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Abstract

In sponsored search auctions (SSA) advertisers bid on particular keywords for the oppor-
tunity to display their ad besides the search results for the corresponding query. The amount
of information on the details of these auctions is limited. Most of the scientific literature
has focused on a simplified model, that nonetheless appears to explain many of the observed
behaviors of these markets.

However one fundamental feature is missing from these models: the ability of the search
engine to directly affect the rankings of the ads. The main tool search engines have to do this
are quality scores (QS), which have already been considered in the current models, albeit in
a limited way.

In this paper we extend the model to include quality scores that are independent of other
properties of the auction, and show how this modifies the theoretical properties of the market.

Finally we also consider a scarcely studied cooperative behavior, in which a group of
bidders collude (forming a so called ring) to decrease their overall payment and share the
profits. We show that, in the sponsored search setting, rings are not always profitable, and
consider the effect of quality scores in this scenario.

1 Introduction

Sponsored search is a form of on-line advertising in which search engines sell space on their result
pages to advertisers. One fundamental property that differentiates sponsored search from previous
advertising models is that advertisers pay only when a user clicks on their ad: what is actually
being sold by the search engine are thus clicks by users who searched for a particular term. It
would be unfeasible for the search engines to devise a price for clicks on each different query, both
for the extremely large number of queries and for the uncommon nature of the good being sold
(i.e. clicks). To overcome this problem, search engines have adopted auctions, which are a classical
tool used by economists to determine the price for goods of unknown value when there are many
potential buyers.

Advertisers choose a set of keywords they are interested in, and submit a bid for each one of
them. When a query is made, the search engine selects some of the advertisers that have bid on
that keyword, and displays a set of ads that maximize potential revenue. When an ad receives
a click the search engine must determine how much to charge the bidder. There are numerous
mechanisms with different properties, however the most popular in this context are based on the
generalized second price auction (GSP). The GSP works as follows:

• bidders are ranked by decreasing bid order,

• when a bidder receives a click, his payment will be equal to the bid of the bidder directly
below him (i.e. the next lower bid).

∗This research was supported by a grant from the IIT - CNR in Pisa, Italy, and carried out under the supervision

of prof. Bruno Codenotti.
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Although GSP looks similar to the classical Vickrey-Clarke-Groves (VCG) mechanism [11, 5, 7] (in
fact VCG and GSP coincide when there is only one available advertising slot), its properties are
very different. The main departure from VCG is in the fact that truth-telling is not an equilibrium
in GSP [6, 10]. However GSP is simpler to describe and to illustrate even to uneducated users, and
thus it found its way into the practice of sponsored search auctions. Over the past few years, the
algorithmic community has taken a close look at sponsored search auctions, touching in different
ways this paradigm of online advertising, see, e.g. [1, 2, 8].

It is well known that the auctions in use by search engines are actually more complicated,
namely they include quality scores (QS) (see, for instance, Nisan et al. [9], Edelman et al. [6],
Varian [10]). Quality scores can be easily incorporated into the GSP model:

• bidders are ranked by decreasing bid times quality score order,

• when a bidder receives a click, his payment will be equal to the minimum bid required to
maintain his position.

Notice that, when all quality scores are equal, this extended GSP is exactly as the one previously
described.

In most of the literature (again, see, for instance, Nisan et al. [9], Edelman et al. [6], Varian
[10]), quality scores have been considered as tightly connected to clickthrough rates (i.e. the
number of clicks an ad receives). This indeed captures many features of sponsored search auctions,
however, we believe, it does not include a fundamental characteristic of these auctions: that search
engines have a direct control over the ranking of advertisements.

In this paper we give a different definition of quality scores, that highlights the possibility that
the search engines might use these values to arbitrarily affect the ranking. We review some of the
known results for the GSP in this setting, and give some insight on how important this kind of
behavior might be for the search engine.

We also consider a well known strategic behavior that affects a wide variety of auctions: bidding
rings. A bidding ring is an agreement among a set of bidders prior to the auction itself. In its
most classical setting, only one of the bidders will actually participate in the auction. Due to the
decreased competition he is likely to pay a lower price; by splitting part of these savings among the
other ring participants, the coalition can ensure that every member is better off by participating
in the ring. We show that, in sponsored search, bidding rings are not always profitable, and show
how quality scores affect these behaviors.

The paper is organized as follows: Section 2 introduces notation and the classical definition of
quality scores; Section 3 defines our new model for quality scores, comparing it to the previous
ones. In Section 4 we study the theoretical properties of equilibria in our model, while in Section
5 we give an overview of bidding rings in sponsored search auctions.

2 Previous Models

Position auctions are the auctions used by most search engines to sell advertising slots that appear
along search results when users make a query. Each advertisement slot i = 1, . . . K has a specific
clickthrough rate (CTR) αi, and we assume that the CTR’s are decreasing, i.e. α1 > · · · >

αK > αK+1 = 0. Advertisers j = 1, . . . , n are characterized by a private valuation vj , that can
be interpreted as the maximum amount advertiser j is willing to pay for each click. Advertisers
submit bids bj to the search engine, which assigns them to the available slots. Each time a search
engine user clicks on an advertisement, say advertiser j in slot i, the search engine makes j pay a
certain price pj , so that j’s utility can be expressed as

uj = αi(vj − pj). (1)

This simplistic model does not take into account the quality of an ad: its performance is based
only on the slot it is shown in.
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More complex models for sponsored search include an ad-specific component in the clickthrough
rates; intuitively, in any fixed position i, a “higher-quality” ad gets more clicks. A general way to
formalize this is to assign a specific CTR to every possible slot/bidder combination, i.e. bidder i
in slot j will receive CTRi,j clicks. Although this general model has been studied (see Aggarwal
et al. [1]), most theoretical literature has focused on the separable clickthrough rates model.
This simplified model assumes that each advertiser j has a clickthrough rate βj so that, when he
appears in position i the overall CTR will be

CTRi,j = αiβj .

In this setting ads are ranked according to the product βjbj . Without loss of generality we assume
that agents are indexed by their rank, i.e β1b1 > · · · > βnbn, so that bidder i is assigned to slot
i. The GSP auction, as previously described, charges each bidder the minimum bid required to
retain his position, i.e. bidder in position i will pay

pi =
βi+1bi+1

βi

, (2)

And bidder i’s utility is

ui = αiβi (vi − pi)

= αiβi

(

vi −
βi+1bi+1

βi

)

. (3)

Although the introduction of the advertiser specific clickthrough rate components β appears to
yield a more complex model, it is actually a special case of the simpler model in which all βj = 1.
To see why, consider the utility for a GSP (as in (1), with pj = bj+1) in which we scale bids and
values of bidder i by βi for all i:

ui = αi(βivi − βi+1bi+1),

which is exactly (3). Thus it is sufficient to study the GSP model without quality scores, since
their introductions is equivalent to a scaling of bids and valuations.

3 A Different Take on Quality Scores

In the actual position auctions used by search engines quality scores assigned to bidders also have
a slightly different meaning than the one previously described. Although they do reflect the ad-
specific clickthrough rate, there is also a component to these values that has nothing to do with
the number of clicks received1. These components could be used by the search engine to have some
control over which ads are displayed, since the overall reputation of the sponsored search market
is of paramount importance. Consider for example an ad that has a very misleading text (such as
a well crafted spam message) and receives lots of clicks. Once the search engine has verified the
illicit or dubious nature of the advertisement, it might wish to drive it away from the results page
before cheated users stop clicking on ads.

We wish to study the effects of these particular components of the quality scores. For simplicity
we will not consider the CTR components of the quality scores β, since even in our model, their
introduction will be simply equivalent to a rescaling of bids and valuations.

In what follows, unless otherwise noted, with the term “quality scores” we intend just the non-
CTR based components, which we call δj for advertiser j. Advertisers are sorted by decreasing
δb. Again, without loss of generality, we assume that the advertisers are named according to this

1See, for instance, http://goo.gl/nRfxi.
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order, so that advertiser i gets slot i. As before, payments are given by (2). However utilities are
now different, since the quality scores δ do not affect the CTR:

ui = αi (vi − pi)

= αi

(

vi −
δi+1bi+1

δi

)

. (4)

This utility cannot be considered just as a scaled version of (1), and, to the best of our knowledge,
it has not been studied in the scientific literature.

4 Equilibrium

We follow Varian [10] and give some properties of the full information Nash equilibria of this
auction. The results are similar to the ones presented by Varian for the next-price auction,
however the quality scores δ play a central role.

As in the usual next-price auction, the equilibrium conditions are different if we consider the
player’s utility when moving to higher or lower slots. Namely, when a player moves to a slot above
him, he has to overbid the agent currently in that slot. If bidder i increases his bid to move up to
slot j < i his payment will be

pi,j =
δjbj

δi
.

However, when he moves to a lower slot, he can bid much less that the current occupier’s bid: he
needs to bid higher than that agent’s current price. So, if i lowers his bid to end in slot k > i, he
will end up paying

pi,k =
δk+1bk+1

δi
.

Definition 1 (Nash Equilibrium). A Nash equilibrium (NE) set of bids satisfies, for all i,

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δjbj

δi

)

for all j < i, (5)

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δj+1bj+1

δi

)

for all j > i. (6)

Note that we can rewrite (5) and (6), respectively, as

αi (vi − pi) ≥ αj

(

vi − pj−1

δj−1

δi

)

for all j < i, (7)

αi (vi − pi) ≥ αj

(

vi − pj
δj

δi

)

for all j > i. (8)

As for the next-price auction setting we consider a particular subset of these equilibria.

Definition 2 (Symmetric Nash Equilibrium). A symmetric Nash equilibrium (SNE) set of bids
satisfies, for all i,

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δj+1bj+1

δi

)

for all j. (9)

Again, (9) can be stated in terms of prices as

αi (vi − pi) ≥ αj

(

vi −
δj

δi
pj

)

for all j. (10)
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4.1 Basic Properties of SNE

As in the classical case, each agent has a non-negative surplus in a SNE.

Fact 3. In a SNE, vi ≥ pi for all i.

Proof. Consider the first non-visible slot, K + 1, for which we know that αK+1 = 0. By (10)

αi (vi − pi) ≥ αK+1

(

vi −
δK+1

δi
pK+1

)

= 0,

and since αi ≥ 0 this implies vi ≥ pi.

Now we consider the equilibrium prices, and show that, when scaled by δ, they are monotoni-
cally decreasing.

Fact 4. In a SNE, for all i, αi−1δi−1pi−1 ≥ αiδipi. Furthermore δi−1pi−1 ≥ δipi, and if vi−1 > vi
then δi−1pi−1 > αiδipi.

Proof. Applying (10) to slots i and i− 1 we get

αi (vi − pi) ≥ αi−1

(

vi −
δi−1

δi
pi−1

)

,

which can be rewritten as

αi−1δi−1pi−1 ≥ δi (αipi + vi(αi−1 − αi)) (11)

≥ αiδipi,

where the second inequality follows from the fact that vi(αi−1 − αi) ≥ 0.
From Fact 3 we know that vi ≥ pi, so that (11) implies

αi−1δi−1pi−1 ≥ δi (αipi + pi(αi−1 − αi))

≥ αiδipi + δipi(αi−1 − αi)

= αi−1δipi,

which completes the proof.

We can now verify that, indeed, every SNE is a NE.

Fact 5 (SNE ⊂ NE). A SNE set of prices is also a NE set of prices.

Proof. Since, by Fact 4, δj−1pj−1 ≥ δjpj ,

αj

(

vi −
δj

δi
pj

)

≥ αj

(

vi −
δj−1

δi
pj−1

)

.

Substituting pj−1 with (2) the right hand side term becomes

αj

(

vi −
δjbj

δi

)

.

By the SNE condition and the above inequalities we get that, in SNE,

αi

(

vi −
δi+1bi+1

δi

)

≥ αj

(

vi −
δj+1bj+1

δi

)

= αj

(

vi −
δj

δi
pj

)

≥ αj

(

vi −
δjbj

δi

)

,

which gives exactly (5).

Next we show that, in SNE, the values δ × v are in decreasing order.
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Fact 6. In SNE, δivi ≥ δjvj if and only if i < j.

Proof. Consider the SNE conditions (10) for agent i moving to slot j and agent j moving to slot
i:

i to j αi(vi − pi) ≥ αj(vi −
δj

δi
pj)

j to i αj(vj − pj) ≥ αi(vj −
δi

δj
pi).

They can be rewritten as

i to j δivi(αi − αj) ≥ αiδipi − αjδjpj

j to i δjvj(αj − αi) ≥ αjδjpj − αiδipi.

Summing these two we get
(αi − αj)(δivi − δjvj) ≥ 0,

which shows that δivi and δjvj must be sorted in the same way as αi and αj . By our assumptions
on CTRs this completes the proof.

Finally we show that an important property of the classical setting holds here as well: it is
sufficient to verify the SNE conditions for one slot above and one below to ensure they hold for all
slots. For ease of notation we show this in a setting with 3 slots; we verify that if the conditions
are met for slots 1 and 2 and slots 2 and 3, then they are also met for slots 1 and 3.

Fact 7. If a set of bids satisfies (10) for i+ 1 and i− 1, then it satisfies them for all j.

Proof. The SNE conditions for slots 1 and 2 and slots 2 and 3 are:

1 to 2 α1(v1 − p1) ≥ α2(v1 −
δ2

δ1
p2)

2 to 3 α2(v2 − p2) ≥ α3(v2 −
δ3

δ2
p3),

which we can rewrite as

1 to 2 δ1v1(α1 − α2) ≥ α1δ1p1 − α2δ2p2 (12)

2 to 3 δ2v2(α2 − α3) ≥ α2δ2p2 − α3δ3p3. (13)

By Fact 6 and our assumptions on CTRs we know that δ1v1 ≥ δ2v2, so that (13) implies

δ1v1(α2 − α3) ≥ α2δ2p2 − α3δ3p3. (14)

Summing (12) and (14) we get

α1 (v1 − p1) ≥ α3

(

v1 −
δ3

δ1
p3

)

,

which is exactly the SNE condition for slot 1 and 3. The other direction is similar.

Using these facts it is possible to give a characterization of SNE bids. Since, in SNE, agent in
position i does not want to move to slot i+ 1

αi(vi − pi) ≥ αi+1

(

vi − pi+1

δi+1

δi

)

.

Similarly agent in slot i+ 1 wouldn’t prefer slot i, so

αi+1(vi+1 − pi+1) ≥ αi

(

vi+1 − pi
δi

δi+1

)

.
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By combining these two inequalities, we obtain that

δivi (αi − αi+1) + αi+1δi+1pi+1 ≥ αiδipi ≥ δi+1vi+1 (αi − αi+1) + αi+1δi+1pi+1.

Switching from prices to bids, and considering slots i− 1 and i, the above becomes

δi−1vi−1 (αi−1 − αi) + αiδi+1bi+1 ≥ αi−1δibi ≥ δivi (αi−1 − αi) + αiδi+1pi+1. (15)

Given that αK+1 = 0 we can solve for the lower bound recursion, and see that the minimum
equilibrium bids are

bi =
1

αi−1δi

K+1
∑

j≥i

δjvj (αj−1 − αj) . (16)

4.2 Efficiency

One of the important theoretical characteristics of GSP auctions is that, although it is easy to
see that they are not truthful, they always admit a full information Nash equilibrium in which
the payments are the same as in the VCG auction. We formally define this characteristic, as in
Babaioff and Roughgarden [4].

Definition 8 (Efficient Mechanisms). A position auction mechanism is efficient if, for every
valuation profile v, there exist a full information Nash equilibrium profile of bids b such that

1. slots are assigned in order of decreasing valuations (i.e. the efficient allocation in this setting)
and

2. the equilibrium prices are the VCG prices.

Notice that, even with utilities as defined in (4), the VCG mechanism will still assign higher
slots to bidders with higher values, and the payments will be the same as in the classical setting.
In other words, since δ values do not affect bidders’ valuations, but just their bids, the VCG
mechanism is unaffected by their introduction.

Fact 9. If utilities are of the form (4), then, if for all i δi = 1, the mechanism is efficient.

Proof. If all δi = 1, then we are in the classical GSP setting, for which the existence of efficient
equilibria is well known (see Varian [10] or Edelman et al. [6]).

Unfortunately a necessary condition for the mechanism to be efficient is not as clean due to
some technicalities.

Fact 10. Let the bidders be named so that v1 > v2 > . . . vn. Then, if the mechanism is efficient
in SNE, it must be the case that, for i = 2, . . . n− 1, δi = 1.

Proof. Assume, by way of contradiction, that the mechanism is efficient but not all δi’s (for
i ∈ [2, n−1]) are set to 1. For ease of exposition assume that δ2 6= 1 while all other δi = 1. Consider
a set of valuations v1 > v2 > v3 · · · > vn. If δ2 < 1, then just set v3 so that δ2v2 < v3 < v2. On
the other hand, if δ2 > 1, just set v1 so that δ2v2 > v1 > v2. By Fact 6 we know that, even if the
mechanism is sorting bidders by δibi, in SNE δivi ≥ δjvj only if i < j. Thus, in both cases, our
mechanism will not attain an efficient allocation.

Notice that we exclude the δ1 and δn from the statement. This is because, with all δ’s to 1
and δ1 > 1 the bidders are still sorted according to valuation (and similarly for δn < 1).
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i vi δi δivi

1 4 1 4
2 1 3 3
3 400 0.02 2
4 2 0.5 1

Table 1: Values used in our example.

slot αi bi pi

1 500 > 0.76 2.3
2 250 0.76 0.53
3 100 320 200
4 0 2 0

Table 2: Equilibrium bids and payments when using quality scores δ.

4.3 An Example

To give an idea of how the search engine might use δ’s to affect the ranking consider the following
example, in which there is a bidder (which we call 3) that has an very high value, i.e. is willing
to make large bids. However, for the sake of this example, we assume he is a spammer, and that
the search engine has assigned him a low quality score. Table 1 describes the scenario (note that
the bidders are named in decreasing δv product). We can compute the minimum SNE bids (using
(16)), having fixed some CTR values. Table 2 shows the bids and CTRs used. The expected
revenue to the search engine in this case is 21283.3.

Given the same bidders and valuations, let’s consider now a setting in which all δ’s are set to
1, i.e. the classical next-price sponsored search auction. We also compute the SNE lower bound
bids for this case (using the same CTRs). Values are reported in Table 3. Computing the revenue

i vi bi pi

3 400 > 2.8 2.8
1 4 2.8 1.6
4 2 1.6 1
2 1 1

Table 3: Equilibrium bids and payments for the same bidders in a classical GSP setting.

in this case gives 1900.
Finally we can analyze how the revenue changes as the quality score for the spammer, δ3,

changes. The plot in Figure 1 compares the revenue as δ3 increases, keeping all other parameters
in the model fixed. As comparison we also show the GSP revenue and total value in the system
(i.e. upper bound to the maximum revenue attainable).

The “jumps” in the revenue as δ3 increases are due to the fact that bidder 3 moves to upper slots
as this happens. It is interesting to note that, in Figure 1, the maximum revenue is obtained when
δ3 is just enough to put 3 in the first slot. Since all other values are fixed we know that, among
other agents, 2 has the highest ranking. We can thus compute the value of δ3 that maximizes the
revenue as the value that solves this equation:

δ3b3 = δ2b2.

Note that, in this case, bidder 3 will pay exactly his bid.
Notice that, if we fix bids, the maximum revenue the search engine can obtain is by setting

δ’s so that δibi = δjbj∀i, j. This implies that every bidder is going to pay his bid (which is the
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Figure 1: SE revenue as the quality score for bidder 3 increases.

maximum possible payment, since the auction rules guarantee that a bidder will never be charged
more than his bid).

However this requires that the bids are fixed, or that the quality scores are dynamically com-
puted once the bids arrive. If we assume this is the case, then, to the bidders, this type of auction
will be indistinguishable from a first price auction (assuming the search engine breaks ties by
giving higher slots to higher bids).

5 Rings

We now describe the effects of bidding rings in position auctions. The concept behind bidding
rings is that two or more bidders collude and decide to bid as a single entity. This is a very well
known behavior in auctions, and in most cases it gives a higher payoff to all bidders participating
in the ring.

In sponsored search auctions it is conceivable that bidding rings might be very easy to form:
consider for instance a company that is in charge of advertising for many firms (Ashlagi et al. [3]
consider such possibility, albeit without side payments), or an advertiser that ensures prominent
advertising space on his landing page for the other ring participants.

For a ring to be profitable it must be the case that the increased utility for the bidder that
will actually make the bid (call him a) must be more than the loss by the bidders that do not
participate anymore in the auction. When this happens, a will be able to pay the other ring
participants.

For simplicity, throughout this section, we consider a 3-slot 4-bidders setting.

5.1 Classical Setting

We first consider the classical setting, in which all quality scores are set to 1. Assume bidder 1
wants to form a ring with bidder 2. Currently bidder 2’s utility is

u2 = α2(v2 − p2)

= α2(v2 − b3)

= α2

(

v2 −
v3(α2 − α3) + v4α3

α2

)

, (17)
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where the last inequality follows from (16) with δi = 1. Similarly, bidder 1’s utility is

u1 = α1

(

v1 −
v2(α1 − α2) + v3(α2 − α3) + v4α3

α1

)

. (18)

After the ring has formed, bidder 2 will get paid not to participate, and the new scenario is
described in Table 4. Since 2 is not participating his utility from the auction will be 0, while we

slot CTR bidder i bi

1 α1 1 b′1
2 α2 3 b′3
3 α3 4 b′4
4 α4 = 0 - -

Table 4: The auction after bidders 1 and 2 formed a ring. Notice that bidder 2 is absent.

can compute the new SNE and see that 1’s utility will now be

u′
1 = α1(v1 − p′2)

= α1(v1 − b′3)

= α1

(

v1 −
v3(α1 − α2) + v4(α2 − α3)

α1

)

. (19)

Since v2 ≥ v3 ≥ v4 and α3v4 ≥ 0, 1 will profit from the non-participation of 2, i.e. u′
1 ≥ u1.

However, is this increased profit enough to pay 2? Formally, is u′
1−u1 ≥ u2? By substituting and

simplifying, we can rewrite u′
1 − u1 − u2 as

α1(v2 − v3)− α2(2v2 − 3v3 + v4)− α3(2v3 + 3v4).

First notice that this quantity might be negative, i.e. the ring might not be profitable. Fix v2 and
v1, and let v3 ≃ v4 ≃ v2, so that the above becomes

≃ 0− 0− 5v2α3 ≤ 0.

To see that, in some cases, the ring might be profitable, just set α1 = 4, α2 = 2, α3 = 1, so that
the above becomes simply v4 ≥ 0.

An interesting aside is that, in our examples of profitable vs. non-profitable ring, both condi-
tions hold for any v1, v2 ≥ 0. So that, for the two bidders participating in the ring, the profitability
of their collusion depends on the external environment.

Finally we note that the same reasoning (with the same conclusions), can be carried out for
the case in which bidder 2 is proposing the ring. In this case, the condition for the ring to be
profitable will be that u′

2 − u2 ≥ u1.

5.2 Quality Scores

When we introduce non-CTR quality scores in the model, the situation is similar. For brevity we
omit the relevant expressions, since they are just adjusted versions of the ones for the classical
setting.

An interesting difference in this model is that, once two or more bidders collude, we may
assume that they will use the bidder with the highest value and the ad with the highest quality
score, thus potentially incurring in greater profits. Even in this case, however, as in the previous
section, a ring might not be profitable.

To give an idea of this possibility we consider the numerical values in Section 4.3, and show
the revenue of the (always profitable) ring between players 2 and 3 in Figure 2.
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6 Conclusions

In this paper we give an extended definition of quality scores, that take into account also compo-
nents not directly related to clickthrough rates. This changes all the equilibrium and efficiency
properties of the model, which now completely depend on quality scores.

Although there is little information available on how exactly search engines use these values,
it is clear that the ability to directly and arbitrarily affect the auction ranking cannot be ignored.
As can be seen by our example, without imposing limitations and conditions on the values the
quality scores can assume, little can be said on the effects on these markets, since the numbers
are completely arbitrary.

It would be interesting to include quality scores in a model considering a wider time frame, in
which the search engine’s would not only be interested in short-term revenue, but also on long-
term goals, such as advertisements free of spammers or a more frequent cycling of advertisers on
very popular keywords. In this model, the role of quality scores would be even more important,
and their actual usefulness for the search engine might be theoretically verified.
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