

C

Consiglio Nazionale delle Ricerche

Fast exact computation of betweenness
centrality in social networks

MM.. BBaagglliioonnii,, FF.. GGeerraaccii,, MM.. PPeelllleeggrriinnii,, EE.. LLaassttrreess

IIT TR-10/2011

Technical report

Giugno 2011

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fast exact computation of betweenness centrality in social networks

Miriam Baglioni∗, Filippo Geraci∗, Marco Pellegrini∗and Ernesto Lastres†
∗IIT - CNR, Pisa, Italy

†Sistemi Territoriali, Navacchio (Pisa), Italy

Abstract—Social networks have demonstrated in the last few
years to be a powerful and flexible concept useful to represent
and analyze data. They borrow some basic concepts from
sociology in order to model how people (or data items) establish
relationships with each other. The study of these relationships
can provide a deeper understanding of many emergent global
phenomena. The amount of data available in the form of social
networks data is growing by the day, and this poses many
computational challenging problems for their analysis. In fact
many analysis tools suitable to analyze small to medium sized
networks are inefficient for large social networks.

In this paper we present a novel approach for the computa-
tion of the betweenness centrality, which speeds up considerably
Brandes’ algorithm, in the context of social networking. Our al-
gorithm exploits the natural sparsity of the data to algebraically
(and efficiently) determine the betweenness of those nodes
organized as trees embedded in the social network. Moreover,
for the residual network, which is often of much smaller size
we modify the Brandes’ algorithm so that we can remove the
nodes already processed and perform the computation of the
shortest paths only for the remaining nodes.

We tested our algorithm using a set of 18 real sparse large
social networks provided by Sistemi Territoriali which is an
Italian ICT company specialized in Business Intelligence. Our
tests show that our algorithm consistently runs more than an
order of magnitude faster than the Brandes’ procedure on such
sparse networks.

Keywords-Betweenness centrality, social network analisys

I. INTRODUCTION

Social networks are a powerful instrument to represent
a large set of heterogeneous objects and the relationships
among them. They are successfully adopted in a vast range
of applications from marketing to bioinformatics. According
to the paradigm of social networking, to each object is
associated a node of the network and the edges between pairs
of nodes represent the relationship between them. Social
networks are naturally represented as graphs, consequently
graph theory plays an important role in social network
analysis.

Among the analysis tools, centrality indices are often
used to score (and rank) the nodes (or the edges) of the
network to reflect their centrality position. The intuitive
idea behind this class of indices is that a central node is
likely to be involved in many processes of the network, thus
its importance increases. According to what we mean with
the word “important”, different definitions of centrality are
possible [1]. For example degree centrality highlights nodes
with a higher number of connections, closeness centrality

highlights nodes easily reachable from other nodes, and
eigenvector centrality highlights nodes connected with au-
thoritative nodes. A complete compendium of many central-
ity definitions, problems and measures can be found in [2].
Betweenness [3] is one of the most broadly used centrality
indices. The betweenness of a node is defined as the sum,
for each pair of nodes (s, t) in the network, of the ratio
between the number of shortest (aka geodesic) paths from
s to t passing through v and the total number of shortest
paths from s to t. The main assumption of this index is that
the information flows in the network following only shortest
paths. Despite this assumption that could be considered as
a restrictive condition, betweenness finds a vast range of
applications such as: lethality in biological networks [4] and
bibliometry [5], and is quite useful in applications.

The computation of the Betweenness centrality index is
demanding because, for a given node v, all the shortest
paths between each couple of nodes passing through v
have to be counted (even if it is not necessary to explicitly
enumerate them). This means that, in general, for fairly large
networks the computation of this index becomes impractical.
In the last decade a large number of social networks have
been identified and their size is consistently increasing over
time. For example, social media like Facebook have reached
size in the order of millions of nodes, and such networks
are essentially connected (or have a single giant connected
component) [6]. The fastest known exact algorithm is due
to Brandes [7]. It requires O(n + m) space and O(nm)
time where n is the number of nodes and m the number of
edges. Thus, the computation of such an index poses non
trivial computational problems for large values of n and m
even when using this efficient algorithm. For sparse graphs
where m = O(n) Brandes’ method is still quadratic, which
makes it inefficient for very large graphs.

In this paper we propose an evolution of the Brandes’
algorithm which exploits some intrinsic topological char-
acteristics of social networks to algebraically compute the
centrality of the subgraphs of the network which exhibit a
tree structure. The advantage of our approach is twofold: on
the one hand we do not need to count shortest paths for a
subset of network nodes, and, on the other hand for the other
nodes we have to compute the shortest paths only between
nodes belonging to a subgraph of the original graph.

Our algorithm performance strictly depends on the num-
ber of nodes for which we can algebraically derive the

betweenness, however it works well in practice for social
networks since we observed that such structures (trees) are
quite frequent in the context of social networks where the
number of edges of the graph is of the same order of
magnitude of the number of nodes. Note, however, our
algorithm reduces to the Brandes’ algorithm in the worst
case.

We tested our algorithm on a set of 18 real social network
graphs of Sistemi Territoriali which is an ICT company
whose headquarters is in Italy, specializing in Business
Intelligence applications. These graphs coming from real
applications are very large and sparse, a property our algo-
rithms exploits to gain in efficiency. Compared to Brandes’
method we can gain orders of magnitudes (between one
and two) in terms of computation time. At the best of our
knowledge this approach is novel.

The paper is organized as follows. Section II gives a
brief survey of related work, while section III gives key
insights from Brandes’ methods. In section IV we describe
our method, we provide illustrative examples, and a formal
proof of correctness. In Section VI we give the experimental
results.

II. RELATED WORK

As mentioned in the previous section, there is not a unique
way to define centrality and related measures, but different
definitions could be used that are suitable to specific appli-
cations. A survey of these definitions and related problems
is beyond the purpose of this paper and can be found in [2]
and [1].

An important family of centrality indices is the one based
on shortest paths. Let G = (V,E) be the graph associated to
a social network, we denote as: σst the number of shortest
paths starting from the node s and ending in t, σst(v) the
cardinality of the subset of geodesic paths from s to t passing
through v, and dG(s, t) the distance between the source and
destination nodes.

The first known index based on the enumeration of
shortest paths is stress centrality [8]. It defines the centrality
for a node v as the number of occurrences of v in a geodesic
path between each couple of nodes in the graph. It was
designed in the field of communication networks to measure
the amount of stress a node has to sustain to allow the
optimal connectivity. Formally stress centrality is defined
as:

CS(v) =
∑

s6=v 6=t∈V

σst(v)

Betweenness [3] counts, for a given vertex v, the fraction
of all the possible shortest paths between pairs of nodes
which pass through v. The difference between stress and
betweenness centrality is that the latter sums the relative
number of shortest paths. This measure can be interpreted
as a quantification of how a node controls the flow of
information in the network. In fact, when the number of

alternative shortest paths between two nodes increases, the
relative importance of a specific node reduces. In contrast, if
to connect two nodes we are constrained to pass through a
certain node, its importance increases. Formally betweenness
centrality is defined as:

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

In order to extend the use of betweenness centrality to
a wider range of applications, many variants of this index
were proposed in the literature. For example in [9] the
betweenness definition is applied to dynamic graphs, while
in [10] geodesic paths are replaced with random walks to
speed up the computation.

The concept of closeness between two objects is related to
the notion of distance. Two objects are close if their distance
is “small”. In the context of graph theory different definitions
of distance between pairs of nodes are possible, one of the
most accepted is the length of a geodesic path. According
to this definition of distance in [11] the authors define the
closeness centrality as:

CC(v) =
1∑

t∈V dG(t, v)

The practical application of centrality indices depends
also on the scalability of the algorithm designed to compute
them. Distance based indices can be easily computed from
the definition if the distance matrix is already available.
Betweenness centrality has more stringent requirements, in
fact it needs to know how many geodesic paths exist between
two nodes, and how many of them pass through a certain
node. Early exact algorithms have a complexity in the order
of 0(n3) [12] where n is the number of nodes. As a result
the computation of betweenness becomes impractical for
networks with just a few thousands of nodes. To adapt
betweenness computation to real world social networks some
parallel algorithms were introduced such as [13] and [14].

To reduce the computational cost, many approximated
algorithms and simplified definition of betweenness were
proposed lately. In [15] the authors describe an approxima-
tion algorithm based on adaptive sampling which reduces
the number of shortest paths computations for vertices with
high centrality. In [16] the authors present a framework that
generalizes the Brandes’ approach to approximate between-
ness. In [17] the authors propose a definition of betweenness
which take into account paths of fixed length k. Another
important complexity reduction was presented in [18] where
ego-networks are used to approximate betweenness. A ego-
network is a graph composed by a node, called ego, and by
all the nodes, alters, connected to the ego. Thus if two nodes
are not directly connected, there is only a possible alternative
path which passes through the ego node. The authors have
empirically shown over random generated networks that
the betweenness of a node v is strongly correlated to that

of the ego network associated to v. Anyway, they do not
provide any mathematical evidence for their conclusion, so
this cannot be stated for generic real networks.

III. BACKGROUND

Our algorithm algebraically computes the betweenness of
nodes belonging to tree nested in the network and exploits
a modification of Brandes’ algorithm [7] to compute the
betweenness of the other nodes. In this section we give some
details about Brandes’ algorithm, since it gives a background
to our approach. This method is based on an accumulation
technique where the betweenness of a node can be computed
as the sum of the contributions of all the shortest paths
starting from each node of the graph taken in turns.

Given three nodes s, t, v ∈ V , Brandes introduces the
pair-dependency of s and t on v as the fraction of all the
shortest paths from s to t and those from s to t passing
through v

δst(v) =
σst(v)

σst

The betweenness centrality of the node v is obtained as
the sum of the pair-dependency of each pair of nodes on
v. To eliminate the computation of all the sums, Brandes
introduces the dependence of a vertex s on v as:

δs•(v) =
∑
t∈V

δst(v) (1)

Observation 1. If a node v is a predecessor of w in a
shortest path starting in s, then v is a predecessor also in
any other shortest path starting from s and passing through
w.

According to observation 1, equation 1 can be rewritten
as a recursive formula:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)) (2)

where Ps(w) is the set of direct predecessors of a certain
node w in the shortest paths from s to w.

When the starting node s is connected to any other node
only through a single shortest path, equation 2 reduces to:

δs•(v) =
∑

w:v∈Ps(w)

(1 + δs•(w))

IV. OUR ALGORITHM

Our method is based on the observation that nodes with
a single neighbor can be only shortest paths endpoints, thus
their betweenness is equal to zero. However these nodes
influence the betweenness of their neighbors. In fact, the
neighbor works as a bridge to connect the node to the
rest of the graph and all the shortest paths to (from) the
node pass through the neighbor. Our procedure computes
the betweenness of a node as the sum of the contribution of

all its direct neighbors. According to this strategy, once the
contribution of the nodes with degree 1 has been considered
to the computation of the betweenness of their neighbor, they
provide no more information, and can be virtually removed
from the graph. The removal of the nodes with degree 1
from the graph, can cause that the degree of some other node
becomes 1. Thus the previous considerations can be repeated
on a new set of degree one nodes. In this case, however, we
need also to remember the number of nodes connected to
each of the degree one nodes that were removed from the
graph. This recursive procedure allows us to algebraically
compute the betweenness of trees in the graph.

The contribution of a node v to the betweenness of a
neighbor w depends on the number of nodes constrained to
pass through v to reach w. In the following we say that a
node w is connected to the graph through v if it exists a node
u such that the removal of v makes the graph disconnected
and causes that u and w belong to different components

Consider, for example, the case in which v is a node with
only one neighbor w, and let n be the number of nodes of the
graph. The betweenness of v is zero, and the betweenness of
w is at least 2∗(n−2). In fact, w connects v with all the other
nodes of the graph and vice-versa. If v had connected other
nodes removed at a previous step, we would have considered
this information when computing the contribution of v to the
betweenness of w. Observe that each neighbor with degree
1 contributes to the betweenness of w and each contribution
depends on the number of nodes that both the neighbor and
w have already connected to the graph. The contribution of a
node to its neighbor betweenness is called δ of the neighbor
with respect to the node and denoted as δv(w) where v is
the node with degree one and w is its neighbor.

As mentioned above, the removal of some nodes from the
original graph G can cause that the degree of other nodes
reduces to 1. According to this observation our algorithm
iteratively produces a sequence of subgraphs of G such that
Gi+1 ⊆ Gi. Graph Gi+1 is obtained from Gi by removing
all the nodes with degree 1. The procedure stops when the
graph Gi does not contain nodes with degree 1. The value
of the betweenness of a node w in the original graph G
is at least equals to the sum of all the contributions of its
neighbors with degree one for each subgraph of G.

A. Algorithm formalization and description

Let G = (V,E) be a connected, indirect, unweighted
graph, and let Ti(G) be the subset of nodes of G with
degree i. Starting from G = G0 we define a sequence of
graphs Gn = (V n, En) such that V n = V n−1\T1(Gn−1)
and En ⊆ En−1 where En = {(u, v) ∈ En−1|u, v ∈ V n}.
Note that Gn is a subgraph of Gn−1 and, if T1(Gk) = ∅,
then Gh = Gk for every h ≥ k.

Our algorithm maintains a vector B containing a partial
(under)estimation of the betweenness of each node of the
graph G. At each iteration B is updated. We use the notation

Bn to indicate the vector B after n iterations. At iteration
n, Bn(x) is obtained adding the contribute bn(x) (computed
over Gn as the sum of δ•(x)) to Bn−1(x). Under certain
conditions bn(x) can be algebraically estimated with no need
to compute all the shortest paths passing through x. As a
consequence the computation of the betweenness in this case
is much faster. For example, given the graph Gn, for each
node x ∈ T1(G

n), we have bn(x) = 0. In simple words,
if a node in a graph has only one neighbor, it can not be
in the middle of any shortest path, thus its betweenness
is equal to 0. More in general, the contribution bn(x) to
the betweenness of the node x during iteration n can be
computed when it exists a subset of nodes in G which are
constrained to cross x to reach all the other nodes of Gn.

In order to compute bn(u) we define the following sets.
Let v ∈ T1(Gn) and (u, v) ∈ En, we define the set

N−Gn(u, v) = {w ∈ V |v ∈ PG(u,w)} (3)

where PG(u,w) is a shortest path in G that connects u to
w. N−Gn(u, v) is the set of nodes in G connected to u through
v. Hence it identifies the set the nodes removed from G that
are constrained to pass through v to be connected to the rest
of the graph1. We define also the set

N+
Gn(u, v) = (V \N−G (u, v))\{u} (4)

as the complement of N−Gn(u, v) in which we removed also
the node u.

Our algorithm mantains a set F in which at each stage we
keep the nodes of G whose contribution to the betweenness
computation has already been considered. We define also the
set RG(u, F) = {w ∈ F |∀z ∈ PG(u,w)\{u}, z ∈ F} as
the subset of F that contains all the nodes of G that have
already been connected through u.

We are now ready to define δv(u) as

δv(u) = 2 ∗ |N−Gn(u, v)| ∗ (|N+
Gn(u, v)| − |RG(u, F)|) (5)

Every time we compute a new contribution we update the
set F accordingly (by adding the node v).

At each iteration our procedure checks whether the corre-
sponding Gn has nodes with only one neighbor (|T1(Gn)| >
0) or not. In the former case we can repeat the above
procedure over such nodes. In the latter case our algorithm
verifies if |V n| = 1. In this case the procedure terminates
and the vector B contains the betweenness of all the nodes of
G, otherwise (when |V n| > 1) the remaining graph does not
have any node with degree 1. Thus, to compute (or update)
the betweenness of the nodes in Gn we apply a slightly
modified version of the Brandes’ algorithm.

The modification of the Brandes’ algorithm applied to
Gn is necessary to take into account the contribution of the

1The definition holds since the nodes are connected to u through a
shortest path that contains v. This means they are nodes belonging to the
set T1(Gi) with i < n

nodes in RG(s, F) to the computation of δ in the original
graph G. Recall Ps(w) is the set of predecessors of w in
a geodesic path starting from s and σsu is the number of
shortest paths from s to u. For each starting node s ∈ Gn
our modified formula is:

B(u) = B(u) + δs•(u) ∗ (1 +RG(s, F))

where

δs•(u) =
∑

w:u∈Ps(w)

σsu
σsw

(1 + δs•(w) + |RG(w,F)|))

.

B. Proof

Given a node s ∈ Gn of degree 1, the contribution to
the betweenness of its neighbor v can be computed by the
following general formula:

δs(v) = 2((n− c)−m− 1)m (6)

where m is the number of nodes in N−Gn(v, s), c is the
number of nodes already connected by v, and n is the
number of nodes of G. According to Brandes’ algorithm
we know that the betweenness of a node is obtained as
subsequent sums of δs:

B(v) =
∑
s∈V

δs•(v)

We claim that the betweenness of the nodes belonging to
a subgraph of G which shows a tree structure can be directly
computed by subsequent sums of the formula 6. We show
also how to modify the Brandes’ algorithm to run on the rest
of the graph and compute correctly the betweenness taking
into account the contribution of all the nodes.

We show here how the Brandes’ formula for the com-
putation of δ of the neighbor v of a node s with degree 1
reduces to equation 6.

Let G
′

be a subgraph of G in which we removed the
nodes of N−Gn(v, s) except s. We have two cases: v was
not the neighbor of any node with degree 1 in a previous
iteration (c = 0), or it was (c > 0). In the first case G

′

contains n
′
= n−m+1 nodes. If it exists only one shortest

path from s to any other node of the graph G
′

then for each
pair of consecutive nodes w, w

′
in the path, the following

relation holds: σsw

σ
sw

′
= 1. Thus for each node in the path we

add 1 to the value of δ. As a result it holds the following:

δs•(v) =
∑

w:v∈Ps(w)

(1 + δs•(w)) = n
′
−2 = n−m−1 (7)

Equation 7 is also valid for all the nodes in N−Gn(v, s)
since, to reach nodes in G

′
all the shortest paths are

constrained to pass through v. Hence:

∀w ∈ N−Gn(v, s), δs•(v) = δw•(v)

 r
z t

q

........

........

........

(a) Alternative disjoint shortest
paths

........
z t

........

(b) Alternative forking short-
est paths

t

z

........

........

........

(c) External shortest paths

Figure 1. Some cases of multiple shortest paths.

The computation of δ(v) is not completed yet. In fact, all
the shortest paths from a node G

′
to a node w ∈ N−Gn(v, s)

are constrained to pass through v. Furthermore we know,
by construction, that v is not contained in any shortest path
between two nodes of N−Gn(v, s). As a consequence ∀w′ ∈
G

′
.δw′•(v) = m. This holds because: Brandes computes

the value of δ from the farthest node back to the considered
node, v is the only connection between the two parts of the
graph and m = N−Gn(v, s). The value m is added to the
partial betweenness of v a number of times equals to the
number of nodes in G

′
(i.e n − m − 1). Hence, we can

conclude that: δs(v) = 2(n−m− 1)m.
Suppose now that it exists more than one shortest path

from s to some other node in G
′

(see figure 1(a)). This
means that for at least one node there are at least 2 shortest
paths that reach it. Let z be the fork starting node, t be the
fork ending node (that is the node reached by more that one
shortest path), q be the number of nodes of every alternative
path in the fork, and r be the number of the different shortest
paths. Let us concentrate only over the part of the graph that
contains the fork, then if δs•(t) = X ∀w ∈ Ps(t).δst(w) =
1
r (1 +X).

Supposing that each node is present only in one path we
have that the contribution of each path of the fork to the
δs•(z) is:

q + δs•(w) = q +
1

r
(1 +X) (8)

Hence
δs•(z) = rq + (1 +X) (9)

As a result, each node of the alternative paths in the
fork contributes with 1 to the partial value of δ, and all
the previous considerations still hold. Once again δs(v) =
2(n−m− 1)m.

The same consideration as before is valid also when the
some node of the fork is present in many shortest paths. We
have two possible cases: there is an internal fork within one
of the alternative shortest paths as shown in figure 1(b) (in
this case we can recursively consider the contribution of the
internal fork until we reduce to the previous case with nodes

belonging to a single path), or at least a node is involved
in shortest paths outside the fork (see figure 1(c)). In this
latter case, the shared nodes contribute also with their partial
value of δ computed on the alternative shortest paths.

Suppose now c > 0. In this case some nodes were
already connected to the rest of the graph through v and
their contribution to δ(v) has already been considered.
As a consequence, to the contribution that s gives to the
betweenness of v, the part obtained by connecting nodes
already considered has to be removed. Hence

δs(v) = 2(n−m−1)m−
∑

w∈RG(v,F).(w,v)∈E

2 ∗m ∗N−Gn(v, w)

but it holds that: ∑
w∈RG(v,F).(w,v)∈E

N−Gn(v, w) = c

thus:

δs(v) = 2(n−m− 1)m− 2 ∗m ∗ c =
= 2((n− c)−m− 1)m

This concludes the proof of correctness for the procedure
that assign the betweenness values to the nodes that belong
to trees.

We demonstrate next the correctness of our modification
of the Brandes’ algorithm applied to the residual graph G

′
to

derive the betweenness on G. Let w ∈ G′
be the neighbor of

at least one node v ∈ F (i.e w is the root of a tree containing
the nodes in RG(w,F) that were removed from G).

During the computation of the δs within G
′
, w can

belong to a shortest path, or it can be the starting node of
shortest paths. In the first case we have to consider also the
contribution of the nodes in RG(w,F) to the δ of a direct
predecessor u of w in G

′
. As we have already seen, this

holds 1 for each node in RG(w,F). Thus:

δs•(u) =
∑

w:u∈Ps(w)

σsu
σsw

(1 + δs•(w) + |RG(w,F)|))

.

We observe that, if w is a starting node of shortest paths
in G

′
, each node in RG(w,F) could be a starting node in G

of a shortest path constrained to pass through w. Thus to the
δ of each generic node in these shortest paths we have also
to add the contribution of each node in RG(w,F) (which is
always the same). As a result we have:

B(u) = B(u) + δs•(u) ∗ (1 +RG(s, F))

�

C. Fast betweenness computation on sparse graphs. Some
examples.

For sake of clarity, in this section we provide an example
of our algorithm’s execution on the simple graph in figure
2.

0 109

8

3

76

21

54

Figure 2. The example graph G.

At the first iteration our algorithm finds two nodes with
degree 1, namely 4 and 10. Since they do not inherit a partial
contribution from other nodes, their betweenness is 0 and
nodes 0 and 9 have at least a betweenness equal to 2∗9 = 18.
This is because node 0 connects node 4 to all the other
nodes of the graph and vice versa. The same consideration
holds for node 9 with respect to node 10. Once the partial
betweenness of nodes 0 and 9 has been determined, nodes
4 and 10 can be virtually deleted from the graph, and we
can iterate the mechanism on the remaining of the graph G1

shown in figure 3.

2

4

100 1

5 6 7 8

93

Figure 3. In black the graph G1, in red the nodes whose betweennes has
already been computed.

Consider now the graph G1. In this graph nodes 0 and
9 have only one neighbor and their betweenness in G1 is
0. Since the overall betweenness of a node in the original
graph is obtained as the sum of all the contribution of each
iteration, their betweenness is 18. As in the previous step
the nodes with degree 1 influence the partial betweenness
of their neighbors (nodes 1 and 8) and their contribution
can be algebraically computed. In this case, however, we
have to remember that nodes 1 and 8 do not connect only
nodes 0 and 9 to the rest of the graph G, but also nodes

4 and 10. This means that all the paths for nodes 4 and 0
must pass through 1, and all the paths for nodes 9 and 10
must pass through 8.

Consider now, for example, node 8. This node breaks G
into two components: one with 2 nodes and one having
8 nodes. Thus the betweenness of node 8 has to be at
least equal to 2 (bi directionality of the connections) * 2
(# nodes of the first component) * 8 (# nodes of the second
component) = 32. The same considerations holds for node
1. At this point we can virtually remove from G1 nodes
9 and 0, obtaining the graph G2 whose endpoints are the
nodes 1 and 8. Hence the partial betweenness for these
nodes computed in the previous step become the total one.
Moreover, these nodes contribute to the partial betweenness
of their neighbors (respectively nodes 5 and 7). According
to our formula the contribution to nodes 5 and 7 is equal to
42 (=2*3*7).

Again nodes 1 and 8 can be virtually erased from the
graph obtaining the graph G3 shown in Figure 4.

74

0 1

8

9 10

5

2

6

3

Figure 4. In black the graph G3, in red the nodes which betweennes has
already been computed.

In this case there are no nodes with degree 1 left, thus
we need to apply on the remaining subgraph our slightly
modified version of the Brandes’ algorithm. Since we are
interested in the computation of the betweenness on G, we
need to take into account also the number of nodes of G
connected through each node of the remaining graph. In our
example nodes 5 and 7 connect three nodes to the rest of the
graph, whereas node 2, 3, and 6 do not connect any node to
the rest of the graph.

Let us now consider the computation of δ in the original
graph. According to Brandes’ algorithm node 7 should have
a value for δ = 3. This comes from the fact that 7 is the
root of a tree nested in the reduced graph and the formula
of δ applied to a node of a tree reduces to the count of all
its successors. Notice that three is the number of nodes of
G that node 7 connects to the reduced graph.

So consider for example the contribution to the δ of node
3 given by the path from node 2 to node 7. In this case we
have:

δ(3) =
1

2
∗ (1 + δ(7) + 3) = 2

where δ(7) is computed on the reduced graph (and so it
is equal to 0), and the factor 3 in the formula is the number
of nodes connected through node 7. Consider now 7 as the
paths starting node. Consider now a certain node x in a path

from 7, and let δ(x) be the value of δ computed for x in the
reduced graph, then we modify the betweenness of x as:

B[x] = B[x] + δ(x)(1 + 3)

The same holds for node 5.
Consider now the graph in Figure 5, and consider a

running example of the method.

1 2 3

54

6

7

8 9 10

0

11

12 13

Figure 5. Example graph.

First step: identify the set of nodes with only one neighbor.
This set is composed by {3,5,6,7,10,11,13} and the between-
ness of each node in the set is zero. Now we compute the
betweenness of the neighbors of 3, 5, 10, and 13 that is:

B(2) = B(4) = B(9) = B(12) = 2 ∗ 12 = 24

Whereas the partial betweenness of node 0 is equal to 66 and
not to 72. This is because δ6(0) = 24, δ7(0) = 22 (it holds
when knowing that node 6 has already been considered)
, and finally δ11(0) = 20 (knowing that nodes 6 and 7
have already been considered). For each node connected
through node 0, the value of the betweenness of node 0 is
different. Consider δ6(0) For node 6 holds the formula seen
beforeConsider now node 7. The connection between node
7 and node 6 has been already considered when computing
δ6(0) Hence for node δ7(0) we have to consider all the
connection but those with 6 For node 11, holds the same
that for node 7: we have to consider only the connection
obtained through 0 that have not already considered, so those
with nodes 6 and 7 are discarded.

After the first step we get the graph in Figure 6 Let us
concentrate only on the betweenness of 0. We get

Bi(0) = Bi−1(0) + δ4(0) + δ12(0) =

66 + 2 ∗ 2 ∗ (11− 3) + 2 ∗ 2 ∗ (11− 5)

13

1 2

4

8 9

0

12

3

5

10

7

6

11

Figure 6. Example graph.

We repeat the process in this way until we remain with a
graph composed of only node 0, and the execution ends.

V. ALGORITHM PSEUDO-CODE

In the following Algorithm 1 we show the algorithm
pseudo-code for SPVB (Shortest-paths vertex betweenness)
preprocessing.

SPVB:
Data: directed unweighted graph G=(V,E)
Result: the graph’s node betweenness cB [v] for all

v ∈ V
cB [v] = 0, v ∈ V ; p[v] = 1, v ∈ V ;
c[v] = 0, v ∈ V ; i = 0;
Gi = G; deg1 = {v ∈ V i|deg(v) = 1};
repeat

v ← deg1;
u ∈ V i.(v, u) ∈ Ei;
CB [u] = CB [u] + 2(n− p[v]− c[u]− 1)p[v];
remove v from deg1;
p[u] = p[u] + 1;
c[u] = c[u] + 1;
i++;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u→ deg1 ; /* deg(u) is
computed on the new graph Gi */

until deg1 = ∅ ;
if |V i| > 1 then

Brandes(Gi, p, cB [v])
end

Algorithm 1: Shortest-paths vertex betweenness

The algorithm takes as input a graph G = (V,E) and
returns the betweenness value for each node of the graph.
It starts by selecting all the nodes with degree 1 from
G. It selects one of these nodes, say v, and computes
the betweenness for its neighbor, say u, by exploiting the
formula shown before. Then v is removed from G, and
the cardinality of the sets, N− and R associated to u are
updated. If the degree of u in the new graph is 1, then u
is added to the set deg1. This process is repeated until the
set deg1 is empty. Then, if there is only one node left in
the graph, the process ends, and the betweenness of all the
nodes is returned. Otherwise, the modified version of the
Brandes algorithm is applied on the subgraph Gi obtained
from G by removing all the nodes, and consequently all the
arc connecting these nodes, that belonged to deg1.

In Algorithm 2 we show the modification to Brandes’
algorithms.

A. Complexity

Given G = (V,E) such that
k∑
i=0

T1(G
i) = n

′
(10)

where k is such that T1(Gk+1) = 0 and T1(Gk) > 0.
Let n = |V | and m

′
= |{(u, v)|u, v ∈ V k+1}| then the

algorithm complexity is = O(n
′
+ (n− n′

)×m′
) because

Brandes’ algorithm is applied only over the subgraph.
Hence if n = n

′
the algorithm complexity is O(n), whereas

in the worst case, where n
′
= 0, it is = (n × m) where

m = |E|

VI. EXPERIMENTS

In order to evaluate the performance of our algorithm we
run a set of experiments using a collection of 18 real graphs
provided by Sistemi Territoriali which is an Italian ICT
company involved in the field of data analysis for Business
intelligence.

Since our algorithm computes the exact value of be-
tweenness (as the Brandes’ algorithm does) we compare the
running time of the two algorithms. For our experiments we
used a standard PC endowed with a 2.5 GHz Intel Core
2, 8Gb of RAM and Linux 2.6.37 operating system. The
two algorithms were implemented in Java. In order to avoid
possible biases in the running time evaluation due to the
particular CPU architecture, we decided to implement the
algorithm as a mono-processor sequential program.

In table I we report the graph id, the number of nodes
of the initial graph, the number of nodes of the subgraph
to which we applied the Brandes’ modified algorithm, and
lastly, the number of subgraphs needed to get a subgraph
without degree one nodes. note that a very large percentage
of the nodes can be dealt with algebraically and the residual
graph, on which we ran a modified Brandes’, is quite small,
compared to the input size.

Brandes:
Data: directed graph G = (V,E),
the number of nodex connected by each node p[v],
the partial betweenness computed so far cB [v]
Result: the graph’s node betweenness cB [v]
for s ∈ V do

S = empty stack;
P[w]= empty list,w ∈ V ;
σ[t] = 0, t ∈ V ;σ[s] = 1;
d[t] = −1, t ∈ V i ; d[s] =0;
Q= empty queue;
enqueue s→ Q;
while Q not empty do

dequeue v ← Q;
push v → S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v → P [w];

end
end

end
δ[v] = 0, v ∈ V ;
// S returns vertices in order of non-increasing
distance from s
while S not empty do

pop w← S;
for v ∈ P[w] do

δ[v] = δ[v] + σ[v]
σ[w] (δ[w] + p[w]);

end
if w 6= s then

CB [w] = CB [w] + (δ[w]× p[s])
end

end
end

Algorithm 2: Modified Brandes’ algorithm

Figure 7 compares the running time of our and Brandes’
algorithms. On the x-axis we report the graph id, while on
the y-axis we report in logarithmic scale the running time
expressed in seconds. From figure 7 it is possible to observe
that our algorithm is always more than on order of magnitude
faster than the procedure of Brandes, sometimes even two
orders of magnitude faster.

For graph 1, with 233377 nodes for example, we were able
to finish the computation within one hour while Brandes’
needs approximately two days. For graph 6, with 169059
nodes, we could complete in about 1 minute, compared to

Graph id # nodes # nodes resolved # subgraphs
with Brandes’ algorithm of G

1 233377 31973 24
2 14991 86 4
3 15044 2228 15
4 16723 2592 13
5 16732 2597 17
6 169059 303 47
7 16968 2615 13
8 3214 147 5
9 3507 123 6
10 3507 124 4
11 3519 123 6
12 44550 9995 20
13 46331 120 6
14 47784 7559 17
15 5023 351 12
16 52143 7399 20
17 8856 944 11
18 506900 99448 44

Table I
DATASET DESCRIPTION

0,1	

1	

10	

100	

1000	

10000	

100000	

1000000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	

ru
nn

in
g	
'm

e	
in
	 se

co
nd

s	

Graph	 id	

Running	 'me	
Our	 Brandes	 	

1	 m
in	

1	 h	
1	 day	

Figure 7. A comparison of the running time of our algorithm (left) and
Brandes’ (right) on 18 sparse large graphs. The ordinate axis report running
time in seconds and is in logarithmic scale. Data for Brandes on graph 18
is missing due to time-out

two days for Brandes. A notable result is shown also for
graph 18 which is our biggest and densest input graph. In
this case our algorithm required approximately 2,4 days to
finish while Brandes’ could not complete in one month.

VII. CONCLUSIONS

Brandes’s algorithm for computing betweenness centrality
in a graph is a key breakthrough beyond the naive cubic
method that computes explicitly the shortest paths in a graph.
However, it is not able to exploit fully the sparsity of the
input graph to speed up the computation on large graphs.

In this work we show that combining exact algebraic
determination of betweenness centrality for the tree-like por-
tion of the input graph, with a modified Brands’ procedure

on the residual (non-sparse) graph we can gain orders of
magnitudes (between one and two) in terms of computation
time. At the best of our knowledge this approach is novel.

Future work will include testing our method on a larger
family of social networks. Moreover we plan to explore
further this approach by determining other classes of sub-
graphs (besides trees) in which we can gain by the direct
algebraic determination of the betweenness. Also the role
of articulation points in block tree decomposition of sparse
social graphs will be investigated.

REFERENCES

[1] D. Koschtzki, K. Lehmann, L. Peeters, S. Richter,
D. Tenfelde-Podehl, and O. Zlotowski, “Centrality indices,”
in Network Analysis, ser. Lecture Notes in Computer Science,
U. Brandes and T. Erlebach, Eds. Springer Berlin / Heidel-
berg, 2005, vol. 3418, pp. 16–61.

[2] S. P. Borgatti, “Centrality and network flow,” Social Networks,
vol. 27, no. 1, pp. 55 – 71, 2005.

[3] L. C. Freeman, “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar.
1977.

[4] A. Del Sol, H. Fujihashi, and P. O’Meara, “Topology of
small-world networks of protein–protein complex structures,”
Bioinformatics, vol. 21, pp. 1311–1315, April 2005.

[5] L. Leydesdorff, “Betweenness centrality as an indicator of
the interdisciplinarity of scientific journals,” Journal of the
American Society for Information Science and Technology,
vol. 58, pp. 1303–1309, July 2007.

[6] R. Kumar, J. Novak, and A. Tomkins, “Structure and evo-
lution of online social networks,” in Link Mining: Models,
Algorithms, and Applications, P. S. S. Yu, J. Han, and
C. Faloutsos, Eds. Springer New York, 2010, pp. 337–357.

[7] U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–
177, 2001.

[8] A. Shimbel, “Structural parameters of communication
networks,” Bulletin of Mathematical Biology, vol. 15, pp.
501–507, 1953, 10.1007/BF02476438. [Online]. Available:
http://dx.doi.org/10.1007/BF02476438

[9] T. Carpenter, G. Karakosta, and D. Shallcross, “Practical
issues and algorithms for analyzing terrorist networks,” 2002,
invited paper at WMC 2002.

[10] M. J. Newman, “A measure of betweenness centrality based
on random walks,” Social Networks, vol. 27, no. 1, pp. 39 –
54, 2005.

[11] G. Sabidussi, “The centrality index of a graph,” Psychome-
trika, vol. 31, pp. 581–603, 1966.

[12] R. Jacob, D. Koschtzki, K. Lehmann, L. Peeters, and
D. Tenfelde-Podehl, “Algorithms for centrality indices,” in
Network Analysis, ser. Lecture Notes in Computer Science,
U. Brandes and T. Erlebach, Eds. Springer Berlin / Heidel-
berg, 2005, vol. 3418, pp. 62–82.

[13] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. Chavarria-Miranda, “A faster parallel algorithm and effi-
cient multithreaded implementations for evaluating between-
ness centrality on massive datasets,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 1–8, 2009.

[14] D. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in Parallel Pro-
cessing, 2006. ICPP 2006. International Conference on, aug.
2006, pp. 539 –550.

[15] D. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approx-
imating betweenness centrality,” in Algorithms and Models
for the Web-Graph, ser. Lecture Notes in Computer Science,

A. Bonato and F. Chung, Eds. Springer Berlin / Heidelberg,
2007, vol. 4863, pp. 124–137.

[16] R. Geisberger, P. Sanders, and D. Schultes, “Better approx-
imation of betweenness centrality,” in ALENEX, 2008, pp.
90–100.

[17] S. White and P. Smyth, “Algorithms for estimating relative
importance in networks,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining, ser. KDD ’03. New York, NY, USA: ACM,
2003, pp. 266–275.

[18] M. Everett and S. P. Borgatti, “Ego network betweenness,”
Social Networks, vol. 27, no. 1, pp. 31 – 38, 2005.

