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ABSTRACT
Thanks to the diffusion of mobile user devices (e.g. smart-
phones) with rich computation and networking capabilities,
we are witnessing an increasing integration between the cy-
ber world of devices and the physical world of users. In
this perspective, a possible evolution of pervasive networking
(throughout referred to as social pervasive networks, SPNs)
might consist in closely mapping human social structures in
the network of the devices. Links between devices would cor-
respond to social relationships between users, and communi-
cation events between devices would correspond to commu-
nications between users. It can be shown that fundamental
convergence properties of PSN forwarding protocols are de-
termined by the distributions of inter-contact times between
the individual nodes (i.e. the time elapsed between two suc-
cessive communication events between the nodes). Individ-
ual pairs inter-contact times are hard to completely chara-
terise, while the distribution of the aggregate inter-contact
times is often a much more convenient figure. However, the
aggregate distribution is not always representative of the
individual pairs distributions, such that using it to charac-
terise the properties of PSN forwarding protocols might not
be correct. In this paper we provide an analytical model
showing the exact dependence between the two in heteroge-
neous SPNs. Moreover, we use the model to i) study cases
in which studying the aggregate distribution is not enough,
and ii) find sufficient conditions that guarantee that study-
ing the aggregate distribution is enough to characterise the
properties of PSN forwarding protocols.

Categories and Subject Descriptors
C.4 [Performance of Systems]; C.2.1 [Network Archi-

tecture and Design]

General Terms
Performance
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1. INTRODUCTION
Last generation smartphones, tablets and similar perva-

sive devices feature extremely rich networking, computation
and sensing capabilities. It is nowadays argued in the re-
search community that the penetration of this class of de-
vices in the mass market is - for the first time - providing con-
crete grounds and a real opportunity for a massive deploy-
ment of pervasive networking applications [21]. Moreover,
the fact that pervasive devices are almost constantly car-
ried by users pushes towards the convergence of the “cyber”
world, formed by the users’ networked pervasive devices, and
the “physical” world, formed by the users interacting with
each other. In particular, an emerging design paradigm for
pervasive networks consists in using off-line models and on-
line information about the users’ social behaviour to design,
for example, routing [4, 19], data dissemination [5, 3], mobile
social networking [24] solutions. According to this paradigm,
the human social plane (i.e., the structure and properties of
social relationships between users) is translated into the cy-
ber world to optimise the behaviour of pervasive networking
systems.

The networking environment we consider in this paper,
referred to as social pervasive networks (PSN), is a possi-
ble evolution of the pervasive networking paradigm enabled
by this tight integration of the cyber and physical worlds.
Assuming that the diffusion of pervasive technologies will
enable, in principle, communication between any two users
anytime and anywhere, the resulting network might in fact
be formed by edges that correspond to communication chan-
nels activated because of a social relationship between two
users, and only when those users communicate due to their
social relationship. In other words, the network and the
communication events between the devices might closely
map the corresponding human social network and the in-
teraction patterns of the users. Besides being a natural de-
sign approach, another advantage of such a design paradigm
would be that activated communication channels will nat-
urally inherit the trust level existing between their users,
which is typically hard to assess in pervasive networks. Note
that there is significant evidence suggesting that human so-
cial networks are almost invariant with respect to the specific
technology that mediates social interactions [27]. Therefore,



current results in the anthropology domain that describe
the properties of human social networks are already a solid
starting point to investigate the properties of SPNs.

Within this scenario, the specific focus of this paper is
studying fundamental properties of inter-contact times be-
tween users. In SPNs, contacts are communications between
two users due to a social interaction, and inter-contact times
are time intervals between two consecutive contacts. Inter-
contact times play a fundamental role for SPNs, as they have
shown to do for a related networking environment, oppor-
tunistic networks [26]. In opportunistic networks, face-to-
face contacts between users are exploited to forward mes-
sages. The foundational results presented in [10] highlight
the impact of the distribution of inter-contact times on the
convergence of opportunistic network routing protocols. Un-
like in PSN, contacts in opportunistic networks require phys-
ical co-location of users. However, results in [10] hold for
any network where messages can be exchanged only upon
contacts between nodes, and therefore they apply also to
SPNs. Specifically, [10] shows that when the all inter-contact
times between individual users follow a power law distribu-
tion with shape less than 2, then a large family of forwarding
protocols diverge, i.e. yield infinite delay. Note that the al-
gorithm used in [16] to derive fundamental results on the
capacity of opportunistic networks also fall in this category
of forwarding protocols. Although results in [10] apply to
the distributions of individual pairs inter-contact times, it
has been common in the literature [20, 7, 8, 28, 9, 6] to
characterise opportunistic networks through the aggregate
distribution of inter-contact times, i.e. the distribution of
all inter-contact times between any two pairs considered al-
together.

Actually, using the aggregate distribution instead of all
the distributions of individual pairs would be very conve-
nient also in SPNs for a number of reasons:

• From a scalability standpoint, it is much less costly
to compute, distribute and store the parameters of a
unique distribution than the parameters of all individ-
ual pairs’ distributions.

• From a statistical accuracy standpoint, much fewer
samples are required to estimate with sufficient accu-
racy a unique aggregate distribution than all individual
pairs distributions.

• From a privacy standpoint, it is much less sensitive to
collect and distribute information about the aggregate
distribution than about each individual pair, as from
the former it is much harder to track individual users’
behaviours.

Unfortunately, the aggregate distribution is in general not
representative of the individual pairs distributions. Theoret-
ically, the only case when it is representative is a completely
homogeneous network, where all pairs inter-contact times
are identically distributed, and thus the aggregate distribu-
tion is exactly the same as the distributions of individual
pairs. However, for the reasons highlighted above, it is sen-
sible to ask whether there are other cases in heterogeneous
SPNs where studying the aggregate distribution is sufficient
to characterise the convergence properties of forwarding pro-
tocols. To this end, it is necessary to have a clear under-
standing of the dependence between the individual pairs dis-
tributions and the aggregate distribution. Recently, [25] has

analytically characterised this dependency for the case of
opportunistic networks. In this paper we present an analy-
sis similar to that presented in [25], focusing - however - on
the totally different scenario of PSN where contact do not
require users mobility and physical co-location, but are com-
pletely driven by the structure of human social networks.

This paper provides the following contributions. We pro-
vide an analytical model showing the dependence between
the inter-contact time distributions of individual pairs and
the aggregate inter-contact time distribution in heteroge-
neous SPNs. Moreover, we highlight several cases of het-
erogeneous networks where considering the aggregate dis-
tribution is not sufficient to draw correct conclusions on
the convergence properties of forwarding protocols in SPNs.
Specifically, we show cases where the aggregate distribution
presents a power law, while all individual pairs distributions
present a light tail. We highlight that, under certain condi-
tions, this is also the case of one of the key datasets used in
the anthropology literature to derive structural properties of
human social networks [29]. Finally, we derive sufficient con-
ditions for concluding that studying the aggregate distribu-
tion is sufficient to characterise the convergence properties
of PSN forwarding protocols.

The rest of the paper is organised as follows. In Sec-
tion 2 we review the state-of-the-art relevant for this paper.
Section 3 describes the models of human social networks
available in the anthropology literature at the basis of our
work. Section 4 presents the model showing the dependence
between the inter-contact time distributions of individual
pairs and the aggregate inter-contact time distribution. In
Section 5 we use the model to analyse relevant cases of het-
erogeneous social pervasive networks. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK
This paper is mainly related to two bodies of work. The

first one consists in the anthropology literature about models
of human social networks. This body of work is described
in detail in Section 3. The second body of work consists
in the literature about the study of inter-contact times in
opportunistic networks.

Results in [10] have demonstrated the fundamental im-
pact of inter-conctat times on the convergence properties of
opportunistic network routing protocols. As mentioned al-
ready, authors show that when the inter-contact times of
individual pairs present a power law with shape parameter
lower than 2, a large family of routing protocols yield infi-
nite delay. [10] also analyses real traces of face-to-face inter-
contact times, both originally presented in the paper and
collected by others [23, 17, 30]. Assuming that the network
is homogeneous, it focuses on the distribution of aggregate
inter-contact times, finding a good fit with a Pareto dis-
tribution with shape parameter lower than 2. These results
posed an important warning in the opportunistic networking
community, casting a rather pessimistic view on the actual
applicability of popular routing protocols.

This view has been softned, to a certain extent, in [20],
where authors have analysed the same traces of [10] (and, in
addition, the well known Reality Mining trace [14]), noticing
that the aggregate inter-contact time distribution actually
presents an exponential cut-off in the tail. For what concerns
the dependence between aggregate inter-contact times and
the inter-contact times of individual pairs, [20] provides an



initial result deriving analytically the dependence between
the two distributions when the contact rates between indi-
vidual pairs are known. In addition, [20] does not spend too
much effort on the issue of heterogeneity in the inter-contact
times of individual pairs, after noticing that, for a subset of
the pairs in their traces, invidual inter-contact times are
power law.

Results in [10, 20] had a very important impact on the
subsequent literature, although not much attention has been
put on the critical issue of heterogeneity. The fact that ag-
gregate inter-contact times in popular traces present a power
law has typically resulted in assuming that all distributions
of individual pairs are power law. One of the most impor-
tant examples is the area of mobility models for opportunis-
tic networks. Most of the recent proposals (e.g., [7, 6, 22,
28]) aim at generating inter-contact times of individual pairs
and/or aggregate inter-contact times following a power law.
Similarly, other papers try to highlight which characteris-
tics of reference mobility models generate a power law in
inter-contact times of individual pairs [8, 9].

Authors of [11] have analysed mathematically the depen-
dence between inter-contact times of individual nodes and
aggregate inter-contact times in a more general setting with
respect to the model in [20]. They re-analysed the same
traces used in [10, 20] focusing much more than previous
papers on the analysis of inter-contact times of individual
pairs. They show that the distributions of inter-contact
times of individual pairs are definitely heterogeneous. They
propose a model to describe how heterogeneity impact on
the distribution of aggregate inter-contact times. However,
as highlighted in [25], they miss to consider an important as-
pect, thus deriving an imprecise model. To the best of our
knowledge [25] presents the most precise model to describe
the dependence between the inter-contact time distribution
of individual pairs and the aggregate inter-contact time dis-
tribution in opportunistic networking environments.

To the best of our knowledge, this is the first paper in the
literature that analyses this dependence in social pervasive
networks, considering models of interactions between users
derived in the anthropology literature, based on quantitative
surveys with users. With respect to [25], this results in a
totally different model for describing the heterogeneity of
inter-contact times of individual pairs. While the line of
reasoning for deriving the model is similar, the model itself
turns out to be significantly different because of the different
networking environment.

3. HUMAN SOCIAL NETWORKS
Before presenting our analysis, it is worth describing our

reference model for the structure of human social networks.
We consider a particular model of human social networks,
based on the concept of ego network. An ego network is
the network seen from the standpoint of a single individual
(ego). It includes only other people (alters) the ego has
social relationships with (represented by an edge in the ego
network).

Ego networks have been extensively studied in the anthro-
pology literature [12, 13, 18, 29, 31], resulting in a detailed
model of their structure (Figure 1). [31] has shown that ego
networks can be represented as a series of concentric layers
centred around the ego. Starting from the inner-most layer,
layers are characterised by a decreasing level of intimacy
with the ego. On the other hand, the size of the layers (the

Figure 1: Ego-network’s hierarchical structure.

number of alters within the layer) increases with a factor
approximately equal to 3. Extensive studies have identified
four layers, i.e. the support clique, the sympathy group, the
band and the active network, with size approximately equal
to 5, 15, 45 and 150 [18, 13, 12]. The size of the active
network (150) is usually referred to as the Dunbar’s num-
ber, and represents the maximum number of alters an ego
can - on average - maintain social relationships with [18].
This is a limit related to cognitive capabilities of the human
brain [13]. Many more alters can be outside the active net-
work, corresponding to people known to the ego, but with
whom the ego do not establish any significant social relation.
These alters are usually not represented in the model. Note
that this hierarchical structure depends very little on the
communication means supporting social relationships [27].

Authors of [18] have also shown that the emotional close-
ness of the ego with a given alter is the key parameter
determining the position of the alter in the layers. More-
over [18, 29] show that there is a strong correlation between
the emotional closeness and the frequency of communication
between the ego and the alter. Therefore, it follows that the
structure of the ego network depicted in Figure 1 naturally
determines the contact rates between the ego and alters in its
social network. Specifically, contacts are more frequent with
alters in the inner-most layer (usually referred to as strong
ties), while the frequency progressively declines for external
layers, resulting in weaker ties. This property is one of the
starting points of the analysis presented in Section 4.

Finally, it is worth pointing out that, for our purposes,
focusing on ego networks is sufficient. In general a social
network contains more information than the set of ego net-
works of its members, as the latter does not capture corre-
lations. However, it is straightforward to note that inter-
contact times between any pair of users can be fully de-
scribed by looking at ego networks only, because they only
depend on the relationship between these two users, which
is captured by the ego-network model.

4. INTER-CONTACT TIMES MODEL
In this section we study, through an analytical model, the

dependence between the distributions of the individual pairs
and aggregate inter-contact times, in a network where con-
tacts can be described with the ego-network model presented
in Section 3.

An important requirement of our model is to represent
heterogeneous networks in which the distributions of inter-
contact times between individual pairs are not iid. We take



heterogeneity into account in the definition of the model
for contact rates (the reciprocal of the average inter-contact
times). We assume that the contact rates are random vari-
ables (r.v.) following a known distribution (hereafter Λp

denotes the contact rate of the generic pair p). In addi-
tion, we assume that individual pairs inter-contact times are
distributed according to a known type of distribution (e.g.,
Pareto, exponential, . . . ). For each pair p, the parameters of
the inter-contact times distribution are a function of Λp, i.e.,
the parameters are set such that the average inter-contact
time is equal to 1/Λp. This allows us to model heteroge-
neous environments in which not all individual inter-contact
times are identically distributed, and to control the type of
heterogeneity through the r.v. describing the contact rates.

Therefore, three distributions play a key role in our anal-
ysis, i.e. i) the distributions of individual pairs inter-contact
times (whose CCDF is hereafter denoted as Fλ(x)), ii) the
distribution of individual pairs contact rates (whose density
is hereafter denoted as f(λ)), and iii) the distribution of
the aggregate inter-contact times (whose CCDF is hereafter
denoted as F(x)).

4.1 Modelling human networks contact pat-
terns

Before deriving the model, we describe how we account
for the human social network structures described in Sec-
tion 3. This is taken into consideration in the definition of
the contact rates distribution. Figure 2 provides a schematic
representation of a generic distribution. As, in any given ego
network, contacts with alters in inner shells occur more fre-
quently than contacts with alters in outer shells, contact
rates with peers in the inner-most shell should be drawn
from the tail of the distribution, while contact rates with
peers in the outer-most shell should be drawn from the head.
Based on this observation, we divide the possible range of
rates in L sectors, where L is the number of layers of an
ego network, and layer 1 denotes the inner-most layer. The
challenge is to meaningfully identify in the contact rate dis-
tribution the boundaries of the sectors corresponding to each
layer or, in other words, to define the sectors of the contact
rate distribution from where to draw contact rate samples
for alters in any given social layer. The average number
of relationships in each layer nl, l = 1, . . . , L and the total
number of relationships N can be derived from the results
presented in Section 3 [18, 13, 12]. We can thus compute
the fraction of relationships in each layer as nl/N (note that
nL = N). If we denote with λ0, . . . , λL the values of λ that
identify the sectors of the contact rates distribution corre-
sponding to the layers, the values of λi, i = 1, . . . , L can be
computed as the (1− nl

N
)-th percentiles of the rates distribu-

tion (note that λL and λ0 are the minimum and maximum
possible values of λ, respectively). Therefore, contact rates
with a peer in layer l = 1, . . . , L are drawn from the sec-
tor identified by λl, λl−1. It thus follows that the density of
contact rates for relationships in layer l is as follows

fl(λ) =



0 λ < λl ∨ λ > λl−1

Clf(λ) λl ≤ λ ≤ λl−1
(1)

where Cl is a constant such that
R ∞

0
fl(λ)dλ = 1, i.e. Cl =

[G(λl−1) − G(λl)]
−1, G(λ) being the CDF of Λ.

Note that we only consider the distribution of contact
rates for alters with a contact rate greater than 0. In prin-
ciple, the distribution of contact rates presents a significant

Figure 2: A representative contact rates distribution

in human social networks

mass probability in 0, corresponding to the fact that an ego
“knowns” alters also outside the active network layer, but
relationships are so weak that the contact rate is zero.

4.2 General inter-contact times model
The starting point of our model is a result originally pre-

sented in [20] (and recalled in Lemma 1), which describes the
dependence between the distributions of the individual pairs
and aggregate inter-contact times, when the contact rates are
known a priori. Let assume that P pairs are present in the
network, that np(T ) contact events between pair p occur
during an observation time T . Let us denote with N(T ) the
total number of contact events over T , with θp the contact
rate of pair p, with θ the total contact rate (θ =

P

p θp),

and with Fp(x) the CCDF of inter-contact times of pair p.
Then, the following lemma holds.

Lemma 1. In a network where P pairs of nodes exist for
which inter-contact times can be observed, the CCDF of the
aggregate inter-contact times is:

F(x) = lim
T→∞

P
X

p=1

np(T )

N(T )
Fp(x) =

P
X

p=1

θp

θ
Fp(x) (2)

Lemma 1 is rather intuitive. The distribution of aggre-
gate inter-contact times is a mixture of the individual pairs
distributions. Each individual pair “weights” in the mixture
proportionally to the number of inter-contact times that can
be observed in any given interval (or, in other words, pro-
portionally to the rate of inter-contact times).

In this paper we significantly extend this result, by i) as-
suming that contact rates are random variables, thus un-
known a priori, and ii) by exploiting an anthropology model
for describing contacts between humans. Specifically, we can
derive the following Theorem.

Theorem 1. In a pervasive social network where contact
rates are determined by the hierarchical structure of ego net-
works, the CCDF of the aggregate inter-contact times is:

F(x) =

L
X

l=1

plCl
PL

l=1 plE[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ (3)

where pl is the probability that a social relationship of any
given user is in layer l of its ego network, and Λl denotes the
contact rates between an ego and its alters in layer l (i.e.,
its density is as in Equation 1.

Proof. See Appendix A.
While in Appendix A we provide the complete proof of

Equation 1, here we briefly discuss its physical meaning.



First of all, Equation 3 can be seen as the weighted sum of
components related to the individual layers of human social
networks. Specifically, by defining Fl(x) as follows:

Fl(x) =
Cl

E[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ (4)

we can write F(x) as

F(x) =
L

X

l=1

plE[Λl]
PL

l=1 plE[Λl]
Fl(x) (5)

In appendix A we show that Fl(x) is actually the CCDF of
the aggregate inter-contact times over layer l only. Equa-
tion 5 highlights an intuitive result. Each such component
(Fl(x))“weights” in the aggregate proportionally to the frac-
tion of pairs falling in the layer (pl), and to the average con-
tact rates of the layer (i.e., to the average number of inter-
contact events that is generated by a pair in that layer).

Besides a more formal derivation shown in Appendix A,
the form of the individual layer CCDF in Equation 4 has a
more intuitive derivation, starting from the result in Lemma 1.
Specifically, it can be obtained by considering a modified
network in which we assume that all rates λ ∈ [λl, λl−1] are
possibly available (for pairs in layer l), each with a prob-
ability fl(λ)dλ. Fl(x) is thus the aggregate over all the
resulting individual pairs inter-contact times distributions.
As the number of such distributions becomes infinite and is
indexed by Λl (a continuous random variable), the summa-
tion in Equation 2 becomes an integral over λ. Moreover,
the weight of each distribution (θp in Equation 2) becomes
λ·p(λ) = λfl(λ)dλ, while the total rate (θ in Equation 2) be-
comes

R ∞

0
λfl(λ)dλ = E[Λl]. The expression in Equation 4

follows immediately.
Theorem 1 shows the dependence between the three dis-

tributions that characterise the properties of inter-contact
times. The key property we study in the following is un-
der which conditions, and starting from which distributions
of individual inter-contact times and contact rates, the dis-
tribution of aggregate inter-contact times presents a heavy
tail. This provides a solid mathematical foundation to un-
derstand whether focusing on the aggregate inter-contact
times is sufficient or not for assessing the convergence prop-
erties of routing protocols in SPNs.

It is important to note that, to carry on our analysis, it is
sufficient to study the aggregate inter-contact times distri-
bution over individual layers only, provided by Equation 4.
It is, in fact, sufficient that one such aggregate presents a
heavy tail for the whole aggregate to be heavy tailed. Thus,
Equation 4 is the key starting point for the following analy-
sis.

5. STUDY OF REPRESENTATIVE SOCIAL
PERVASIVE NETWORKS

In this section we exploit the model derived in Section 4
to study two different aspects. First, in Sections 5.1 and 5.2,
we study how the inter-contact rates impact on the distri-
bution of the aggregate inter-contact times when individual
pairs inter-contact times are exponentially distributed. This
analysis follows the footsteps of [25], and highlights impor-
tant cases in which the existence of aggregate inter-contact
times following a power-law is not a sufficient condition for
forwarding protocols divergence. Second, in Section 5.3, we

study analytically the impact on the aggregate inter-contact
times distribution of even a single pair of users with power-
law inter-contact times. This analysis allows us to derive
sufficient conditions on the properties of the aggregate dis-
tribution to conclude that forwarding protocols will not di-
verge. All in all, these results provides concrete guidelines
on how to interpret the properties of the aggregate inter-
contact times distribution, showing when it is sufficient to
consider the aggregate distribution to characterise the con-
vergence properties of forwarding in SPNs.

As far as the first part of the analysis, note that [25] stud-
ied the relationship between individual pairs inter-contact
times and aggregate inter-contact times for face-to-face con-
tacts in mobile opportunistic networks. Authors considered
a network where individual pairs inter-contact times are ex-
ponential (thus not falling in the divergence condition found
in [10]), and show that the distribution of inter-contact rates
can be responsible for a heavy tail in the aggregate inter-
contact times distribution. In particular, the considered
inter-contact rates following, respectively, gamma, exponen-
tial and Pareto distributions. Therefore, in the following
we consider the same representative distributions for con-
tact rates. First of all, we analyse the dataset presented
in [29], which has been one of the basis for the results sum-
marised in Section 3. The dataset collects information about
251 ego networks. Each relationship in each network pro-
vides a sample of contact rate, for a total of over 20000
contact rates samples. We fit the resulting empirical distri-
bution to the reference distributions of this paper using the
Maximum Likelihood (ML) method, and compare the fitted
distributions against the data using the Akaike Information
Criterion (AIC, [2]). As we find that a gamma distribu-
tion provides the best fit, we carry on a detailed analysis
of this case (Section 5.1). For completeness, the study with
the other reference contact rates distributions is presented
in Section 5.2.

As far as the second part of the analysis, we assume that
there exists a single pair of nodes whose inter-contact times
distribution presents a heavy tail. We prove that, no matter
what the rest of the individual pairs distributions are, the
aggregate inter-contact times distribution presents the same
heavy tail. Seen from a complementary standpoint, this re-
sult allows us to conclude that if the aggregate inter-contact
time distribution is not heavy tailed, then no individual pair
can have a heavy tail inter-contact times distribution.

5.1 The role of inter-contact rates: study of a
measured case

Figure 3 shows a visual comparison of the samples ob-
tained from [29] and the ML fittings of the considered con-
tact rates distributions (ML estimators of the parameters
are provided in Table 1). For the gamma distribution we
consider the following definition (for the density)

f(λ) =
λα−1bαe−bλ

Γ(α)
(6)

where α and b are the shape and rate parameters, respec-
tively. For the exponential distribution we consider the stan-
dard definition (resulting in the density in Equation 7)

f(λ) = be−bλ (7)

where b is the rate parameter. For the Pareto distribu-
tion, we consider the two possible definitions resulting in



the CCDFs below:

F (λ) =
`

b
λ

´α
, α > 0, λ > b

F (λ) =
“

b
b+λ

”α

, α > 0, λ > 0
(8)

where α and b are the shape and scale parameters. The
difference between the two forms is that in the first case λ
cannot take values arbitrarily close to 0, while in the second
it can. We will show that this has a profound impact on the
distribution of the aggregate inter-contact times. Hereafter,
we denote with “Pareto” the first form, and with “Pareto0”
the second form.

Figure 3: Fitting distributions

The intuition from Figure 3 is that the gamma distribution
is the best fit for our dataset. This is confirmed by the AIC
test, whose values are shown in Table 1. Remember that
in AIC tests the best alternative is the one with the lowest
AIC value [2].

Distribution Best fit parameters AIC value

Gamma α = 0.34, b = 1.63 -50280.62
Exponential b = 4.86 -23505.08
Pareto α = 0.16, b = 5.5x10−5 -31289.34
Pareto0 α = 0.16, b = 5.5x10−5 -28841.84

Table 1: AIC values for the tested distributions.

Based on this result, we study in detail the properties of
the aggregate inter-contact times distribution assuming that
the contact rates distribution is gamma, and the individ-
ual inter-contact times distributions are exponential. Note
that the case of exponential inter-contact times of individ-
ual pairs is relevant. Most of the analytical studies in the
opportunistic networking literature have been derived under
this assumption. Moreover, exponential inter-contact times
of individual pairs have been found in face-to-face contacts
traces, e.g. [11, 15].

Lemma 2 and Theorem 2 characterises the distribution of
the aggregate inter-contact times in this case.

Lemma 2. When contact rates follow a gamma distribu-
tion and individual inter-contact times an exponential dis-
tribution, the CCDFs of inter-contact times aggregated over
individual layers (Fl(x)) all decay, for large x, faster than
a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri-
bution with shape α and rate b, the following relations hold

true, for large x:
(

Fl(x) ≤ Re−λl(b+x)

x
l = 1, . . . , L − 1

FL(x) ≃ K

xα+1

(9)

where R and K do not depend on x.

Proof. See Appendix B.

Theorem 2. In a pervasive social network where indi-
vidual pairs inter-contact times are exponentially distributed
and contact rates follow a gamma distribution, the distri-
bution of the aggregate inter-contact times features a heavy
tail. Specifically, the following relation holds true:

f(λ) = λα−1bαe−bλ

Γ(α)
, Fλ(x) = e−λx

⇒ F(x) ≃ K

xα+1 for large x

where K does not depend on x.

Proof. This follows immediately from Lemma 2, by recalling
the relationships between Fl(x) and F(x) in Equation 5, and
noting that FL(x) dominates over all the other components
for large x.

Theorem 2 and Lemma 2 provide two interesting insights.
First, the presence of aggregate inter-contact times with a
heavy tail distribution does not necessarily mean that rout-
ing protocols risk divergence in SPNs, as such a heavy tail
can emerge starting from exponentially distributed individ-
ual pairs. Therefore, when the contact rates follow a gamma
distribution, looking at the distribution of aggregate inter-
contact times is not sufficient to check whether routing pro-
tocols may diverge or not. Instead, the distributions of indi-
vidual pairs inter-contact times must be analysed. Second,
the power law of F(x) appears because of the power law of
the inter-contact times aggregated over the outer-most lay-
ers, FL(x). Due to the shape of the gamma distribution, in
the outer-most layers contact rates can be arbitrarily close
to 0, thus resulting in arbitrarily large inter-contact times.
Intuitively, this actually suggests a more general behaviour:
Whenever the distribution of the contact rates is such that
rates arbitrarily close to 0 can be drawn, the distribution of
the aggregate inter-contact times presents a heavy tail. This
behaviour is confirmed also in the cases with Pareto contact
rates.

To validate our analysis, we compare the result of The-
orem 2 with simulations. Specifically, we simulate an ego-
network with 150 alters divided in layers according to the
model presented in Section 3. Ego and each alter meet with
exponential inter-contact times, with rates drawn from a
gamma distribution. Sectors of the distribution correspond-
ing to the layers are defined as described in Section 4.1. Each
simulation run reproduces an observation of the network for
a time interval T , defined according to the following algo-
rithm. For each alter a, we first generate 100 inter-contact
times, and then compute the total observation time after 100
inter-contact times, Ta, as the sum of the pair inter-contact
times. T is defined as the maximum of Ta, a = 1, ..., 150. To
guarantee that all alters are observed for the same amount
of time, we generate additional inter-contact times for each
alter until Ta reaches T . Simulations have been replicated
20 times with independent seeds, and confidence intervals
(with 99% confidence level) have been computed.

Figure 4 shows a very good agreement between the ana-
lytical and the simulation models. Recall that the analysis



predicts that the tail of the aggregate inter-contact times
distribution decays as 1

xα+1 where α is the shape parameter
of the contact rates distribution. Figure 4 shows that - as
also found in the analysis - the lower the shape of the con-
tact rates distribution, the heavier the tail of the aggregate
inter-contact times. This results from the fact that lower
shape parameters result in a higher mass of probability of
contact rates around 0, i.e., in an increasing probability of
very long inter-contact times.
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Figure 4: Aggregate inter-contact times with

gamma contact rates

5.2 The role of inter-contact rates: other rele-
vant cases

In this section we focus on the rest of the contact rates
distributions considered in [25]. Specifically, as the case of
an exponential distribution is a special case of a gamma dis-
tribution, we limit our analysis to Pareto distributions, in
both variants, “Pareto” and “Pareto0”, i.e. when contact
rates arbitrarily close to 0 are not and are allowed, respec-
tively.

The case“Pareto” is analysed in Lemma 3 and Theorem 3.
With respect to the sectors corresponding to the layers of
the ego networks, recall that in this case λ0 = ∞ and λL =
b where b is the minimum possible value of the “Pareto”
distribution.

Lemma 3. When contact rates follow a Pareto distribu-
tion whose CCDF is in the form F (λ) =

`

b
λ

´α
, λ > b and

individual inter-contact times are exponential, the CCDFs of
inter-contact times aggregated over individual layers (Fl(x))
all decay, for large x, at least as fast as a power law with
exponential cutoff. Specifically, the following relations hold
true for large x:

(

F1(x) ≃ Re−λ1x

x

Fl(x) ≤ Ke−λlx

x
l = 2, . . . , L

(10)

where R and K do not depend on x.

Proof. See Appendix B.

Theorem 3. When contact rates follow a Pareto distri-
bution whose CCDF is in the form F (λ) =

`

b
λ

´α
, λ > b and

individual inter-contact times are exponential, the CCDF of
the aggregate inter-contact times decays, for large x, faster
than a power law with exponential cutoff. Specifically, the
following relation holds true

F (λ) =
`

b
λ

´α
, Fλ(x) = e−λx

⇒ F(x) ≤ Ke−bx

x
for large x

where K does not depend on x.

Proof. This comes immediately from Lemma 3, by noticing
that the slowest decaying component of F(x) is the one re-
lated to the outer-most layer, and using the corresponding
expression from Equation 10.

Lemma 3 and Theorem 3 show that even considering con-
tact rates with an heavy tail (such as a “Pareto”) may not
be sufficient to obtain a heavy tail in the aggregate inter-
contact times distribution. This is due to the fact that the
“Pareto” distribution does not admit contact rates arbitrar-
ily close to 0.

Finally, Lemma 4 and Theorem 4 analyse the case“Pareto0”,
i.e. the case where the contact rates can be arbitrarily close
to 0.

Lemma 4. When contact rates follow a Pareto distribu-

tion whose CCDF is in the form F (λ) =
“

b
b+λ

”α

, λ > 0

and individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers (Fl(x))
all decay, for large x, at least as fast as a power law with ex-
ponential cutoff, but the CCDF corresponding to the outer-
most layer, which decays as a power law. Specifically, the
following relations hold true for large x:

(

Fl(x) ≤ Re−λlx

x
+ Qe

−λl−1x

x
l = 1, . . . , L − 1

FL(x) ≃ K

x2

(11)

where R, Q and K do not depend on x.

Proof. See Appendix B.

Theorem 4. When contact rates follow a Pareto distri-

bution whose CCDF is in the form F (λ) =
“

b
b+λ

”α

, λ > 0

and individual inter-contact times are exponential, the CCDF
of the aggregate inter-contact times decays, for large x, as a
power law with shape equal to 2. Specifically, the following
relation holds true

F (λ) =
`

b
bλ

´α
, Fλ(x) = e−λx

⇒ F(x) ≃ K

x2 for large x

where K does not depend on x.

Proof. This comes immediately from Lemma 4 by notic-
ing that the slowest decaying component of F(x) is the one
corresponding to the outer-most layer, and using the corre-
sponding expression from Equation 11.

As anticipated, in the case “Pareto0” the aggregate inter-
contact times distribution presents a heavy tail. Intuitively,
this is a side effect of the fact that contact rates can be
arbitrarily close to 0. Again, note that this is another ex-
ample (qualitatively similar to those of Theorem 2) where a
heavy tail in the aggregate inter-contact times distribution is
not necessarily a symptom of possible divergence of routing
protocols, as it can emerge from exponentially distributed
individual inter-contact times.

As a final validation check of the analytical results pre-
sented in this section, Figure 5 shows the CCDFs of ag-
gregate inter-contact times in the “Pareto” and “Pareto0”
cases, comparing analytical and simulation results (simula-
tions where run as explained in Section 5.2). Also in this case
the agreement between the analytical and simulation results
is very good (remember that the analytical model describes
the behaviour of the tail of the aggregate inter-contact times
distribution).
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5.3 The effect of individual power-law inter-
contact times distributions

In this section we study analytically the effect of even
a single heavy tail individual inter-contact times distribu-
tion on the distribution of the aggregate inter-contact times.
Specifically, we assume that the inter-contact times distri-
bution of a given pair p presents a heavy tail, i.e. we assume
that Fp(x) is as follows:

Fp(x) ≃ x−η for large x

For the rest of the individual pairs distributions we consider
the same assumptions used in Section 4, and, in addition,
we assume that they are not power law. In other words,
the distribution of pair p is the only one in the network
presenting a heavy tail. Finally, we assume that the number
of pairs is finite, and equal to P . Then, the following lemma
holds true.

Lemma 5. In a network with a finite number of pairs,
where there exist one pair whose individual inter-contact
times distribution follows, for large x, a power law with shape
η, the distribution of the aggregate inter-contact times, for
large x, follows a power law at least as heavy as x−η, i.e.

∃ p s.t. Fp(x) ≃ x−η for large x ⇒

F(x) ≥ Cx−η for large x and for some constant C > 0

Proof. See Appendix B.

Figure 6 provides a concrete example of the result in Lemma 5.
Specifically, we first consider an ego-network such that the
distribution of the aggregate inter-contact times does not
present a heavy tail. As shown in Section 5.2, this can be
obtained, for example, by using exponentially distributed
inter-contact times, and sampling the contact rates from a
Pareto distribution. In this case, the tail of the resulting
aggregate distribution presents a power law with an expo-
nential cut-off. In the Figure, the percentiles obtained by
simulation (run as explained in Section 5.1) are marked with
white squares, and the corresponding analytical curve (de-
rived in Section 5.2) is plotted with a solid line. Then, we
added to the same ego network one more alter, whose inter-
contact times with the ego follow a Pareto distribution with
shape η = 1.1 (while the scale parameter, defining the mini-
mum inter-contact time, is set to 1 day, as this was also the
minimum inter-contact time found in the traces used in Sec-
tion 5.1). In the Figure, percentiles obtained by simulation

are marked with dark diamonds, while the corresponding an-
alytical curve predicted by Lemma 5 is plotted with a dashed
curve. According to Lemma 5, i) the existence of even a sin-
gle pair whose inter-contact times are power law implies that
the tail of the aggregate distribution is also heavy, and ii)
the tail of the resulting aggregate distribution can be lower
bounded by a power law with exponent equal to η = 1.1.
Figure 5 confirms both results obtained in Lemma 5.
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Figure 6: Aggregate inter-contact times with and

without a single Pareto ICT pair.

Lemma 5 allows us to immediately identify the cases where
considering the aggregate inter-contact times distribution is
sufficient to characterise the convergence properties of for-
warding protocols in SPNs. Specifically, the following theo-
rem holds true.

Theorem 5. In a network with a finite number of pairs,
if the distribution of the aggregate inter-contact times does
not present a heavy tail, then no individual inter-contact
times distribution can present a heavy tail.

Proof. This comes straightforwardly from Lemma 5. If
even a single individual inter-contact times would present
a heavy tail, then the aggregate distribution would also
present a heavy tail.

In practical terms, Theorem 5 tells that when the ag-
gregate inter-contact times distribution does not present a
heavy tail, it is not necessary to study all the distributions
of individual inter-contact times to check the conditions on
the divergence of forwarding protocols found in [10], because
no individual inter-contact times distribution can follow a
power law. This result is dual to those found in Sections 5.1
and 5.2, which tell that, instead, when the aggregate dis-
tribution presents a heavy tail, a detailed analysis of the
individual pairs distributions is necessary.

6. CONCLUSION
In this paper we studied fundamental properties of rout-

ing algorithms in social pervasive networks. Pervasive social
networks are a possible evolution of current pervasive net-
works, where social network services are designed on top of
a communication network that maps directly human social
networks, i.e., a network where edges are activated between
users that share social relationships, when they communi-
cate because of their social tie. In social pervasive networks,
a possible design paradigm for routing algorithms could be
to exploit contact events between users, i.e. events of com-
munication between users happening because of their social



tie. In such a scenario, it is fundamental to characterise the
properties of inter-contact times (i.e., the time between two
consecutive contact events), as this has been shown to play
a key role in determining convergence properties of routing
algorithms in related (although different) networking envi-
ronments.

In this paper we provided a mathematical model that for-
mally characterises the dependence between the distribu-
tion of inter-contact times of individual pairs (which actu-
ally determine the convergence of routing protocols) and the
distribution of aggregate inter-contact times (which is typ-
ically assumed to be the key distribution to analyse). This
model can be used, as we shown in the paper, to analyse
concrete cases and understand which distributions should
be considered to assess the convergence properties of rout-
ing protocols for SPNs. In general, the results we derive by
exploiting our model suggest a more cautionary approach to
the analysis of inter-contact times with respect to the com-
mon approach largely used in the literature, which considers
sufficient to analyse only the distribution of aggregate inter-
contact times. Moreover, we highlight that the heterogeneity
of the network is a fundamental aspect to take into consid-
eration, as, together with the individual pairs distributions,
it determines the distribution of the aggregate inter-contact
times.
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APPENDIX

A. PROOF OF THEOREM 1

Theorem 1. In a pervasive social network where contact
rates are determined by the hierarchical structure of human
social networks, the CCDF of the aggregate inter-contact
times is:

F(x) =
L

X

l=1

plCl
PL

l=1 plE[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ

where pl is the probability that a social relationship of any
given user is in layer l of its human social network, and Λl

denotes the contact rates between an ego and its alters in
layer l (i.e., its density is as in Equation 1.

Proof. In the proof we focus on a given ego-network only.
As users are supposed to be statistically equivalent as far as
their social network is concerned, the distributions of inter-
contact times aggregated over a given user or over all the
users are the same. With respect to the expression of F(x) in
Lemma 1, contact rates are not known, but are drawn from
a set of r.v. with density fl(λ) (Equation 1). The expression
of F(x) can be derived by conditioning to a specific set of
rates λ1, . . . , λN , and applying the law of total probability.
Without loss of generality, we can assume that the alters
{1, . . . , N} are ordered according to their membership to
layers, i.e., the first n1 alters belong to the inner-most layer,
etc. We thus obtain

F(x) =
R

λ1
...

R

λN
F(x|λ1,...,λN )f(λ1,...,λN )dλ1...dλN

=
R

λ1
...

R

λN

PN
p=1 λpFp(x)

PN
p=1 λp

f1(λ1)...fN (λN )dλ1...dλN ,

where we have assumed that rates of individual alters inter-
contact times are independent. For a sufficiently large num-
ber of pairs in each layer, we can apply the law of large num-
bers, and approximate

Pnl

i=1 λi as nlE[Λl], and
PN

p=1 λp as
PL

l=1 nlE[Λl]. Swapping the integrals and the summations,

and substituting pl = nl

N
, we further obtain:

F(x) = 1
P

l nlE[Λl]

P

p

R

λ1
...

R

λN
λpFp(x)f1(λ1)...fN (λN )dλ1...dλN =

=
1

P

l nlE[Λl]

L
X

l=1

nl

Z ∞

0

λFλ(x)fl(λ)dλ =

=
L

X

l=1

pl
PL

l=1 plE[Λl]

Z ∞

0

λfl(λ)Fλ(x)dλ

=
L

X

l=1

plCl
PL

l=1 plE[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ ,

where we have exploited the assumption that rates of indi-
vidual pairs inter-contact times of the same layer are iden-
tically distributed, and that individual pairs inter-contact
times of the same layer follow the same type of distribution,
Fλ(x).

Note that the above methodology can also be applied to
show that Fl(x) in Equation 4 is the CCDF of the inter-
contact times aggregated over layer l only. Specifically, ex-
ploiting again Lemma 1, we can condition Fl(x) to a known
set of rates λ1, . . . , λnl

. Thus, we can write:

Fl(x) =
R

λ1
...

R

λnl
F(x|λ1,...,λnl

)f(λ1,...,λnl
)dλ1...dλnl

=
R

λ1
...

R

λnl

Pnl
i=1

λiFi(x)
Pnl

i=1
λi

f1(λ1)...fnl
(λnl

)dλ1...dλnl
.

By approximating
P

i λi as nlE[Λl], and by recalling that
the contact rates in layer l are assumed to be identically
distributed, we obtain

Fl(x) =
1

nlE[Λl]
nl

Z ∞

0

λfl(λ)Fλ(x)dλ

=
Cl

E[Λl]

Z λl−1

λl

λf(λ)Fλ(x)dλ

B. PROOF OF LEMMAS IN SECTION 5

Lemma 2. When contact rates follow a gamma distribu-
tion and individual inter-contact times an exponential dis-
tribution, the CCDFs of inter-contact times aggregated over
individual layers (Fl(x)) all decay, for large x, faster than
a power law with exponential cutoff, but the CCDF corre-
sponding to the outer-most layer, which decays as a power
law. Specifically, if the contact rates follow a gamma distri-
bution with shape α and rate b, the following relations hold
true, for large x:

(

Fl(x) ≤ Re−λl(b+x)

x
l = 1, . . . , L − 1

FL(x) ≃ K

xα+1

where R and K do not depend on x.

Proof. First of all, it should be noted that when contact
rates follow a gamma distribution, the values of λ that lim-
its the sectors corresponding to the layers of the ego net-
work are such that λ0 = ∞ and λL = 0. Let us focus on
the CCDF of aggregate inter-contact times on intermediate
layers (i.e., excluding the inner- and the outer-most layers)
first. From Equation 4, by substituting the expressions of



f(λ) and Fλ(x) we obtain:

Fl(x) = H

Z λl−1

λl

λαe−(b+x)λdλ

= H
Γ(α + 1, λl(b + x)) − Γ(α + 1, λl−1(b + x))

(b + x)α+1

where H does not depend on x and Γ(·, ·) is the upper in-
complete Gamma function. For large x, Γ(s, x) can be ap-
proximated as xs−1e−x [1]. We thus obtain:

Fl(x) ≃
xα(Re−λl(b+x) − We−λl−1(b+x))

(b + x)α+1

≃
Re−λl(b+x) − We−λl−1(b+x)

x
≤

Re−λl(b+x)

x

For the inner-most sector, we can write

F1(x) = H

Z ∞

λ1

λαe−(b+x)λdλ = H
Γ(α + 1, λ1(b + x))

(b + x)α+1

For large x, applying the same approximation for Γ(·, ·), we
obtain

F1(x) ≃ M
xαe−λ1(b+x)

(b + x)α+1
≃ M

e−λ1(b+x)

x

Finally, for the outer-most sector, FL(x) becomes:

FL(x) = H

Z λL−1

0

λαe−(b+x)λdλ

= H
Γ(α + 1) − Γ(α + 1, λL−1(b + x)

(b + x)α+1

Approximating Γ(·, ·) we obtain

F(x) ≃ W
Γ(α + 1)

(b + x)α+1
− A

xαe−λL−1(b+x)

(b + x)α+1

≃ W
Γ(α + 1)

(b + x)α+1
≃

K

xα+1

Lemma 3. When contact rates follow a Pareto distribu-
tion whose CCDF is in the form F (λ) =

`

b
λ

´α
, λ > b and

individual inter-contact times are exponential, the CCDFs of
inter-contact times aggregated over individual layers (Fl(x))
all decay, for large x, at least as fast as a power law with
exponential cutoff. Specifically, the following relations hold
true for large x:

(

F1(x) ≃ Re−λ1x

x

Fl(x) ≤ Ke−λlx

x
l = 2, . . . , L

where R and K do not depend on x.

Proof. Using the same methodology of Lemma 2, we obtain,
for all components of F(x) but the one corresponding to the
inner-most layer, the following expression:

Fl(x) = H

Z λl−1

λl

e−λx

λα
dλ

= H
Γ(1 − α, λlx) − Γ(1 − α, λl−1x)

x1−α

Applying the usual approximation of Γ(·, ·) for large x we
obtain

Fl(x) ≃ x−α Ke−λlx − Qe−λl−1x

x1−α
≤

Ke−λlx

x

The component corresponding to the innermost layer can be
written as

F1(x) = H

Z ∞

λ1

e−λx

λα
dλ = H

Γ(1 − α, λ1x)

x1−α

The expression in the Lemma follows immediately by apply-
ing the usual approximation of Γ(·, ·) for large x.

Lemma 4. When contact rates follow a Pareto distribu-

tion whose CCDF is in the form F (λ) =
“

b
b+λ

”α

, λ > 0

and individual inter-contact times are exponential, the CCDFs
of inter-contact times aggregated over individual layers (Fl(x))
all decay, for large x, at least as fast as a power law with ex-
ponential cutoff, but the CCDF corresponding to the outer-
most layer, which decays as a power law. Specifically, the
following relations hold true for large x:

(

Fl(x) ≤ Re−λlx

x
+ Qe

−λl−1x

x
l = 1, . . . , L − 1

FL(x) ≃ K

x2

where R, Q and K do not depend on x.

Proof. Let us consider components of F(x) other than the
one corresponding to the outermost layer. The following
equation holds true:

Fl(x) = H

Z λl−1

λl

λ

(b + λ)α+1
e−λxdλ

= ebx



Γ(1 − α, (λl + b)x) − Γ(1 − α, (λl−1 + b)x)

x1−α
+

+ bx
Γ(−α, (λl−1 + b)x) − Γ(−α, (λl + b)x)

x1−α

ff

Applying the usual approximation of Γ(·, ·) for large x it is
easy to obtain the following relation

Fl(x) ≤ ebx



[(λl + b)x]−αe−(λl+b)x

x1−α
+

+
bx[(λl−1 + b)x]−α−1e−(λl−1+b)x

x1−α

ff

from which it is straightforward to derive the expression in
Equation 11. As for the component of F(x) corresponding
to the outermost layer, we obtain

FL(x) = H

Z λL−1

λ0

λ

(b + λ)α+1
e−λxdλ

= ebx



Γ(1 − α, bx) − Γ(1 − α, (λL−1 + b)x)

x1−α
+

+ bx
Γ(−α, (λL−1 + b)x) − Γ(−α, bx)

x1−α

ff

This time it is necessary to apply an approximation of Γ(s, x)
that considers higher order terms (for large x). This is de-
rived in [1], as follows:

Γ(s, x) ≃ xs−1e−x

„

1 +
s − 1

x

«

We thus obtain the final result shown in Equation 11:

FL(x) ≃ ebx (bx)−α−1e−bx(α + 1) − (bx)−α−1e−bxα

x1−α

=
K

x2



Lemma 5. In a network with a finite number of pairs,
where there exist one pair whose individual inter-contact
times distribution follows, for large x, a power law with shape
η, the distribution of the aggregate inter-contact times, for
large x, follows a power law at least as heavy as x−η, i.e.

∃ p s.t. Fp(x) ≃ x−η for large x ⇒

F(x) ≥ Cx−η for large x and for some constant C > 0

Proof. With respect to the ego network model described
in Section 3, it is sufficient to focus on the layer to which pair
p belongs, hereafter denoted to as l̂. Let us assume that the
number of alters in that social layer is P + 1. As we did for
Theorem 1, we can exploit the result of Lemma 1 assuming
that all rates of individual inter-contact times are known.
Let us denote with λp the inter-contact time for pair p, and
with λ1, . . . , λP the rest of the inter-contact rates. We can
write the expression in Lemma 1 as follows:

Fl̂(x|λ1, . . . , λP , λp)

=
PP

i=1
λi

P

i λi+λp
Fi(x) +

λp
P

i λi+λp
Fp(x)

(12)

Recalling that one of the rates is known a priori (the one
corresponding to pair p), we can remove the conditioning on
the rest of the rates, and write the distribution of aggregate
inter-contact times as follows:

Fl̂(x|λp) =
R

λ1
...

R

λP
F(x|λ1,...,λP ,λp)f(λ1,...,λP )dλ1...dλP

=
R

λ1
...

R

λP

"

PP
i=1 λiFi(x)

PP
i=1

λi+λp
+

λpFp(x)
PP

i=1
λi+λp

#

f1(λ1)...fP (λP )dλ1...dλP .

Denote with E[Λl̂] the average rate in layer l̂ excluding pair
p. By approximating,

P

i λi as PE[Λl̂] the second term of
the addition in the above expression does not depend on
λ1, . . . , λP anymore. This terms thus result in a component

of Fl̂(x) equal to
λpFp(x)

PE[Λ
l̂
]+λp

. As far as the first term of the

addition, recall that we assume that inter-contact rates in
layer l̂ (but the rate of pair p) are iid. Applying the usual
approximation for

P

i λi, and swapping the summation with
the integrals we can write

R

λ1
...

R

λP

PP
i=1 λiFi(x)

PP
i=1

λi+λp
f1(λ1)...fP (λP )dλ1...dλP =

1
P E[Λ

l̂
]+λp

P

i

R

λ1
...

R

λP
λiFi(x)f1(λ1)...fP (λP )dλ1...dλP =

P
P E[Λ

l̂
]+λp

R

∞

0 λf
l̂
(λ)Fλ(x)dλ

By recalling the expression of the aggregate distribution over
an individual layer derived in the proof of Theorem 1, and by
denoting with F̂(x) the distribution of the aggregate inter-

contact times over layer l̂ excluding pair p, it is straightfor-
ward to see that the above term can be written as follows:

P

PE[Λl̂] + λp

Z ∞

0

λfl̂(λ)Fλ(x)dλ =
PE[Λl̂]

PE[Λl̂] + λp

F̂(x)

Putting everything together, and by defining α as
PE[Λ

l̂
]

PE[Λ
l̂
]+λp

,

we can write the CCDF of the aggregate inter-contact times
as follows:

Fl̂(x|λp) = αF̂(x) + (1 − α)Fp(x) (13)

To complete the proof it is sufficient to distinguish between
two possible cases, i.e., whether F̂(x) presents or not a heavy
tail. In the latter case, by definition, for any β > 0 it holds

true that limx→∞
F̂(x)

x−β = 0, i.e. F̂(x) decays, for large x,

faster than any power law. Therefore, recalling that Fp(x)
can be approximated with x−η for large x, we obtain:

lim
x→∞

Fl̂(x|λp)

x−η
= lim

x→∞
α
F̂(x)

x−η
+ (1 − α)

Fp(x)

x−η
= 1 − α

In this case, therefore, Fl̂(x|λp) can be approximated with
(1−α)x−η, which means that the distribution of the aggre-
gate inter-contact times presents a heavy tail with exactly
the same shape of pair p.

In the case where F̂(x) presents a heavy tail, we can ap-
proximate it, for large x, as x−β for some β > 0. If β > η
then F̂(x) decays faster than Fp(x), and we can thus again
approximate Fl̂(x|λp) with (1−α)x−η. If β < η then Fp(x)

decays faster than F̂(x), which means that we can approx-
imate Fl̂(x|λp) with αx−β . As β < η, Fl̂(x|λp) ≥ αx−η

holds true for large x.
This concludes the proof.


