values ofλ that limits the
sectors corresponding to the layers of the ego network are
such thatλ0 = ∞ andλL = 0. Let us focus on the CCDF
of aggregate inter-contact times on intermediate layers (i.e.,
excluding the inner- and the outer-most layers) first. From
Equation 4, by substituting the expressions off(λ) and
Fλ(x) we obtain:

Fl(x) = H

∫ λl−1

λl

λαe−(b+x)λdλ

= H
Γ(α + 1, λl(b + x)) − Γ(α + 1, λl−1(b + x))

(b + x)α+1

whereH does not depend onx andΓ(·, ·) is the upper in-
complete Gamma function. For largex, Γ(s, x) can be ap-
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proximated asxs−1e−x [Abramowitz 1964]. We thus obtain:

Fl(x) ≃
xα(Re−λl(b+x) − We−λl−1(b+x))

(b + x)α+1

≃
Re−λl(b+x) − We−λl−1(b+x)

x
≤

Re−λl(b+x)

x

For the inner-most sector, we can write

F1(x) = H

∫ ∞

λ1

λαe−(b+x)λdλ = H
Γ(α + 1, λ1(b + x))

(b + x)α+1

For largex, applying the same approximation forΓ(·, ·), we
obtain

F1(x) ≃ M
xαe−λ1(b+x)

(b + x)α+1
≃ M

e−λ1(b+x)

x

Finally, for the outer-most sector,FL(x) becomes:

FL(x) = H

∫ λL−1

0

λαe−(b+x)λdλ

= H
Γ(α + 1) − Γ(α + 1, λL−1(b + x)

(b + x)α+1

ApproximatingΓ(·, ·) we obtain

F(x) ≃ W
Γ(α + 1)

(b + x)α+1
− A

xαe−λL−1(b+x)

(b + x)α+1

≃ W
Γ(α + 1)

(b + x)α+1
≃

K

xα+1

LEMMA 3. When contact rates follow a Pareto distribution
whose CCDF is in the formF (λ) =

(

b
λ

)α
, λ > b and

individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers
(Fl(x)) all decay, for largex, at least as fast as a power
law with exponential cutoff. Specifically, the following rela-
tions hold true for largex:

{

F1(x) ≃ Re−λ1x

x

Fl(x) ≤ Ke−λlx

x
l = 2, . . . , L

whereR andK do not depend onx.

Proof.Using the same methodology of Lemma 2, we obtain,
for all components ofF(x) but the one corresponding to the
inner-most layer, the following expression:

Fl(x) = H

∫ λl−1

λl

e−λx

λα
dλ

= H
Γ(1 − α, λlx) − Γ(1 − α, λl−1x)

x1−α

Applying the usual approximation ofΓ(·, ·) for largex we
obtain

Fl(x) ≃ x−α Ke−λlx − Qe−λl−1x

x1−α
≤

Ke−λlx

x

The component corresponding to the innermost layer can be
written as

F1(x) = H

∫ ∞

λ1

e−λx

λα
dλ = H

Γ(1 − α, λ1x)

x1−α

The expression in the Lemma follows immediately by ap-
plying the usual approximation ofΓ(·, ·) for largex.

LEMMA 4. When contact rates follow a Pareto distribution

whose CCDF is in the formF (λ) =
(

b
b+λ

)α

, λ > 0 and

individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers
(Fl(x)) all decay, for largex, at least as fast as a power
law with exponential cutoff, but the CCDF corresponding to
the outer-most layer, which decays as a power law. Specifi-
cally, the following relations hold true for largex:

{

Fl(x) ≤ Re−λlx

x
+ Qe

−λl−1x

x
l = 1, . . . , L − 1

FL(x) ≃ K
x2

whereR, Q andK do not depend onx.

Proof. Let us consider components ofF(x) other than the
one corresponding to the outermost layer. The following
equation holds true:

Fl(x) = H

∫ λl−1

λl

λ

(b + λ)α+1
e−λxdλ

= ebx

{

Γ(1 − α, (λl + b)x) − Γ(1 − α, (λl−1 + b)x)

x1−α
+

+ bx
Γ(−α, (λl−1 + b)x) − Γ(−α, (λl + b)x)

x1−α

}

Applying the usual approximation ofΓ(·, ·) for largex it is
easy to obtain the following relation

Fl(x) ≤ ebx

{

[(λl + b)x]−αe−(λl+b)x

x1−α
+

+
bx[(λl−1 + b)x]−α−1e−(λl−1+b)x

x1−α

}

from which it is straightforward to derive the expression in
Equation 11. As for the component ofF(x) corresponding
to the outermost layer, we obtain

FL(x) = H

∫ λL−1

λ0

λ

(b + λ)α+1
e−λxdλ

= ebx

{

Γ(1 − α, bx) − Γ(1 − α, (λL−1 + b)x)

x1−α
+

+ bx
Γ(−α, (λL−1 + b)x) − Γ(−α, bx)

x1−α

}

This time it is necessary to apply an approximation of
Γ(s, x) that considers higher order terms (for largex), i.e.
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xs−1e−x
(

1 + s−1
x

)

[Abramowitz 1964]. We thus obtain the
final result shown in Equation 11:

FL(x) ≃ ebx (bx)−α−1e−bx(α + 1) − (bx)−α−1e−bxα

x1−α

=
K

x2
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