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Analysis of individual pair and
aggregate inter-contact times in

heterogeneous opportunistic networks
Andrea Passarella and Marco Conti, Member, IEEE

Abstract—Foundational work in the area of opportunistic networks has shown that the distribution of inter-contact times between
pairs of nodes has a key impact on the network properties, e.g. in terms of convergence of forwarding protocols. Specifically,
forwarding protocols may yield infinite expected delay if the inter-contact time distributions present a particularly heavy tail. While
these results hold for the distributions of inter-contact times between individual pairs, most of the literature uses the aggregate
distribution, i.e. the distribution obtained by considering the samples from all pairs together, to characterise the properties of
opportunistic networks. In this paper we analyse when this approach is correct and when it is not. We study, through an analytical
model, the dependence between the individual pair and the aggregate distributions. We show that the aggregate distribution
can be way different from the distributions of individual pair inter-contact times. Therefore, using the former to characterise
properties that depend on the latter is not correct in general, although this is correct in some cases. We substantiate this finding
by analysing the most representative distributions characterising real opportunistic networks that have been reported in the
literature based on trace analysis. We study networks whose aggregate inter-contact time distribution presents a heavy tail
with or without exponential cutoff. We show that a exponential cutoff in the aggregate appears when the average inter-contact
times of individual pairs are finite. We also show that, when individual pairs follow Pareto distributions, the aggregate distribution
consistently presents a heavy tail. However, heavy tail aggregate distributions can also emerge in networks where individual
pair inter-contact times are not heavy tailed, e.g. exponential or Pareto with exponential cutoff distributions. This constitutes a
reassuring result, as it means that forwarding protocols do not necessarily diverge in the quite common case of networks whose
aggregate inter-contact time distribution is heavy tailed.

Index Terms—opportunistic networks, analytical modelling

F

1 INTRODUCTION
Opportunistic networks [1] are mobile self-organising
networks where the existence of a continuous multi-
hop path formed by simultaneously connected hops
is not taken for granted. In order to deliver a message
from a source to a destination, in opportunistic net-
works it is required that a space-time multi-hop path
exists [2], [3] (see Figure 1 for a graphical example).
Due to users’ mobility and network reconfigurations,
different portions of a space-time path can become
available at different points in time. For example,
in Figure 1 node 2 moves close to node 3 at time
t2, while node 5 moves close to the destination at
time t3, thus establishing a space-time path between
nodes S and D. Intermediate nodes in space-time
paths exploit the store-carry-and-forward concept [4],
[5]: They temporarily store messages addressed to
a currently unreachable destination (if “better” next
hops are currently not available), until a new portion
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Fig. 1. Example of a space-time path

of the space-time path appears, and therefore the
message can progress towards the final destination.

Foundational results in the area of opportunistic
networks have clearly shown that characterising inter-
contact times between nodes is crucial [6], [7], [8].
Starting from the point in time when two nodes
loose single-hop connectivity (i.e., a contact finishes),
an inter-contact time is the time until they are able
to directly communicate again (i.e. a contact starts).
As in opportunistic networks contacts are the only
way for messages to progress towards the destination,
the distribution of inter-contact times plays a key
role in determining the performance of forwarding
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protocols1. Specifically, Chaintreau et al. [6] show that
in a homogeneous network where inter-contact times
between all pairs of nodes are iid (independent iden-
tically distributed), if inter-contact times are heavy
tailed with coefficient α < 2 an important class of
forwarding protocols (termed “naı̈ve”) diverge, i.e.
yield infinite expected delay. In naı̈ve protocols, nodes
do not exploit any information describing the status of
the network when taking forwarding decisions, and
are only aware of some identifier of the destination,
such as its address. These protocols are attractive
because they are very lightweight and simple to im-
plement and analyse, and have been widely used
in the literature [9], [10], [11], [12], starting from
the seminal work on Epidemic routing [13]. Notably,
the 2-hop forwarding protocol used in [10] to derive
foundational results on the capacity of opportunistic
networks falls in this category. Doubts have been
raised [7], [8] about the fact that inter-contact times in
popular traces [14], [15], [16], [17] actually meet the
conditions found in [6] for divergence of protocols
(see Section 2). While Chaintreau et al. [6] argue
that the inter-contact times of these traces can be
well approximated with a Pareto distribution (thus
meaning they are power law), [7], [8] note that a
Pareto distribution with a final exponential cutoff
may be a better approximation (meaning that the
inter-contact times are not power law). However,
this debate does not challenge the theoretical result
proven in [6] about the fact that naı̈ve forwarding
protocols may diverge depending on the inter-contact
time distributions. Based on these results, it is clear
that Pareto distributions with or without exponential
cutoff are particularly important for the analysis of
inter-contact times. We will also use them extensively
in the following of the paper. Specifically, we will
consider Pareto distributions whose Complementary
Cumulative Distribution Function (CCDF, i.e. P (X >
x)) is in one of the following forms:

P (X > x) =
(

b

b + x

)α

, α, b, x > 0 (1)

P (X > x) =
(

b

x

)α

, α, b > 0, x > b (2)

where α is the “shape” parameter and b the “scale”
parameter. The form in Equation 1 allows values ar-
bitrarily close to 0, while the form in Equation 2 does
not. This has important implications, as we discuss
in the paper. In the following, we will refer to the
former as ”Pareto0” and to the latter as ”Pareto”.
Finally, we will also consider Pareto distributions with

1. In opportunistic networks the routing and forwarding process
are carried out at the same time and are implemented by a unique
algorithm. Therefore in the following we use the terms routing and
forwarding interchangeably.

exponential cutoff, whose CCDF is in the form [18]

P (X > x) =
Γ(1− α, µx)
Γ(1− α, µb)

, α > 1, µ, b, x > 0 , (3)

where Γ(s, x) =
∫∞

x
ts−1e−sdt is the upper incomplete

Gamma function [19], α, b and µ are the shape, scale,
and rate parameters, respectively.

There is significant ambiguity in the literature on
whether the distributions of inter-contact times of
individual pairs or the distribution of the aggregate
inter-contact times should be used to characterise
opportunistic networks, the aggregate distribution be-
ing the distribution of inter-contact times of all pairs
considered together. Typically in the literature [6],
[8], [20], [21], [22], [23] the aggregate distribution
is used. From a practical standpoint the aggregate
distribution is more manageable, as less samples are
required to characterise its statistics with respect to
those of all individual pair distributions, and only
one distribution can be used to characterise the entire
network. Being able to use the aggregate distribution
instead of all distributions of individual pairs would
be, therefore, desirable. However, this is not always
possible. Although the results obtained by Chaintreau
et al. [6] hold for the distributions of the individual
pairs, authors correctly use the aggregate distribution.
This is because they assume a homogeneous net-
work2, i.e. one where all individual pair distributions
are iid, and thus the aggregate distribution is the
same as the (common) distribution of individual pairs.
However, as we show in this paper, this is not correct
in general if the network is heterogeneous. This remark
has been significantly overlooked in the opportunistic
networking literature, which mostly assumes that i)
the distribution of aggregate inter-contact times well
represents the distributions of all individual pair inter-
contact times, ii) all these distributions are power law
(based on the results in [6]) or power law with an
exponential cutoff (based on the results in [8], [7]), and
iii) in a network with a power law aggregate inter-
contact time distribution, naı̈ve forwarding protocols
diverge. For example, the validation of several refer-
ence mobility models [20], [21], [22], [23] is carried out
by showing that either the distributions of individual
pair inter-contact times or the aggregate distribution
follow a power law with or without an exponential
cutoff. These beliefs are very well established. There
are a few (to the best of our knowledge) papers [24],
[25] that analyse the distributions of individual pairs
in reference traces finding a good fit with exponential
distributions for a significant fraction of them. These
papers had a rather limited impact, as they seem to
contradict the hypothesis of inter-contact times being
power law.

2. In principle, it would be more precise to use the term “network
graph” instead of “network” in this case. Hereafter, we use the two
terms interchangeably, when the meaning is clear from the context.
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In this paper we clarify the dependence between
the individual pair inter-contact time distributions
and the aggregate distribution through an analytical
model. The model allows us to challenge these com-
mon beliefs, and shows that overlooking the differ-
ence between the individual pair and the aggregate
distributions can lead to completely wrong conclu-
sions. We are able to show, among others, that in
several relevant cases naı̈ve forwarding protocols will
not diverge even though the aggregate distribution is
power law.

We consider a heterogeneous networking environ-
ment, in which the individual pair distributions are
of the same type (e.g., exponential, Pareto, . . . ), but
whose parameters can be different from one pair
to another, and are unknown a-priori. In this case,
individual pair inter-contact times are not identically
distributed. We assume that the contact rate between
a pair (the reciprocal of the pair average inter-contact
time) is drawn from a given distribution, which,
therefore, determines the specific parameters of the
pair inter-contact time distribution. In other words,
as the distribution of the rates controls the parameters
of the inter-contact time distributions, it allows us to
control the heterogeneity of the network.

The model described in the paper shows that both
the distribution of the rates and the distributions
of individual pair inter-contact times impact on the
aggregate distribution. In particular, we use the model
to find, among others, the conditions under which
the aggregate distribution features the main charac-
teristics often found in traces, i.e. a power-law with
or without exponential cutoff. We can summarise the
key findings presented in the paper as follows.
• Starting from exponentially distributed individual

pair inter-contact times, the aggregate is dis-
tributed exactly according to a Pareto law iff the
contact rates are drawn from a Gamma distribu-
tion.

• When individual pair inter-contact times are expo-
nential, and rates are drawn from a Pareto distri-
bution, the asymptotic behaviour of the aggregate
distribution (for large inter-contact times) is a
power-law with or without exponential cutoff. In
particular, the long tail behaviour appears when
rates can be arbitrarily close to 0, i.e. when aver-
age inter-contact times can tend to infinity.

• When pair inter-contact times follow a Pareto
distribution with fixed shape or scale parameters,
the aggregate distribution is power law for a
significant range of contact rate distributions. In
particular, when the shape parameter is fixed, the
aggregate is power law with the same exponent
no matter what distribution of rates.

• When pair inter-contact times follow a Pareto dis-
tribution with exponential cutoff, the aggregate
distribution can present exactly the same shape
under certain conditions. It is however power

law without exponential cutoff, for contact rate
distributions allowing rates arbitrarily close to 0.

The contribution of this paper is thus manifold.
Besides providing a detailed model that describes the
dependence between individual pair and aggregate
inter-contact time distributions, our findings reconcile
apparently contradicting results previously found in
the literature by analysing real traces. Specifically, our
results show that exponentially distributed individual
pairs (found in [25], [24]) are compatible with power
law aggregate inter-contact times with or without an
exponential cutoff (found in [6], [8], [7] and then
assumed in most of the literature). Moreover, they
also show that relying only on the aggregate inter-
contact time distribution for assessing key properties
of opportunistic networks is not correct in general,
and may lead to wrong conclusions. In particular,
finding a power-law in the aggregate inter-contact
time distribution is not necessarily an indication that
individual pair distributions feature a heavy tail as
well, and that therefore naı̈ve forwarding protocols
may diverge. On the contrary, the heterogeneity of the
network, represented in our study by the distribution
of the contact rates, plays a crucial role in determining
the nature of the aggregate distribution, which can be
totally different from the distributions of the indivi-
dual pairs.

The rest of the paper is organised as follows. We
review the relevant state-of-the-art in Section 2. Then,
Section 3 presents the general model describing the
dependence between the individual pair inter-contact
times, the distribution of contact rates, and the aggre-
gate inter-contact time distribution. In Sections 5 and 6
we focus on some of the most relevant cases of inter-
contact time distributions found in real traces, and
study which types of aggregate distributions emerge
depending on the individual pair distributions and
the heterogeneity of the network. Together with an-
alytical results, we also present simulation results
validating the analytical findings. Finally, in Section 7
we draw the main conclusions of this study.

2 RELATED WORK

The first body of work, to the best of our knowledge,
that highlights the importance of inter-contact times
for characterising opportunistic networks was carried
out in the framework of the EU Haggle project [26],
[6]. As discussed in Section 1, Chaintreau et al. [6] find
very important theoretical results showing that naı̈ve
forwarding protocols may diverge in homogeneous
networks if individual pair inter-contact times are
heavy tailed. Actually they also analyse a popular set
of traces [14], [15], [16], [17] finding that the aggregate
distribution can be approximated with a Pareto distri-
bution with shape less than one. The straightforward
conclusion is that naı̈ve forwarding protocols can
easily diverge in real opportunistic networks.
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This very pessimistic result is somewhat softened
by Karagiannis et al. [7], [8], who re-analyse the
same traces and note that the aggregate inter-contact
time distribution might indeed present an exponential
cutoff in the tail, following the Pareto shape high-
lighted in [6]. Assuming, again, that the analysed
networks are homogeneous, they conclude that naı̈ve
forwarding protocols might actually not yield infinite
delay. In this work authors discuss the fact that the ag-
gregate and the individual pair distributions may be
different. They propose an initial model for studying
the dependence between the two, which we exploit
as a starting point in our paper. However, they do
not study this aspect further, after checking that, in
the analysed traces, a subset of individual pair inter-
contact times follow a power-law distribution with
exponential cutoff.

The above papers informed most of the subsequent
literature, which most of the time assumes that the
distributions of individual pairs and the aggregate
distribution can be used interchangeably. Only a few
papers pay attention to individual pair distributions.
Among them, Conan et al. [24] re-analyse again the
same set of traces, focusing much more than before on
the distributions of individual pair inter-contact times.
They clearly show that these networks are actually
heterogeneous, and that an exponential distribution
fits well a significant fraction of individual pair inter-
contact times, while Pareto and Lognormal distribu-
tions also show a good fit with other subsets of the
pairs. Authors also provide a model similar in spirit
to the one we use in our work, to analyse conditions
under which exponential individual pair distributions
can result in a Pareto aggregate. As we highlight in
the following, their model does not incorporate a fun-
damental aspect, and thus obtains imprecise results.
Gao et al. [25] analyse the Reality Mining trace [17],
finding that exponential distributions fit over 85% of
the individual pair inter-contact times. They do not
study the dependence between the individual pairs
and the aggregate distribution, though.

With respect to this body of work, in this paper
we provide a thorough analysis of the dependence
between individual pair and aggregate inter-contact
time distributions. The model we derive is more
general and accurate than the ones presented in [8],
[24]. The model allows us to reconcile apparently
contradicting results presented in the literature, such
as the fact that individual pair exponential inter-
contact times are compatible with power-law aggre-
gate inter-contact times. Moreover, with respect to the
existing literature, we exploit the model to re-analyse
aggregate inter-contact time distributions found in
real traces, i.e. power-law distributions with or with-
out an exponential cutoff. Specifically we are able to
show that several combinations of individual inter-
contact time and contact rate distributions result in
aggregate distributions with these shapes. In several

cases, even when the aggregate distribution is power
law, the individual distributions are not. Thus, our
model allows us to provide reassuring results on the
convergence properties of naı̈ve forwarding protocols,
because the fact that real networks feature a power-
law aggregate inter-contact time distribution does not
necessarily mean that they diverge.

This paper extends our previous work in [27].
Specifically, in this paper we analyse a much more
extended set of heterogeneous networks exploiting
our model, investigating, for example, the depen-
dence between individual pair and aggregate inter-
contact time distributions when the former are Pareto
with or without an exponential cutoff. These addi-
tional results allow us to conclude that power-law
aggregate distributions can result both starting from
exponentially distributed, or from Pareto distributed
(with or without exponential cutoff) individual pair
inter-contact times. Moreover, with respect to [27], in
addition to the new analytical results, in this paper
we present a completely new set of simulation re-
sults used to validate the analysis. The simulations
presented in [27] have been re-run as described in
Section 5.3 to achieve higher statistical confidence.

3 ANALYTICAL MODEL OF AGGREGATE
INTER-CONTACT TIMES

In this section we present an analytical model that
describes the dependence between the inter-contact
times of individual pairs and the resulting distribution
of aggregate inter-contact times. This is the starting
point for the rest of the analysis.

3.1 Preliminaries

As a first step, it is important to recall a result
found by Karagiannis et al. [8], which shows the re-
lationship between the distribution of individual pair
inter-contact times and the aggregate distribution, in
a network where the parameters of the individual
pair distributions are known. Let assume to monitor
individual pair inter-contact times for a large time
interval T . Let denote with P the number of pairs
for which at least one inter-contact time is measured
over T . Moreover, denote with Fp(x) the CCDF of
inter-contact times of pair p, p ∈ {1, . . . , P}, np(T )
and N(T ) being the number of inter-contact times
of pair p and the total number of inter-contact times
over T , respectively. Finally, denote with θp the rate
of inter-contact times for pair p (i.e. the reciprocal of
the average inter-contact time) and with θ =

∑
p θp the

total rate of inter-contact times. Then, the CCDF of the
aggregate inter-contact times F (x) can be expressed as
in the following lemma.

Lemma 1: In a network where P pairs of nodes exist
for which inter-contact times can be observed, the



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

CCDF of the aggregate inter-contact times is:

F (x) = lim
T→∞

P∑
p=1

np(T )
N(T )

Fp(x) =
P∑

p=1

θp

θ
Fp(x) . (4)

Proof: See [8].
Lemma 1 is rather intuitive. The distribution of

the aggregate inter-contact times is a mixture of the
individual pair distributions. Each individual pair
“weights” in the mixture proportionally to the num-
ber of inter-contact times that can be observed in any
given interval (or, in other words, proportionally to
the rate of inter-contact times).

3.2 General results
We now extend the result of Lemma 1 to the case
in which the parameters of the individual pair inter-
contact times are not known a priori. Specifically, we
consider the general case in which the contact rates are
iid and distributed according to a continous random
variable Λ with density f(λ), λ ≥ 0 (for the generic
pair p, λp denotes its rate). We also assume that all
individual pair inter-contact times follow the same
type of distribution. For the generic pair p, the distri-
bution parameters are set such that the resulting rate
is equal to λp. Note that we are able to model hetero-
geneous networks, as inter-contact time distributions
of different pairs are in general different, as their rates
are different3. With respect to the notation used in
Section 3.1, we hereafter denote with Fλ(x) the CCDF
of the inter-contact times between a pair of nodes
whose rate is equal to λ. Under these assumptions, the
CCDF of the aggregate inter-contact times becomes as
in Theorem 1.

Theorem 1: In a network where the contact rates
are distributed with density f(λ), the CCDF of the
aggregate inter-contact times is as follows:

F (x) =
1

E[Λ]

∫ ∞

0

λf(λ)Fλ(x)dλ . (5)

Proof: The complete proof is available in Ap-
pendix A, while here we provide an intuitive sketch.
As for Equation 4, also Equation 5 can be seen as a
mixture of the CCDFs of individual pairs, Fλ(x). In
this case, however, the rates are unknown a-priori,
and are sampled from a r.v. with density f(λ). There-
fore, all possible components Fλ(x) (corresponding
to all possible values of the rates, λ) can appear in
the mixture. As λ is sampled from a non-negative
continuous r.v., the mixture results in an integral over
[0,∞). The term λf(λ)dλ is the weight in the mix-
ture of component Fλ(x). This weight is actually the
product of the rate (λ) by the probability of having the

3. Note that, when Fλ(x) is defined by more than one parameter,
additional conditions besides the rate should be identified to derive
all parameters. Our analysis holds true for any definition of such
additional conditions, as shown in Section 6.

component corresponding to that rate in the mixture
(f(λ)dλ). This is intuitive, as it means that a particular
component weights, in the mixture, proportionally to
i) its probability of being in the mixture, and ii) the
number of samples it generates in the mixture (i.e.,
the value of λ). Finally, the denominator E[Λ] results
from the normalisation of the weights: The total sum
of the weights is

∫∞
0

λf(λ)dλ, which is by definition
the average value of Λ.

Note that the aggregate distribution in Equation 5
does not depend on the number of pairs P anymore,
unlike the form in Equation 4. This is because un-
der the assumptions of Theorem 1 each pair can be
characterised by any contact rate λ with a probability
f(λ)dλ. As contact rates are distributed according to
a continuous random variable, each pair contributes
an infinite number of distributions to the aggregate
(each one with an infinitesimal weight). Therefore,
the aggregate distribution is always made up of an
infinite number of components, irrespective of the
specific number of pairs in the network. Thus, the
model provided by Theorem 1 holds for any number
of pairs P .

Generalising Lemma 1 as in Theorem 1 results in
a much richer tool for understanding the dependence
between individual pair and aggregate inter-contact
time distributions. Specifically in the model provided
by Theorem 1 the individual pair distributions are
not pre-defined, but can be tuned according to the
random variable Λ. This allows us to “steer” and
control the heterogeneity of the network. As we show
in Sections 5 and 6, this model allows us to study the
relationship between individual pair and aggregate
inter-contact time distributions, by assuming that i)
individual pairs are heterogeneous; ii) their inter-
contact times follow an arbitrary family of distribu-
tions (Fλ(x)); and iii) their rates follow another arbi-
trary distribution (f(λ)). These degrees of flexibility
are not provided by the model in Lemma 1.

As a final remark, a similar generalisation was also
attempted in [24]. However, the formulation in [24] is
not exact, as it does not take into account the fact
that, in the mixture defining F (x), distributions of
more frequent contact patterns should “weight more”
with respect to distributions of less frequent contact
patterns. Specifically, in the formulation in [24], the
weight associated with each component Fλ(x) is the
probability of having the component corresponding to
rate λ in the mixture, which is not correct. Consider
the case of a toy distribution with only two possible
rates λ1 << λ2, with the same probability. According
to the model in [24], the two components will have the
same weight in the mixture. However, over any given
amount of time, it is clear that the number of observed
inter-contact time samples from a pair whose contact
rate is λ2 will be much higher than the number of
observed samples from a pair whose contact rate is λ1.
Therefore, the distribution of individual inter-contact
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times corresponding to λ2 will contribute many more
samples to the aggregate, and therefore, intuitively,
should weight much more in the mixture than the
distribution corresponding to λ1.

4 PREVIEW OF THE MAIN RESULTS

In Sections 5 and 6 we use the model derived in
Theorem 1 to study several networks, where the
individual inter-contact times are exponentially dis-
tributed (Section 5) or follow a power-law distribution
with or without an exponential cutoff (Section 6).
Based on the analysis of individual inter-contact times
measured in real traces, [8], [25], [24] these are among
the most relevant cases to consider. In general, this
analysis highlights several aspects. First of all, the
model in Theorem 1 allows us to highlight the re-
sulting aggregate inter-contact times distribution that
can emerge starting from exponential and power-
law (with or without cutoff) distributions, depending
on the type of network heterogeneity (i.e. on the
distribution of the contact rates). Moreover, according
to the results in [6], [8], the cases we consider cover
both networks in which naı̈ve forwarding protocols
converge (exponential and power-law with exponen-
tial cutoff individual pair distributions), and diverge
(power-law distributions). The results we present in
the following of this paper show in which of these
cases the distribution of aggregate inter-contact times
can be used as a correct indicator of naı̈ve forwarding
protocol divergence, and when it can not.

Specifically, in Section 5 we show that power-law
distributions (with or without exponential cutoff) for
the aggregate inter-contact times can appear starting
from exponentially distributed individual pair inter-
contact times. It is possible to obtain even quite heavy
tails in the aggregate α ∈ (0, 1). Using the aggregate in
these cases, one would predict divergence of forward-
ing protocols, which would be totally wrong. The key
reason behind this finding is that when the network
is heterogeneous, the heterogeneity of the individual
pair distributions plays a crucial role in determining
the aggregate distribution of the inter-contact times,
which may be of a completely different type with re-
spect to the individual pair distributions. In particular,
when contact rates can be arbitrarily close to 0, i.e.
average inter-contact times can diverge, the aggregate
distribution consistently presents a heavy tail, even
though the individual pair distributions are not heavy
tailed.

We show a similar property in Section 6 when
analysing individual pair inter-contact times follow-
ing a Pareto distribution with an exponential cutoff.
Moreover, in Section 6 we show that, under cer-
tain conditions, when individual inter-contact times
present a power law either with or without expo-
nential cutoff, the aggregate inter-contact time dis-
tribution also presents the same shape in the tail.

This is an interesting result, as it highlights cases
where the aggregate inter-contact times distribution
is representative of the distributions of the individual
pairs, although the network is heterogeneous.

Summarising, on the one hand, our results show
that - unfortunately - in general studying the ag-
gregate distribution is not sufficient. For example -
aggregate power laws can appear both in cases where
naı̈ve forwarding protocols diverge (individual inter-
contact times following a power law distribution) or
converge (individual inter-contact times following an
exponential or power law with cutoff distribution).
On the other hand, our results are reassuring, as they
clearly show that an aggregate inter-contact time dis-
tribution presenting a power law is not necessarily an
indication of naı̈ve forwarding protocols divergence,
as commonly assumed in the literature.

5 NETWORKS WITH EXPONENTIAL INDIVI-
DUAL INTER-CONTACT TIMES

In this section we exploit the model provided by
Theorem 1 to investigate the dependence between
the distributions of individual pair inter-contact times
and their aggregate distribution when the former are
exponential. Specifically, we assume Fλ(x) = e−λx,
and study how the aggregate CCDF F (x) varies for
different distributions of the contact rates, f(λ).

The results are hereafter presented as grouped in
two classes. Firstly, in Section 5.1, we investigate
under which conditions the aggregate inter-contact
times follow exactly a given distribution. Specifically,
we impose that F (x) in Equation 5 is equal to such
distribution, and find the corresponding distribution
of the contact rates f(λ). Then, in Section 5.2 we find
additional cases in which it is not possible to exactly
map a given aggregate distribution F (x) to a specific
rate distribution f(λ), but it is possible to identify rate
distributions such that the tail of the aggregate follows
a certain pattern.

5.1 Exact aggregate inter-contact time distribu-
tions

First of all, we wish to identify rate distributions f(λ)
that result in power-law (Pareto) aggregate distribu-
tions. From Equation 5, and recalling that we assume
individual inter-contact times are exponentially dis-
tributed, we have to find f(λ) such that

1
E[Λ]

∫ ∞

0

λf(λ)e−λxdλ =
(

b

b + x

)α

, (6)

where α and b are the shape and scale parameters
of the Pareto distribution. Note that in this case we
consider the definition of the Pareto distribution in
which all positive values are admitted, i.e., x > 0.

The rate distribution f(λ) satisfying Equation 6 is
provided by Theorem 2. It is worth noting that a
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qualitatively similar result was also found in [24].
However, due to the inexact formulation of F (x)
discussed in Section 3.2, the exact result differs. Specif-
ically, the parameters of the rate distribution found
in [24] are different with respect to the ones derived
in Theorem 2.

Theorem 2: When individual pair inter-contact
times are exponentially distributed, aggregate inter-
contact times are distributed according to a Pareto
law with parameters α > 1 and b > 0 iff the contact
rates follow a Gamma distribution Γ(α− 1, b), i.e.

F (x) =
(

b

b + x

)α

⇐⇒ f(λ) =
bα−1

Γ(α− 1)
λα−2e−bλ .

(7)

Proof: See Appendix B.
As discussed in Sections 1 and 2, based on the

results in [6] it has been common in the literature
to assume that, if the aggregate inter-contact time
distribution is Pareto with α ∈ (1, 2], naı̈ve forwarding
protocols yield infinite delay. Theorem 2 clearly shows
that this is not correct, as aggregate power-laws with
α ∈ (1, 2] can be obtained starting from exponential
individual pair inter-contact times. In such a case, the
expected delay of naı̈ve forwarding protocols is finite.

As a special case of Theorem 2, the following corol-
lary holds true.

Corollary 1: When individual pair inter-contact
times are exponentially distributed, aggregate inter-
contact times are distributed according to a Pareto
distribution with parameters α = 2 and b > 0 iff
the rates of individual inter-contact times follow an
exponential distribution with rate b, i.e.

F (x) =
(

b

b + x

)2

⇐⇒ f(λ) = be−bλ . (8)

Proof: This follows immediately from Equation 7
by recalling that a Gamma distribution Γ(1, b) is actu-
ally exponential with rate b.

Corollary 1 further stresses the result of Theorem 2,
stating that a power-law distribution of aggregate
inter-contact times can be obtained starting from both
exponentially distributed individual pair inter-contact
times and contact rates.

An interesting physical intuition can be highlighted
that justifies the above results. Recall that the inter-
contact time aggregate is a mixture of the individual
pair inter-contact times. From a physical standpoint,
power-law aggregates means that some inter-contact
times in the mixture can take extremely large values,
possibly diverging. Intuitively, such a behaviour can
therefore be generated irrespective of the distribution
of individual pair inter-contact times, by including
in the mixture individual pairs whose contact rate
is extremely small, arbitrarily close to 0. This is ex-
actly the effect of drawing rates from Gamma or
exponential distributions, which can admit values of

the rates arbitrarily close to 0. The same physical
intuition is also confirmed by other results we present
in Section 5.2 and 6.3.

The final result we present in this section shows
under which conditions aggregate inter-contact times
follow an exponential distribution, i.e., F (x) = e−µx.
This is shown in Theorem 3.

Theorem 3: When individual pair inter-contact
times are exponentially distributed, aggregate
inter-contact times are distributed according to an
exponential distribution with rate µ > 0 iff the
network is homogeneous, i.e. iff all individual pair
inter-contact times are exponentially distributed with
rate µ:

F (x) = e−µx ⇐⇒ f(λ) = δ(λ− µ) , (9)

where δ(·) is the Dirac delta function.
Proof: See Appendix B.

Theorem 3 shows that, with exponential individual
inter-contact times, the only case where the aggregate
is also exponential is that of a homogeneous network.

5.2 Asymptotic behaviour of aggregate inter-
contact time distributions
In this section we present a further set of results de-
rived when rates are drawn from Pareto distributions.
For this set of results we are not able to obtain suf-
ficient and necessary conditions for obtaining a given
aggregate distribution. However, we are still able to
show interesting sufficient conditions for obtaining
aggregate distributions that asymptotically decay as a
power-law with or without exponential cutoff. These
results are quite interesting, as several papers in
the literature have observed aggregate distributions
whose tail decays as a power-law with exponential
cutoff. Note that studying the asymptotic behaviour
is relevant, as it is the tail of the inter-contact time dis-
tributions that determine the convergence properties
of naı̈ve forwarding protocols [6].

Firstly, we assume that contact rates are distributed
according to a Pareto distribution whose CCDF is
F (λ) =

(
k
λ

)γ
, λ > k, and derive the asymptotic

behaviour of F (x) for large x. Note that in this case
rates are drawn from a Pareto distribution that does
not admit values arbitrarily close to 0. Theorem 4
provides the expression for F (x).

Theorem 4: When individual pair inter-contact
times are exponentially distributed and rates are
drawn from a Pareto distribution whose CCDF is
F (λ) =

(
k
λ

)γ
, λ > k, the tail of the aggregate inter-

contact times decays as a power-law with exponential
cutoff, i.e.:

F (λ) =
(

k

λ

)γ

, λ > k ⇒ F (x) ∼ e−kx

kx
for large x

(10)

Proof: See Appendix B.
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Two interesting insights can be drawn from The-
orem 4. First, an aggregate distribution whose tail
decays as a power-law with exponential cutoff can
emerge also when individual pair inter-contact times
are exponential. Again, this challenges common hy-
potheses used in the literature, that assume individual
inter-contact times are power-law with exponential
cutoff because aggregate inter-contact times are dis-
tributed according to this law. Second, this result
confirms our intuition about the fact that a key reason
for an aggregate distributions with a heavy tail is
the existence of individual pairs with contact rates
arbitrarily close to 0. In the case considered by The-
orem 4 this is not possible, and indeed the tail of
the aggregate inter-contact times decays faster than
a power-law.

We then study the asymptotic behaviour of the
aggregate distribution when contact rates are drawn
from a Pareto distribution in the form F (λ) =(

k
k+λ

)γ

, λ > 0. The following theorem holds.
Theorem 5: When individual pair inter-contact

times are exponentially distributed and rates are
drawn from a Pareto distribution whose CCDF is
F (λ) =

(
k

k+λ

)γ

, λ > 0, the tail of the aggregate
inter-contact times decays as a power-law with shape
equal to 2, i.e.:

F (λ) =
(

k

k + λ

)γ

, λ > 0 ⇒ F (x) ∼ 1
x2

for large x

(11)

Proof: See Appendix B.
Theorem 5 confirms once more that the presence

of individual pairs with contact rates arbitrarily close
to 0 results in heavy tailed aggregate inter-contact
times. Again, it also confirms that the presence of
significantly heavy tails (shape equal to 2) in the
aggregate inter-contact time distribution is not neces-
sarily an indication that individual pair distributions
also present a power-law.

5.3 Validation

In this section we validate the results presented be-
fore, by comparing the analytical results with simula-
tions. In our simulation model we consider a network
of P=100 pairs. The type of distribution of individual
inter-contact times is a parameter of the simulator,
set to exponential for the results in this section.
Rates are drawn at the beginning of each simulation
run according to the specific distribution f(λ) we
want to test. Each simulation run is built as follows.
For each pair we generate at least 100 inter-contact
times. Specifically, each simulation run reproduces
an observation of the network for a time interval
T , defined according to the following algorithm. For
each pair, we first generate 100 inter-contact times,
and then compute the total observation time after

Fig. 2. F (x), contact rates Λ ∼ Γ(α, b)

Fig. 3. F (x), contact rates Λ ∼ Exp(b)

100 inter-contact times, Tp, as the sum of the pair
inter-contact times. T is defined as the maximum
of Tp, p = 1, . . . , P . To guarantee that all pairs are
observed for the same amount of time, we generate
additional inter-contact times for each pair until Tp

reaches T . In this way we generate at least 100 ∗ 100
samples of the aggregate inter-contact time distribu-
tion (in practice, we have many more samples in
each run). From each run we obtain the percentiles of
the aggregate distribution indicated in the following
plots. We replicate simulation runs at least 30 times
with iid seeds, and finally compute the confidence
intervals for the percentiles with 99% confidence level.
Although often hardly visible, confidence intervals are
shown in the plots for all percentiles.

Figure 2 shows the aggregate inter-contact times
CCDF F (x) when contact rates are drawn from a
Gamma distribution with shape equal to 0.8, 1 and
2 (inter-contact times are reported on the x-axis in
seconds). According to Theorem 2, this results in
aggregate inter-contact times distributed according to
a Pareto law with shape α = 1.8, 2 and 3, respectively.
It is clear that simulation and analytical results are in
very good agreement. Figure 3 shows F (x) when the
contact rates are exponentially distributed with rate
0.01s−1, 0.1s−1 and 1s−1. Also in this case, according
to Corollary 1, the aggregate inter-contact times follow
Pareto distributions with shape α = 2 and scale 0.01,
0.1 and 1, respectively. Figure 3 shows that also in
this case analytical results are very well aligned with
simulations.

Finally, Figure 4 and 5 show F (x) when the pairs
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Fig. 4. F (x), contact rates Λ ∼ Pareto(γ, k)

Fig. 5. F (x), contact rates Λ ∼ Pareto0(γ, k)

rates are distributed according to a Pareto law F (λ) =(
k
x

)γ
, λ > k and F (λ) =

(
k

k+x

)γ

, λ > 0, respectively
(here and in the other Figures in the paper, “C” in
the legends of the plots represents a multiplicative
constant). From Theorems 4 and 5, the key difference
is the fact that in the former case rates cannot be
arbitrarily close to 0, while in the latter case they
can. The effect on F (x) is to generate a light tail
decaying as e−kx

kx in the former case, and a heavy
tail decaying as 1/x2 in the latter. Recall that in
these cases the analysis is not able to capture the
complete distribution of F (x), but only its asymptotic
behaviour for large x. Figures 4 and 5 confirm that
also in this case analytical and simulation results are
aligned.

6 NETWORKS WITH POWER-LAW INDIVI-
DUAL INTER-CONTACT TIMES

In this section we use Theorem 1 to study the de-
pendence between the aggregate and the individual
pair inter-contact times when the latter follow differ-
ent types of power-law distributions. Specifically, in
Section 6.1 we analyse the case where individual inter-
contacts time follow a Pareto distribution such that
inter-contact times arbitrarily close to 0 are possible
(“Pareto0” distributions). Section 6.2 presents the case
where indivudal inter-contact times follow a Pareto
distribution which does not allow values arbitrarily
close to 0. In both sections individual inter-contact
times present a heavy tail. Finally, in Section 6.3 we
consider inter-contact times following a power-law

with exponential cutoff distribution, which therefore
does not present a heavy tail. Note that, unlike in the
exponential case, it is possible to derive closed form
analytical results only for the asymtotic behaviour of
the aggregate inter-contact time distribution, i.e. for
large values of x.

6.1 “Pareto0” individual inter-contact times
We consider the case where the CCDF of individual
inter-contact times is in the form

Fλ(x) =
(

q

q + x

)η

, η > 0, q > 0 x > 0. (12)

To study the CCDF of the resulting aggregate inter-
contact time distribution according to Theorem 1, it
is necessary to substitute Equation 12 in Equation 5.
Remember from Section 3.2 that in our model, for
each individual pair p, the contact rate λp (i.e., the
reciprocal of the average inter-contact time) is sam-
pled from a r.v. with density f(λ). For each individual
inter-contact time distribution, there is, therefore, a
dependence between the parameters {q, η} and λp that
must be made explicit before replacing Equation 12 in
Equation 5. The only condition that can be imposed
is that the average inter-contact time is equal to 1/λp,
i.e.

E[Xp|λp] =
q

η − 1
,

1
λp

, (13)

where the r.v. Xp denotes the inter-contact times of
pair p. As we have only one condition to determine
two parameters {q, η}, we need to impose one more
condition. In the following we consider a natural
choice, i.e. we assume that one of the two parameters
is fixed, and thus the specific values of the contact
rate λp impact on the other parameter.

We start by fixing the shape parameter of the Pareto
distribution, η. Note that, as the coefficient of variation
of a Pareto0 distribution is

√
η

η−2 , fixing the shape of
the Pareto0 distributions means fixing the coefficient
of variation. We obtain the result in Theorem 6.

Theorem 6: When individual pair inter-contact
times follow a Pareto distribution whose CCDF
is in the form Fλ(x) =

(
q

q+x

)η

and the shape
parameter η is the same across all pairs, irrespective
of the distribution of contact rates, the tail of the
distribution of aggregate inter-contact times decays,
for large x, as a power law with exponent η, i.e.
F (x) ' x−η, provided η > 1 and the following
condition holds true:∫ ∞

0

λf(λ)
(

η − 1
λ

)η

dλ < ∞ , (14)

where f(λ) is the density of the contact rate distribu-
tion.

Proof: See Appendix C.
The result in Theorem 6 tells that, no matter how

contact rates are distributed, provided the integral
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in Equation 14 converges, when individual inter-
contact times follow a Pareto0 distribution with the
same shape parameter, also the aggregate distribution
presents a heavy tail, with exactly the same exponent.
This is clearly a case where the aggregate distribution
is representative of the individual pair distributions,
at least as far as their behaviour for large x. Thus,
using the aggregate distribution to study the conver-
gence properties of forwarding protocols is correct in
this case.

We now consider the case where the scale param-
eter q of the Pareto0 distribution is fixed, and the
shape η varies with the contact rate λ. In this case
we are not able to obtain general analytical results for
any distribution of the contact rates, as in Theorem 6.
However, it is still possible to derive analytical results
for the specific contact rate distributions that we
have considered in the paper, i.e. Gamma, Pareto and
Pareto0. Specifically, the following Theorem holds.

Theorem 7: When individual pair inter-contact
times follow a Pareto distribution whose CCDF is in
the form Fλ(x) =

(
q

q+x

)η

and the scale parameter
q is the same across all pairs, if contact rates follow
a Gamma, Pareto0, or Pareto distribution, the tail
of the distribution of aggregate inter-contact times
decays, for large x, as a power law. Specifically, the
following holds true:

• if contact rates follow a Gamma distribution
Γ(α, b) then F (x) ' C

x(ln x)α+1 holds true for large
x, C being a constant greater than 0. Moreover, it
can also be shown that limx→∞ F (x) > C

x1+β , for
any β > 0;

• if contact rates follow a Pareto0 distribution
Pareto0(γ, k) then F (x) ' C

xg(x) holds true for
large x, C being a constant greater than 0 and
g(x) being a function that, for large x, goes to 0
more slowly than x−β for any β > 0. Therefore,
limx→∞ F (x) > C

x1+β holds true for any β > 0;
• if contact rates follow a Pareto distribution

Pareto(γ, k) then F (x) ' C
xkq+1 ln x

for large x,
C being a constant greater than 0. Therefore,
limx→∞ Fλ(x) > C

x1+kq+β holds true for any β > 0.

Proof: See Appendix C.
Theorem 7 shows that, for Gamma, Pareto0 and
Pareto contact rates, if the individual inter-contact
times follow a Pareto0 distribution also the distribu-
tion of the aggregate inter-contact times presents a
heavy tail. In particular, for contact rates following a
Gamma and Pareto0 distribution, the tail of the aggre-
gate distribution of inter-contact times can be lower
bounded by power laws with an exponent arbitrarily
close to 1, which is an indication of a particularly
heavy tail. Note that in these cases, although the
aggregate distribution is power law as the individual
pair distributions, no indications can be obtained from
the aggregate distribution to assess possible diver-
gence of forwarding protocols, because the aggregate

distribution does not provide any information about
the shapes of the individual pair distributions.

6.2 “Pareto” individual inter-contact times
In this case the individual inter-contact times follow
a Pareto distribution whose CCDF is

Fλ(x) =
( q

x

)η

, η > 0, q > 0, x > q. (15)

We follow the same approach of Section 6.1, by fix-
ing the shape (scale) parameter and letting the scale
(shape) parameter vary with the average inter-contact
time 1/λ. If we fix the shape parameter η, we obtain
a result similar to that of Theorem 6.

Theorem 8: When individual pair inter-contact
times follow a Pareto distribution whose CCDF is
in the form Fλ(x) =

(
q
x

)η and the shape parameter
η is the same across all pairs, irrespective of
the distribution of contact rates, the tail of the
distribution of aggregate inter-contact times decays,
for large x, as a power law with exponent η, i.e.
F (x) ' x−η, provided η > 1 and the following
condition holds true:∫ ∞

0

λf(λ)
(

η − 1
λη

)η

dλ < ∞ , (16)

where f(λ) is the density of the contact rate distribu-
tion.

Proof: See Appendix C.
Also in this case, the distribution of aggregate inter-

contact times presents a heavy tail with the same
exponent of the shape of individual pairs, for any
contact rate distribution such that the integral in
Equation 16 converges. Therefore, the distribution of
aggregate inter-contact times is representative of the
distributions of individual pairs, as far as convergence
of forwarding protocols is concerned. Finally, note
that also in this case fixing the shape parameter
means assuming that the coefficient of variation of
all individual inter-contact times is the same, as it is
equal to

√
1

η(η−2) .
Unlike in the case of Pareto0 individual inter-

contact times, when we fix the scale parameter, we
are not able to obtain closed form expressions for
the distribution of aggregate inter-contact times, even
for specific distributions of contact rates, and only
numerical solutions can be found.

6.3 “Pareto with cutoff” individual inter-contact
times
In this section we consider individual inter-contact
times following Pareto distributions with a exponen-
tial cutoff in the tail. Denoting with η and q the shape
and scale parameters of the Pareto part, and with µ
the rate of the exponential part of the distribution,
respectively, the CCDF is as follows [18]:

Fλ(x) =
Γ(1− η, µx)
Γ(1− η, µq)

η > 1, µ, q > 0 , (17)
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where Γ(s, x) =
∫∞

x
ts−1e−sdt is the upper incomplete

Gamma function. Also in this case, to study the prop-
erties of the distribution of aggregate inter-contact
times (thorough Equation 5), it is first necessary to
make explicit the dependence between the parameters
of the distributions of individual inter-contact times
(η, q, and µ), and the average inter-contact time of the
generic pair p, by imposing that E[Xp|λp] be equal to
1/λp. From Equation 17 we obtain

E[Xp|λp] =
1− η

µ
+

(µq)1−ηe−µq

µΓ(1− η, µq)
,

1
λp

. (18)

In general it is not possible from Equation 18 to
find closed forms to make explicit the dependence
of η, q and µ on λp, as the three parameters of
the distribution of individual inter-contact times all
appear as parameters of the incomplete Gamma func-
tion. However, it is possible to find closed forms for
specific cases, where the function Γ(s, x) admits exact
or approximate closed forms. Recalling that η > 1
must hold, the only such cases are where the second
parameter of Γ either is 0 or tends to ∞. Considering
the semantic of the parameters η, q and µ, the only
meaningful cases are µ → ∞ and q → 0. The
first case corresponds to a very quick decay of the
exponential tail, while the second one corresponds to
the possibility of inter-contact times very close to 0.
We analyse these two cases separately in the following
sections.

6.3.1 Very large rates

When µ → ∞ the quantity Γ(1 − η, µq) can be ap-
proximated as (µq)−ηe−µq [19]. Therefore, Equation 18
becomes

E[Xp|λp] '
1− η

µ
+ q ' q =

1
λp

. (19)

Equation 19 immediately shows the dependence be-
tween q and λp. In particular, it tells that the case
where q is fixed across all pairs is not that interesting,
because it corresponds to a homogeneous network
where all pairs meet with the same contact rate (equal
to 1/q), and thus the distributions of the aggregate and
individual inter-contact times are exactly the same.
On the other hand, Equation 19 does not provide any
indication on the dependence between η and λp. We
thus consider again the case where η is fixed across
all pairs (as we did in Sections 6.1 and 6.2). Under
these conditions, the following theorem holds true.

Theorem 9: When individual pair inter-contact
times follow a Pareto distribution with exponential
cutoff with shape, scale and rate parameters η, q and
µ, if µ is very large and η is the same across all pairs,
then the CCDF of the aggregate inter-contact times
F (x) decays, for large x, as a Pareto distribution
with exponential cutoff with the same shape and rate
parameters η and µ, i.e. F (x) ' (µx)−ηe−µx, provided

the following condition holds true∫ ∞

0

λf(λ)
Γ(1− η, µ

λ )
dλ < ∞ . (20)

Proof: See Appendix C.
Theorem 9 shows another case where the distribution
of aggregate inter-contact times is representative of
the distributions of individual pairs, irrespective of
the type of network heterogeneity (i.e. of the contact
rate distribution). Note that the integral diverges for
contact rates following a Gamma or Pareto0 distri-
bution, for any µ > 1, while it admits numerical
solutions for Pareto contact rates. This is aligned with
the indication we have obtained several times, that
contact rate distributions allowing values arbitrarily
close to 0 result in power law aggregate inter-contact
time distributions. In fact, for Gamma and Pareto0
contact rates, the result in Theorem 9, which predicts
a light tail, does not apply.

6.3.2 Very small scales
When q → 0 the quantity Γ(1 − η, µq) becomes the
constant Γ(1− η), and thus Equation 18 simplifies as
follows:

E[Xp|λp] '
1− η

µ
,

1
λp

. (21)

We use again the approach of fixing one among µ or
η to study the properties of the resulting distribution
of aggregate inter-contact times. In the former case
(fixed µ), no closed form expressions have been found,
even for the specific distributions of contact rates
considered throughout the paper (Gamma, Pareto0
and Pareto). On the other hand, when η is fixed across
all pairs, it is possible to find closed form expressions
when the contact rates follow a Gamma or a Pareto0
distribution (no closed form expressions have been
found in the Pareto case). Specifically, the following
theorem holds.

Theorem 10: When individual inter-contact times
follow a Pareto distribution with exponential cutoff,
whose scale parameter tends to 0 and whose shape
parameter is fixed across all pairs, the distribution
of aggregate inter-contact times F (x) presents, for
large x, a heavy tail, provided η ∈ (0, 1) holds true.
Specifically:
• if contact rates follow a Gamma distribution

Γ(α, b) then limx→∞ F (x) = Cx−(α+1), C being
a constant greater than 0;

• if contact rates follow a Pareto0 distribution then
limx→∞ F (x) = Cx−2, C being a constant greater
than 0;
Proof: See Appendix C.

The result in Theorem 10 is particularly interesting
as it shows another case where, even though the
individual pair inter-contact times do not present a
heavy tail, the distribution of aggregate inter-contact
times does present a heavy tail. Note that this can be
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Fig. 6. F (x), individual ICT X ∼ Pareto0 with fixed
shape. Contact rates are Pareto(2, 0.01) or Γ(2, 1).

Fig. 7. F (x), individual ICT X ∼ Pareto with fixed
shape. Contact rates are Pareto(2, 0.01) or Γ(2, 1).

proven for contact rates that admits values arbitrarily
close to 0, such as rates following a Gamma or a
Pareto0 distribution.

6.4 Validation

In this section we compare analytical and simulation
results for the Theorems presented in Sections 6.1,
6.2 and 6.3. The simulation model and methodology
are the same described in Section 5.3. Firstly, we
present results for those cases where the aggregate
inter-contact time distribution is representative of the
individual pair distributions, i.e. for individual inter-
contact times following a Pareto0 or Pareto distribu-
tion with fixed shape parameter (Theorems 6 and 8,
respectively). Due to practical reasons in obtaining
simulation results, we don’t present results for the
case where individual inter-contact times are power
law with exponential cutoff (Theorem 9). Recall that in
this case the aggregate distribution decays as F (x) '
(µx)−ηe−µx, and the result holds true for large µ. In
these conditions, the tail of the aggregate distribution
decays so fast that, in simulation, it becomes practi-
cally impossible to distinguish between the different
percentiles. To obtain significant results from simula-
tion, it is necessary to consider a range for µ where
the results of Theorem 9 do not hold anymore.

In the Figures we present hereafter, the leg-
ends of the simulation plots have the general
form indXXX(<par>), rateYYY(<par>), where

Fig. 8. F (x), individual ICT X ∼ Pareto0 with fixed
scale. Contact rates are Γ.

Fig. 9. F (x), individual ICT X ∼ Pareto0 with fixed
scale. Contact rates are Pareto0.

indXXX(<par>) denotes the distributions of the in-
dividual inter-contact times, and rateYYY(<par>)
the distribution of the contact rates. XXX(<par>)
and YYY(<par>) are replaced in each case by
the specific distributions and parameters. PL, PL0,
PL-CO, Gamma denote Pareto, Pareto0, Pareto with
exponential cutoff, and Gamma distributions, re-
spectively. For example, in Figure 6 we plot cases
when the individual inter-contact times are Pareto0
with fixed shape equal to 1.1 and 2, while rates
are either Pareto (with shape 2 and scale 0.01) or
Gamma (with shape 2 and scale 1). This corresponds
to the strings indPL0(sh=1.1), indPL0(sh=2),
ratePL(2,0.01), rateGamma(2,1) which are
combined to form the indicated legends. The same
convention is also used in the other Figures.

Figures 6 and 7 confirm the results of Theorems 6
and 8. In case of Pareto0 and Pareto individual pair
distributions with fixed shape parameter, the aggre-
gate distribution is power law with the same expo-
nent. This holds true for different rate distributions,
which do not play any specific role, other than defin-
ing a multiplicative constant for F (x).

Figures 8, 9 and 10 confirm the results of Theorem 7,
which analyses the case of Pareto0 individual pair
distributions with fixed scale. Recall that for rates
following a Γ and Pareto distribution, we are able to
derive closed form expressions for the tail behaviour,
which match very well simulation results. Specifically,
note that, for Γ rates (Figure 8), while the shape of the
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Fig. 10. F (x), individual ICT X ∼ Pareto0 with fixed
scale. Contact rates are Pareto.

Fig. 11. F (x), individual ICT X ∼ Pareto-CO with
small scale and fixed shape. Contact rates are Γ.

tail initially depends on the parameters of the rate dis-
tribution, this dependence disappears for very large
x, as F (x) can be lower bounded by x−(1+β), β > 0.
The same asymptotic behaviour holds also for Pareto0
rates (Figure 9). In this case, however, we are not able
to obtain as precise closed form expressions for the
tail behaviour. Recall that F (x) can be approximated,
for large x, as 1/(xg(x)) where g(x) is a function
that goes to 0 more slowly than x−β , β > 0. As
g(x) does not admit closed form expressions, we
are able to derive only the asymptotic behaviour,
F (x) ' x−(1+β), which is confirmed by the plots.
Note that these figures confirm, once more, the impact
of rate distributions admitting values arbitrarily close
to 0 on the aggregate distribution. In these cases (Γ
and Pareto0, corresponding to Figures 8 and 9) the
parameters of the rate distribution and even those of
the individual inter-contact time distributions do not
matter anymore in the tail behaviour of the aggregate
distribution, which approximates a power law with
exponent 1. On the other hand, when rates cannot be
arbitrarily close to 0 (e.g., Pareto, Figure 10) the tail
behaviour of the aggregate distribution does depend
on the parameters of the various distributions (in the
considered case, on both scale parameters).

Finally, Figures 11 and 12 confirm the results in The-
orem 10, which analyses the case of individual inter-
contact times following a Pareto distribution with
exponential cutoff. In the case where rates follow a
Γ distribution (Figure 11), the shape parameter of the

Fig. 12. F (x), individual ICT X ∼ Pareto-CO
with small scale and fixed shape. Contact rates are
Pareto0.

Γ distribution determines the shape of the aggregate
distribution (recall that F (x) can be approximated
as x−(α+1) for large x, α being the shape of the Γ
distribution of the rates). On the other hand, when
rates follow a Pareto0 distribution (Figure 12), the
aggregate decays as a power law with a shape equal
to 2 irrespective of the Pareto0 parameters. Both re-
sults are clearly confirmed in the figures. Note, in
particular, the quite different set of parameters for
the parameters of the various distributions shown in
Figure 12, and the fact that they do not impact at all on
the shape of the aggregate distribution, as predicted
by Theorem 10.

7 DISCUSSION AND CONCLUSIONS

In this paper we have characterised through an an-
alytical model the dependence between the distri-
butions of individual pair inter-contact times and
the resulting aggregate distribution in heterogeneous
opportunistic networks (i.e., in networks where the
contact patterns between pairs are not iid). In our
model individual pair distributions are assumed of
the same type, but their parameters can vary from pair
to pair. We use the contact rates (the reciprocal of the
average inter-contact times) to control the parameters
of each pair. Specifically, we assume that contact rates
are also a random variable, following a given distri-
bution. The value taken by the contact rate r.v. for a
given pair determines the values of the parameters of
the pair inter-contact time distribution. Therefore, the
distribution of contact rates determines, in our model,
the heterogeneity of the network.

Understanding the dependence between individual
pair and aggregate inter-contact time distributions is
an important subject of investigation. Previous foun-
dational results have clearly shown the impact of
the distributions of individual inter-contact times on
the performance of forwarding protocols. However,
the aggregate distribution is a much more convenient
figure to describe opportunistic networks with respect
to all the distributions of all individual pairs. There-
fore, the former has often been used in the literature,
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assuming that it correctly represents the latter. To
the best of our knowledge, our work is the first one
that precisely analyses the dependence between the
two, and provides clear results on when using the
aggregate is possible and when it is not.

In the paper we have presented a general model
describing the dependence between the individual
pair inter-contact time distributions, the contact rate
distribution, and the aggregate inter-contact time dis-
tribution. In addition, we have exploited the model to
derive analytical results for several relevant cases of
heterogeneous networks, featuring inter-contact time
distributions found by analysing real traces. We have
considered different individual pair distributions (ex-
ponential, power law with or without cutoff), and dif-
ferent contact rate distributions (Gamma, exponential,
power law with or without cutoff), which result in
power law aggregate distributions, with or without
exponential cutoff. According to the analysis of real
traces available in the literature (e.g., [6], [7], [25],
[24]), these are among the most relevant cases to
investigate.

This analysis allowed us to derive several inter-
esting insights. Firstly, we have highlighted cases in
which using the aggregate distribution instead of the
individual pair distributions is correct. In particular,
when individual pairs follow a power law distribution
and the shape parameter is fixed across all pairs, the
aggregate distribution presents again exactly the same
power law behaviour, irrespective of the distribution
of the rates. Also, when individual pair distribu-
tions are power law with an exponential cutoff, and
the shape is fixed, then the aggregate distribution
also behaves as a power law with exponential cutoff
with exactly the same parameters. Another such case
occurs when the individual pair and the aggregate
distributions are exponential. However, this case is
only possible for homogeneous networks, i.e. when
all individual pair distributions (and therefore the
aggregate distribution as well) are identical.

In several other cases the aggregate distribution
does not correctly represent the individual pair dis-
tributions. This occurs consistently over different in-
dividual pair and rate distributions. A common trait
in these cases is the significant impact of the rate
distribution on the aggregate distribution. When the
rate distribution allows rates arbitrarily close to 0
(such as for Gamma and Pareto0 distributions), then
the aggregate presents a heavy tail, whose shape
might even not depend on any parameter of the
individual pair and rate distributions. When, on the
other hand, the rate distribution does not allow values
arbitrarily close to 0 (such as for Pareto distributions),
the aggregate typically4 presents a light tail, usually

4. The only exception we have found is when individual inter-
contact times are Pareto0 with fixed scale. In this case the aggregate
is also power law, due to the fact that all individual inter-contact
times are power law.

in the form of a Pareto with exponential cutoff law.
This has an intuitive explanation. When rates of some
pair can be close to 0, some inter-contact times can
be extremely long, and this results in a long tail
behaviour.

These findings allow us to look back to several
results presented in the literature. We have been able
to reproduce aggregate distributions of the same type
as those found in most of the real traces (power laws
with or without exponential cutoff), starting from a
number of different types of individual inter-contact
time and rate distributions. Thus, our results call for
a cautionary perspective on the typical methodology
used so far, which mostly consisted in analysing the
aggregate distribution assuming it well represents
the distributions of individual pairs. We have shown
that, while this is possible in some cases, this is
not correct in general, and may lead to completely
wrong conclusion, e.g. on the convergence properties
of opportunistic forwarding protocols.

On the other hand, our results are very good news
for the practical feasibility of opportunistic networks.
We have shown that aggregate distributions following
a power law with even a very heavy tail can be ob-
tained in a range of diverse heterogeneous networks.
In several such cases, the individual inter-contact time
distributions are light tailed, and can follow, e.g.,
exponential or power law with cutoff distributions.
Interestingly, this is consistent with those few works
in the literature that have analysed individual inter-
contact time distributions in real traces. Our results
are thus able to reconcile apparently contradicting
results found in the literature, such as the fact that
light tailed individual inter-contact times are compat-
ible with heavy tailed aggregate inter-contact times.
Moreover, our results suggest that in several real
traces, forwarding protocols might indeed not diverge
(because the individual inter-contact times are light
tailed), and the heavy tail that can be seen in the
aggregate distribution is actually a side effect of the
network heterogeneity.

APPENDIX A
PROOF OF THEOREM 1
In this Appendix we provide the complete proof of
Theorem 1.

Theorem 1: In a network where the contact rates
are distributed with density f(λ), the CCDF of the
aggregate inter-contact times is as follows:

F (x) =
1

E[Λ]

∫ ∞

0

λf(λ)Fλ(x)dλ .

Proof: For the reader convenience, let us recall
the expression of the aggregate inter-contact time in
Equation 4:

F (x) = lim
T→∞

P∑
p=1

np(T )
N(T )

Fp(x) =
P∑

p=1

θp

θ
Fp(x) .
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With respect to the case of Lemma 1, the contact rate
associated with a given pair is not known in advance,
but is a random variable with density f(λ). The
expression of F (x) can thus be derived conditioning
to a specific set of rates λ1, . . . , λP , and applying the
law of total probability. We thus obtain

F (x) =
∫

λ1
...
∫

λP
F (x|λ1,...,λP )f(λ1,...,λP )dλ1...dλP =

=
∫

λ1
...
∫

λP

∑
p

λpFp(x)∑
p

λp
f(λ1)...f(λP )dλ1...dλP ,

where we have exploited the fact that rates of in-
dividual pair inter-contact times are assumed to be
independent. For a sufficiently large number of pairs
(large P ), we can apply the law of large numbers, and
approximate

∑
p λp as E[Λ]P . Swapping the integrals

and the summations, we further obtain:

F (x) = 1
E[Λ]P

∑
p

∫
λ1

...
∫

λP
λpFp(x)f(λ1)...f(λP )dλ1...dλP =

=
1

E[Λ]P

∑
p

∫ ∞

0

λFλ(x)f(λ)dλ

=
1

E[Λ]

∫ ∞

0

λf(λ)Fλ(x)dλ ,

where we have exploited the assumption that rates
of individual pair inter-contact times are identically
distributed.

APPENDIX B
PROOFS OF RESULTS IN SECTION 5
In this appendix we provide the detailed proofs of the
Theorems presented in Section 5.

Theorem 2: When individual pair inter-contact
times are exponentially distributed, aggregate inter-
contact times are distributed according to a Pareto
law with parameters α > 1 and b > 0 iff the contact
rates follow a Gamma distribution Γ(α− 1, b), i.e.

F (x) =
(

b

b + x

)α

⇐⇒ f(λ) =
bα−1

Γ(α− 1)
λα−2e−bλ .

Proof: Starting from Equation 6, we note that the
following holds true:∫ ∞

0

λf(λ)e−λxdλ = − ∂

∂x

∫ ∞

0

f(λ)e−λxdλ .

We can thus rewrite Equation 6 as

−E[Λ]
(

b

b + x

)α

=
∂

∂x

∫ ∞

0

f(λ)e−λxdλ =
∂

∂x
Lx(f(λ)) ,

where Lx(f(λ)) denotes the Laplace transform of
f(λ). Integrating over x and computing the inverse
Laplace transform, we obtain

f(λ) = E[Λ]
b

α− 1
bα−1

Γ(α− 1)
λα−2e−bλ .

Imposing
∫∞
0

f(λ)dλ = 1 we obtain E[Λ] = α−1
b , and

thus the final expression of f(λ), showing that Λ is

distributed as Γ(α− 1, b). Note that the average value
of Γ(α − 1, b) is indeed α−1

b which is consistent with
the derivation of E[Λ].

Theorem 3: When individual pair inter-contact
times are exponentially distributed, aggregate
inter-contact times are distributed according to an
exponential distribution with rate µ > 0 iff the
network is homogeneous, i.e. iff all individual pair
inter-contact times are exponentially distributed with
rate µ:

F (x) = e−µx ⇐⇒ f(λ) = δ(λ− µ) ,

where δ(·) is the Dirac delta function.
Proof: The proof follows the same steps of the

proof of Theorem 2. As we want the aggregate distri-
bution to be exponential, we can specialise Equation 5
as follows:

1
E[Λ]

∫ ∞

0

λf(λ)e−λxdλ = e−µx (22)

Noting, again, that the following holds true∫ ∞

0

λf(λ)e−λxdλ = − ∂

∂x

∫ ∞

0

f(λ)e−λxdλ

= − ∂

∂x
Lx(f(λ)) ,

we obtain

Lx(f(λ)) =
E[Λ]

µ
e−µx ⇐⇒ f(λ) =

E[Λ]
µ

δ(λ− µ)

where δ(·) is the Dirac delta function. Imposing the
necessary condition for f(λ) being a density function
we obtain

1 =
∫ ∞

0

f(λ)dλ ⇐⇒ µ

E[Λ]
=
∫ ∞

0

δ(λ− µ)dλ

⇐⇒ µ = E[Λ]

This means that the density function f(λ) is the Dirac
delta function δ(λ− µ), which is compatible with the
condition E[Λ] = µ. Therefore, µ is the only possible
contact rate, in order for the aggregate distribution
being exponential with rate µ. This means that, start-
ing from exponentially distributed individual inter-
contact times, we can obtain an exponential aggregate
only if the contacst rates are identical and equal to µ,
i.e. only if the network is homogeneous.

Theorem 4: When individual pair inter-contact
times are exponentially distributed and rates are
drawn from a Pareto distribution whose CCDF is
F (λ) =

(
k
λ

)γ
, λ > k, the tail of the aggregate inter-

contact times decays as a power-law with exponential
cutoff, i.e.:

F (λ) =
(

k

λ

)γ

, λ > k ⇒ F (x) ∼ e−kx

kx
for large x

Proof: Substituting the expressions of f(λ), E[Λ]
and Fλ(x) in Equation 5 we obtain
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F (x) =
∫ ∞

k

λ(γ − 1)
γk

γkγ

λγ+1
e−λxdλ

= (γ − 1)(kx)γ−1Γ(1− γ, kx) ,

where Γ(s, y) is the upper incomplete Gamma func-
tion. In the limit x →∞, Γ(s, y) can be approximated
as ys−1e−y [19]. Therefore, we obtain

F (x) ∼ (kx)γ−1(kx)−γe−kx =
e−kx

kx
for large x .

Theorem 5: When individual pair inter-contact
times are exponentially distributed and rates are
drawn from a Pareto distribution whose CCDF is
F (λ) =

(
k

k+λ

)γ

, λ > 0, the tail of the aggregate
inter-contact times decays as a power-law with shape
equal to 2, i.e.:

F (λ) =
(

k

k + λ

)γ

, λ > 0 ⇒ F (x) ∼ 1
x2

for large x

Proof: Substituting the expressions of f(λ), E[Λ]
and Fλ(x) in Equation 5 we obtain

F (x) =
∫ ∞

0

λ(γ − 1)
γk

γkγ

(k + λ)γ+1
e−λxdλ

= (γ − 1)
[
ekx(kx + γ)(kx)γ−1Γ(1− γ, kx)− 1

]
,

With respect to the case of Theorem 4, in this case
we have to consider higher terms components in
the approximation of Γ(s, y). Specifically, we use the
following approximation, for x →∞ [19]:

Γ(s, y) ' ys−1e−y

[
1 +

s− 1
y

+
(s− 1)(s− 2)

y2

]
(23)

Substituting Equation 23 in the expression of F (x),
after simple algebraic manipulations we obtain

F (x) ' C

[
γ

(kx)2
+

γ2(γ + 1)
(kx)3

]
' C

x2
for large x .

APPENDIX C
PROOF OF RESULTS IN SECTION 6
In this appendix we provide the detailed proofs of the
Theorems presented in Section 6.

Theorem 6: When individual pair inter-contact
times follow a Pareto distribution whose CCDF
is in the form Fλ(x) =

(
q

q+x

)η

and the shape
parameter η is the same across all pairs, irrespective
of the distribution of contact rates, the tail of the
distribution of aggregate inter-contact times decays,
for large x, as a power law with exponent η, i.e.
F (x) ' x−η, provided η > 1 and the following
condition holds true:∫ ∞

0

λf(λ)
(

η − 1
λ

)η

dλ < ∞ ,

where f(λ) is the density of the contact rate distribu-
tion.

Proof: For fixed η, from Equation 13 we obtain the
expression of the scale parameter as a function of λ,
q = η−1

λ . As q must be greater than 0, this results in
the condition η > 1. We can now use the expression of
q to compute a closed form of the CCDF of aggregate
inter-contact times, by substituting the expression of
Fλ(x) in Equation 5. We obtain:

F (x) =
1

E[Λ]

∫ ∞

0

λf(λ)

(
η−1

λ
η−1

λ + x

)η

dλ .

For large x this can be approximated as

F (x) ' 1
E[Λ]

∫ ∞

0

λf(λ)
(

η − 1
x

)η

dλ

=
1

E[Λ]
x−η

∫ ∞

0

λf(λ)
(

η − 1
λ

)η

dλ .

This concludes the proof.
Theorem 7: When individual pair inter-contact

times follow a Pareto distribution whose CCDF is in
the form Fλ(x) =

(
q

q+x

)η

and the scale parameter
q is the same across all pairs, if contact rates follow
a Gamma, Pareto0, or Pareto distribution, the tail
of the distribution of aggregate inter-contact times
decays, for large x, as a power law. Specifically, the
following holds true:
• if contact rates follow a Gamma distribution

Γ(α, b) then F (x) ' C
x(ln x)α+1 holds true for large

x, C being a constant greater than 0. Moreover, it
can also be shown that limx→∞ F (x) > C

x1+β , for
any β > 0;

• if contact rates follow a Pareto0 distribution
Pareto0(γ, k) then F (x) ' C

xg(x) holds true for
large x, C being a constant greater than 0 and
g(x) being a function that, for large x, goes to 0
more slowly than x−β for any β > 0. Therefore,
limx→∞ F (x) > C

x1+β holds true for any β > 0;
• if contact rates follow a Pareto distribution

Pareto(γ, k) then F (x) ' C
xkq+1 ln x

for large x,
C being a constant greater than 0. Therefore,
limx→∞ Fλ(x) > C

x1+kq+β holds true for any β > 0.
Proof: When q is fixed, from Equation 13 we

obtain the expression of the shape parameter η as a
function of λ, i.e. η = 1 + λq. Using this expression to
substitute Fλ(x) in Equation 5 we obtain

F (x) =
1

E[Λ]
q

q + x

∫ ∞

0

λf(λ)
(

q

q + x

)λq

dλ . (24)

When contact rates follow a Gamma distribution
Γ(α, b), by replacing the expression of f(λ) in Equa-
tion 24, we obtain, for large x:

F (x) ' C

x(lnx)α+1
,

C being a constant greater than 0. For any β > 0 it
is true that limx→∞

(ln x)α+1

xβ = 0. This means that for
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large x we can write 1
xβ < 1

(ln x)α+1 . Therefore, for
large x, F (x) can be lower bounded as follows:

F (x) ' C

x(lnx)α+1
>

C

x1+β
, β > 0.

This means that the CCDF aggregate inter-contact
times decays, for large x, at least as slow as a power
law with exponent 1 + β.

When contact rates follow a Pareto0 distribution
with shape γ and scale k, F (x) becomes

F (x) = C
q

q + x

∫ ∞

0

λ

(k + λ)γ+1

(
q

q + x

)λq

dλ

, C
q

q + x
g(x)

It can be shown that limx→∞
x−β

g(x) = 0 for any β > 0.
This means that, for large x, g(x) goes to 0 more
slowly than x−β , or, in other words, we can write
g(x) > x−β . Therefore, F (x) can be lower bounded
as follows:

F (x) ' C
q

q + x
g(x) >

C

x1+β
, β > 0.

Also in this case, therefore, F (x) decays, for large x,
at least as slow as a power law with exponent 1 + β.

Finally, when contact rates follow a Pareto distribu-
tion with shape γ and scale k, F (x) becomes

F (x) =
C

x
Γ(1− γ,−kq ln

q

q + x
)
(
−kq ln

q

q + x

)γ−1

.

In the limit x → ∞, by using the usual approxima-
tion for the incomplete Gamma function Γ(s, x) '
xs−1e−x [19], after simple algebraic manipulations we
obtain

lim
x→∞

F (x) =
C

xkq+1 lnx
.

Noting again that limx→∞
lnx
xβ = 0 for any β > 0 we

conclude that F (x) can be lower bounded, for large
x, as follows:

F (x) ' C

xkq+1 lnx
>

C

xkq+1+β
, β > 0.

This concludes the proof.
Theorem 8: When individual pair inter-contact

times follow a Pareto distribution whose CCDF is
in the form Fλ(x) =

(
q
x

)η and the shape parameter
η is the same across all pairs, irrespective of
the distribution of contact rates, the tail of the
distribution of aggregate inter-contact times decays,
for large x, as a power law with exponent η, i.e.
F (x) ' x−η, provided η > 1 and the following
condition holds true:∫ ∞

0

λf(λ)
(

η − 1
λη

)η

dλ < ∞ ,

where f(λ) is the density of the contact rate distribu-
tion.

Proof: By fixing the shape parameter η, and re-
calling that the average value of the individual inter-
contact times is, in this case, E[X|λ] = qη

η−1 we obtain
the expression of q as a function of λ, q = η−1

λη . As
q must be greater than 0, we immediately obtain the
condition η > 1. Using the expression of q to substitute
Fλ(x) in Equation 5 we obtain

F (x) =
1

E[Λ]
x−η

∫ ∞

0

λf(λ)
(

η − 1
λη

)η

dλ .

This concludes the proof.
Theorem 9: When individual pair inter-contact

times follow a Pareto distribution with exponential
cutoff with shape, scale and rate parameters η, q and
µ, if µ is very large and η is the same across all pairs,
then the CCDF of the aggregate inter-contact times
F (x) decays, for large x, as a Pareto distribution
with exponential cutoff with the same shape and rate
parameters η and µ, i.e. F (x) ' (µx)−ηe−µx, provided
the following condition holds true∫ ∞

0

λf(λ)
Γ(1− η, µ

λ )
dλ < ∞ .

Proof: Recalling that in this case q can be approx-
imated as 1/λ, and by applying the usual approx-
imation for the upper incomplete Gamma function
Γ(s, x) ' xs−1e−x for large x, we can approximate
F (x) as follows:

F (x) ' 1
E[Λ]

(µx)−ηe−µx

∫ ∞

0

λf(λ)
Γ(1− η, µ

λ )
dλ .

This concludes the proof.
Theorem 10: When individual inter-contact times

follow a Pareto distribution with exponential cutoff,
whose scale parameter q tends to 0 and whose shape
parameter η is fixed across all pairs, the distribution
of aggregate inter-contact times F (x) presents, for
large x, a heavy tail, provided η ∈ (0, 1) holds true.
Specifically:
• if contact rates follow a Gamma distribution

Γ(α, b) then limx→∞ F (x) = Cx−(α+1), C being
a constant greater than 0;

• if contact rates follow a Pareto0 distribution then
limx→∞ F (x) = Cx−2, C being a constant greater
than 0;
Proof: Denoting again with µ the rate of the

exponential part of the Pareto distribution with ex-
ponential cutoff, recalling that q tends to 0 and η is
fixed, from the expression of E[X|λ] in Equation 21,
we obtain the condition µ = λ(1 − η). Note that, as
µ must be greater than 0, this results in the condition
η ∈ (0, 1). Replacing the resulting expression of Fλ(x)
in Equation 5 we obtain, for large x,

F (x) ' 1
E[Λ]

[(1− η)x]−η

Γ(1− η)

∫ ∞

0

λ1−ηf(λ)e−(1−η)λxdλ ,

where we have used the usual approximation for
Γ(s, x) for large x.
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When contact rates follow a Gamma distribution
Γ(α, b), by substituting the expression of f(λ) we
immediately obtain, for large x,

F (x) ' Cx−(α+1) , C > 0.

On the other hand, when contact rates follow a
Pareto0 distribution with shape γ and scale k we
obtain, for large x,

F (x) ' Cx−η

∫ ∞

0

λ1−η

(λ + k)γ+1
e−(1−η)λxdλ .

It can be shown that the following property holds
true:

lim
x→∞

F (x)
x−2

=
CΓ(2− γ)(1− η)2−η

kγ+1

This means that F (x) decays, for large x as a power
law with exponent equal to 2. This concludes the
proof.
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