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Abstract

In this paper we focus on approaches which aim at discoveringcommunities of people in Opportunistic

Networks. We first study the behaviour of three community detection distributed algorithms proposed in literature

[1], in a scenario where people move according to a mobility model which well reproduces the nature of human

contacts, namely HCMM [2]. By a simulation analysis, we showthat these distributed approaches can satisfactory

detect the communities formed by people only when they do notsignificantly change over time. Otherwise, as

they maintain memory of all encountered nodes forever, these algorithms fail to capture dynamic evolutions of the

social communities users are part of. To this aim we propose AD-SIMPLE, a new solution which captures the

dynamic evolution of social communities. By an extensive simulation analysis, we demonstrate that it accurately

detects communities and social changes while keeping computation and storage requirements low.

I. INTRODUCTION

Opportunistic Networks[3] are self-organising wireless networks formed by mobiledevices carried

by people. Due to people mobility, the network is disconnected most of the time and the existence of a

complete path between pairs of senders/destinations cannot be assumed. However, communications among

nodes are still possible since local interactions are exploited to deliver messages in a hop-by-hop fashion.

This can be achieved by means ofi) dissemination-based routing protocols, which essentially implement

form of controlled flooding [4], orii) context-based routing protocols, which aim at maximising the

probability of message delivery searching for the most appropriate relay node. The latter category exploits

information about the context which are used to construct the so-calledutility of a node, i.e., the usefulness

of a node to be the best next-hop for a message. To this end, several schemes have been proposed taking

into account the history of encounters [5] [6], or the mobility [7] or a combination of attributes [8].

Among the various classes of context-based routing protocols, those exploiting information about social

relationship between the users are considered very promising. Humans are social individuals that have

social ties and form communities to better answer to their needs. People belonging to the same community

meet with high probability and regularly. On the contrary, people from different communities meet less

frequently. Therefore, understanding the human structureand the rules which regulate social interactions

and aggregations can be a great advantage. An accurate knowledge of local community can be exploited

to increase the performance of forwarding schemes for Opportunistic Networks, as shown for example



in HiBOp [8] and BubbleRAP [9]. As users belonging to the samecommunity share common interests,

social information can be efficiently used to design smart strategies to choose the most suitable next hop.

Complex network analysis has been recently proposed as a efficient way to detect the structure of a

network, and indices such as betweenness, similarity and centrality are defined as a compact representation

of the properties of the nodes. The approaches presented in [10] [11] [12] show to reliably extract the

community structure in real world networks by deriving statistics of communities from traces. They rely on

centralised schemes which require the complete knowledge of the entire structure of the graph. Conversely,

the approach proposed in [13] infers the community structure, namedlocal modularity, without relying

on some centralised points by exploring each vertex at a time. By exploiting such results, in [1] authors

proposed the distributed version of three centralised community detection algorithms (i.e., SIMPLE, k-

CLIQUE and MODULARITY) and show their great potential and their accuracy in identifying social

community wrt the centralised versions.

In this paper, we focus on approaches aimed at discovering dynamic communities of people in an

opportunistic scenario by starting from the three distributed algorithms proposed in [1]. We can summarise

our major contributions as follows:

i) We compare and contrast them in different scenarios in terms of the achievedsimilarity metric, i.e.,

how similar the detected communities are with respect to those detected by the centralised algorithms.

We differentiate from [1] in the type of traces which are usedfor running the analysis. We use synthetic

traces generated from a mobility model which well reproduces human movement patterns observed

in real traces, namely HCMM [2]. This allows us also to createdifferent scenarios wrt those in [1]

and thus to make a deeper analysis. Obtained results show that SIMPLE performs better with respect

to k-CLIQUE and MODULARITY.

ii) We also demonstrate that their accuracy in identifying communities decreases with the increase of

the complexity of the scenario. They are not able to correctly represent the dynamic users’ social

behaviour in scenarios with nodes moving across different communities.

iii) We finally propose a new community detection algorithm,namely Adaptive Detection SIMPLE (AD-

SIMPLE), which is able to capture the evolution of social communities in dynamic scenarios, while

keeping computation and storage requirements low. To the best of our knowledge this is the first

attempt proposed in literature that explicitly includesadaptivecommunity detection mechanisms.

The paper is organised as follows. Section II states the problem to be faced, introducing the community

detection algorithms defined in [1] and the mobility model assumptions. Section III presents the simulation

analysis to compare the distributed algorithms proposed in[1], and discusses the obtained results. Section

IV introduces the proposed Adaptive Detection SIMPLE algorithm, while in Section V we provide an

extensive evaluation of the proposed solution by means of simulation. Specifically, first, we show the

sensitiveness of AD-SIMPLE on specific parameters, then we present results of a comparison of AD-

SIMPLE against that of the algorithms in [1] in case of dynamic social communities. Finally, Section VI

concludes the paper.



TABLE I
NOTATION

F0(Fi): Familiar Set of nodev0(vi)

C0(Ci): Local Community of nodev0(vi)

F̃j : local approximation of the Familiar Set of nodevj ∈ C0

FSoLC0: local approximation of the Familiar Sets

of all vertices inC0

(FSoLC0 = {F̃j | vj ∈ C0})

II. D ISTRIBUTED COMMUNICATION DETECTION ALGORITHMS

In this section we provide the background information necessary to understand the three distributed

algorithms which are used in the simulation analysis to detect social communities. We first provide some

basic definitions and then we report the main characteristics of each algorithm. Interested readers can

refer to [1] for additional details.

A. Definitions

The following definitions are common to all the three algorithms:

• Familiar Set (F): a familiar set of a nodev0 is composed by all those encountered nodes for which

the cumulative contact duration1 exceeds a predefined thresholdtth.

• Local Community (C): a local community of a nodev0 is composed by all the nodes in its familiar

set and the nodes for which criteria, specific to each algorithm, are valid.

Table I summarises the notation used hereafter.

The idea at the basis of all the three community detection algorithms is that each node determines the

composition of its community based on the contacts it has with other nodes. This is achieved by storing

specific information. Specifically, when two nodes meet eachother, they first exchange local information

and then take independent decisions about including or not the encountered node into the Familiar Set

(i.e., threshold criteria) 2, or only into the Local Community (i.e.,admission criteria). In addition, each

node evaluates if its Local Community can be merged (partially or completely) with the Local Community

of the encountered node (i.e.,merging criteria).

The threshold criteria are common to all the the three algorithms.

Threshold Criteria: when two nodes meet, each node evaluates the cumulative contact durationtcum.

If tcum ≥ tth, then the encountered node is added to the Familiar Set (and consequently to the Local

Community).

On the contrary, the admission criteria and merging criteria are specific for each algorithm and they

are carefully described in the next subsections.

1The cumulative contact duration for a pair of nodes (tcum) is the sum of the duration of all the different contacts.
2When a node is added to the Familiar Set it is automatically added to the Local Community



Fig. 1. (a) Example of k-CLIQUE with k=3 and (b) example of Boundary Set for the Modularity algorithm.

B. SIMPLE community detection algorithm

As suggested by the name, in SIMPLE nodes exchange very few information. Suppose that two nodes,

e.g.,v0 andvi, make contact. During the contact duration, each node sendsto the other node its Familiar

Set and its Local Community. At the end of the contact, each node evaluates the following two criteria

to update the relative data structures. Focusing onv0:

B1. Admission Criteria: in case of failure of the threshold criteria, if the number ofnodes shared among

C0 andFi is higher thanλ times the number of nodes inFi, then the encountered nodevi is added

to the Local Community ofv0 (i.e., if |C0 ∩ Fi| > λ · |Fi| =⇒ C0 = C0 ∪ {vi}).

B2. Merging Criteria: in casevi is added to the Local Community ofv0 as a consequence of the success

of threshold or the admission criteria, if the number of nodes shared betweenC0 and Ci is higher

thanγ times the number of nodes in the set union ofC0 andCi, then the two Local Communities

are merged (i.e.,if |C0 ∩ Ci| > γ · |C0 ∪ Ci| =⇒ C0 = C0 ∪ Ci).

C. k-CLIQUE community detection algorithm

k-CLIQUE is the distributed version of the centralised method originally proposed in [10]. Authors

define a community as the union of allk-cliques which can be reached from each other through a series

of adjacentk-cliques, where ak-clique is a complete subgraph of sizek while two k-cliques are adjacent

if they sharek − 1 nodes. An example of a 3-clique community is provided in Figure 1a.

In addition to the Familiar Set and Local Community, nodes exchange also their local approximation

of the Familiar Sets of all the nodes within their Local Community (FSoLC)3. Focusing on nodev0, the

following two criteria are evaluated at the end of the contact:

C1. Admission Criteria: in case of failure of the threshold criteria, if the FamiliarSet ofvi contains at

leastk− 1 nodes of the Local Community ofv0, then the encountered nodevi is added to the Local

Community ofv0 (i.e., if |C0 ∩ Fi| ≥ k − 1 =⇒ C0 = C0 ∪ {vi}).

C2. Merging Criteria: in casevi is added to the Local Community ofv0 as a consequence of the success

of threshold or the admission criteria, if the Familiar Set of each node inside the Local Community

3This is an approximation because it contains information about the Familiar Set of the encountered nodes which are collected during
contacts and may be incomplete and not updated.



of vi (e.g., vj) contains at leastk − 1 nodes of the Local Community ofv0, then vj is added to

the Local Community ofv0 (i.e., if |C0 ∩ F̃j| ≥ k − 1 =⇒ C0 = C0 ∪ {vj}, wherevj ∈ Ci and

F̃j ∈ FSoLCi).

In addition, if the merging criteria are satisfied then the local approximation of the Familiar Sets of

all nodes inC0 needs to be updated, i.e.,FSoLC0 = FSoLC0 ∪ F̃j .

D. MODULARITY community detection algorithm

MODULARITY is a variation of the method for discovering local community structures which has

been presented in [13]. The original method is based on the concept ofLocal Modularity (R)and on the

computation of the variation rate of the Local Modularity (∆R) when adding a new vertex to an existing

local community.

To define the Local Modularity the concept ofBoundary Setshould also be introduced. Specifically, the

Boundary Set of a node (B) is defined to be the subset of vertices in a local community whose members

have edges connecting to one or more vertices located outside the local community (see Figure 1b).

Taking into account the above definition, the Local Modularity measures the sharpness of local com-

munity boundary of each node and can be expressed by the quantity:

R =
I

|T |
(1)

whereI is the number of edges with no endpoints outside the Local Community andT is the set of

edges with one endpoints in the Boundary Set. If the BoundarySet coincides with the Local Community,

R is equal to 1 by definition.

When a new vertexvi is added to an existing communityC0 of vertexv0 with Boundary SetB0, the

variation of the Local Modularity can be computed by the following equation:

∆R0 =
x − R0 · y − z(1 − R0)

|T | − z + y
(2)

wherex is the number of edges inT that terminate invi, y is the number of edges that will be added

to T due to the inclusion ofvi and z is the number of edges that will be removed fromT due to the

inclusion ofvi.

The variation to the Modularity algorithm proposed by [1] works as follows. When two nodes meet

they exchange the following information:i) F , ii) C and iii) FSoLC. Once received, each node uses

them to update its local structures. Specifically,v0 first updates its local approximation of̃Fi by merging

it with Fi directly received byvi. Then, it updates each local approximation of all the Familiar Sets in

FSoLC0 with the corresponding version inFSoLCi. The same is forvi as well. Afterwards each node

evaluates the following criteria. Referring to nodev0:

D1. Admission Criteria: in case of failure of the threshold criteria, if the difference between the Local

Modularity measured before and after includingvi into the Local Community ofv0 exceeds 0, then the

encountered nodevi is added to the Local Community ofv0 (i.e., if∆R0 ≥ 0 =⇒ C0 = C0 ∪ {vi}).



D2. Merging Criteria: in casevi is added to the Local Community ofv0 as a consequence of the

success of threshold or the admission criteria, the algorithm considers adding toC0 the nodes inside

the setK:

K = {vk | ∃js.t.vj ∈ C0 ∩ Ci ∧ vk ∈ F̃j ∧ vk ∈ Ci \ C0}.

Specifically, the setK consists of the subset of all the nodes ofCi that are adjacent to those nodes

shared betweenC0 andCi.

For each nodevk in K, if the Familiar Set ofvk is a subset of the Local Community ofv0, thenvk

is added to the Local Community ofv0 (i.e., if F̃k ⊆ C0 =⇒ C0 = C0 ∪ {vk}).

In addition, the variation of Local Modularity (∆R0) is computed for all the remaining nodes in

K. Nodes with∆R0 > 0 are directly added to the Local Community ofv0. For those nodes with

∆R0 ≤ 0, the value of∆R0 is re-computed and re-checked after each inclusion. This procedure

may be repeated several times and it ends wheni) K is empty, orii) after having addedvk to C0,

∆R0 ≤ 0 for all the remaining nodes inK.

Furthermore, after each inclusion,F̃k is merged with the corresponding version inFSoLC0.

Note that the thresholdstth, λ, γ andk used in the three algorithms are design parameters, thus they

need to be chosen appropriately in order to calibrate the system. For this reason they are objects of

investigation of the paper (see Section III-C).

As come out from the above description, the three community detection algorithms have different

memory and computational requirements. On one hand, the SIMPLE algorithm makes use of low memory

usage and low power computation. On the other hand, the MODULARITY algorithm is the most complex,

both in terms of memory usage as it has to maintain a copy of Familiar Set of all the nodes in the Local

Community and in terms of computation as it has to compute∆R at each iteration for all the nodes

belonging to setK. The k-CLIQUE algorithm represents an intermediate solution since it needs the same

memory usage of MODULARITY but has lower computation complexity.

III. PERFORMANCE ANALYSIS

In this section we evaluate the communities detected by the distributed algorithms against the centralised

algorithms, where a centralised algorithm has an a-priori knowledge of the composition of each community.

We developed the described community detection algorithmsas part of the OMNeT++ discrete-event

network simulator4. The default scenario is composed of 54 nodes divided into 2 communities. Nodes

move with an average speed of 1.5 m/s (representing a walkingperson) in a square of 1000mx1000m.

Nodes move according to the HCMM mobility model [2] which is briefly described in the following

subsection. The default parameters are set as in Table II. Despite being a particular and simple scenario,

it is sufficient to highlight the properties of the communitydetection algorithms that we want to check.

A. Mobility Model: HCMM

HCMM [2] is a mobility model which well reproduces the statistical figures of real human movement

patterns. Each node is initially associated with a specific community (its home community), and has

4http://www.omnetpp.org/



TABLE II
DEFAULT PARAMETERS

Parameter Value Parameter Value

Area 1000mx1000m N 54

Transmission range 20m Community number 2

Average speed 1-1.86m/s Traveller number 1

social ties with all the other members of its home community.Certain nodes (travellers) have also social

links with communities other than the home (foreign community). For each social tie, the specific foreign

community and the specific node inside the foreign communityare selected according to a uniform

distribution. The mobility pattern of a node is driven by itssocial links, i.e., a node located into its home

community moves towards a given community (i.e., home and/or foreign) with a probability proportional

to the number of ties with nodes of that community. In addition, when the node reaches a community

which is not its home, it remains in the foreign community forthe next movement with a given probability

(pe) and goes back home with probability1 − pe. Hence, HCMM models a realistic scenario in which

users are generally attracted to those people within the same home community, but they are also attracted

to foreign people with whom they spend some time before coming back home.

HCMM permits to periodically re-select the foreign communities for the traveller.

B. Performance metrics

The objective of the simulation analysis is to measure how the distributed approaches proposed in [1]

are able to identify communities formed by people. To this aim, we use the classic Jaccard index [14] as

the metric to evaluate the similarity among the communitiesdetected by the distributed algorithms and

those detected by the centralised algorithms. The Jaccard index is defined by the following quantity:

σJaccard =

∣

∣

∣G
(c)
i
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G
(d)
i
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∣
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∣

(3)

whereGi is the set of nodes which belongs to communityi and |Gi| is the cardinality of theGi, while

(c) and(d) indicate that the set is detected by the centralised algorithm and by the distributed algorithm,

respectively. In the following we give an estimation of the local community similarity by averaging the

Jaccard index for all the nodes. Specifically, each simulation is replicated 5 times and the results are

averaged over all the replicas with 95% confidence intervals.

C. Results

The analysis presented in this section refers to the defaultscenario in Table II which is not subjected to

any reconfiguration. Figure 2 shows the similarity metric asa function of simulation time and threshold

value, respectively, for the three algorithms. Each curve represents, for a fixed threshold value, the

correspondingσJaccard obtained at different points in time in the simulation. As depicted by the figure,

the similarity value increases with the increase of simulation time for all the three algorithms. This is
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Fig. 2. Impact of the Familiar Set threshold as function of simulation time for SIMPLE (a), k-CLIQUE (b) and MODULARITY (c).

quite obvious since increasing the simulation time corresponds to gather more precise information for the

distributed algorithms.

The similarity also increases when the threshold value becomes lower. By reducingtth the probability

that the cumulative contact duration for pairs of nodes satisfies the corresponding criterion increases. The

threshold should be also set taking into account the nature and the dynamic of the groups. If nodes have

strong social interactions, the corresponding cumulativecontact duration will be higher. On the other hand,

if nodes have weak social interactions it is high probable that their cumulative contact duration remains

low. A suitable tuning of the threshold value may guarantee better performance in terms of similarity. For

example, we find out that, for a 6h simulation run, the averagecumulative contact times are about 550

sec. In this case, appropriate values are 150 sec for k-CLIQUE and MODULARITY or even 300 sec for

SIMPLE. By setting a threshold of 150 sec, all the three distributed algorithms can reach at least 95%

of the performance of the corresponding centralised algorithm. In addition, SIMPLE is able to have good

performance (around 80%) with a higher threshold (300 sec).

Figure 3 shows the similarity metric for SIMPLE when varyingthe admission and merging thresholds.

The trend of curves is similar to figure 2(a). The similarity increases with the simulation duration as

the system has more time to correctly detect the communities. However, a variation ofλ andγ has less

impact in the overall performance. There is a slight difference between curves, especially for values ofλ

andγ greater than 0.6. Note that similar trends are obtained for different values oftth, but here they are

omitted due to space reasons.

Concerning thek parameter of k-CLIQUE, note that it represents the largest community which we

would like to detect. As a consequence, in this scenario it should be set to 27. Changing the scenario

requires setting it to a different value.

A comparison among the three algorithms in terms of similarity is illustrated in Figure 4. It refers to a

simulation running for six hours with the choice of parameters that optimises the behaviour of the three

algorithms. We can see that k-CLIQUE and MODULARITY show almost similar performance while

SIMPLE has better performance. This is more apparent when the threshold is set to 300 sec. In this

case SIMPLE reaches 80% similarity while both k-CLIQUE and MODULARITY do not exceed 55%.

However, the difference between the curves decreases for higher threshold values, where all the algorithms
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result in a very low performance. Note that the same line of reasoning can be applied for all the other

investigated scenarios.

Summarising, from this analysis, SIMPLE results the more appropriate community detection solution

as it is computationally lightweight and it generally performs better than the other two approaches.

IV. TOWARDS AN ADAPTIVE SIMPLE ALGORITHM

Although the three presented algorithms are generally ableto detect social communities, they suffer

from a common limitation: during its whole life, each node (the traveller in particular) has not always a

consistent view of its real familiar set and/or local community since it maintains memory of all encountered

nodes.

For example, let’s consider a scenario where a user A spends its time between two social communities:

the work community during the day and the friend community after the working day. Let’s also suppose

that B is a colleague of A. Since A and B meet every day, it is correct to include B into the local

community of A (and viceversa) for the time they meet at work.However, the contact with B becomes

less relevant when A has finished to work and meets his friendsfor playing football, for example. This is

even more apparent if B changes job or moves to another city. In above situations, no actions are made

by the three algorithms to reflect these changes in the socialcommunity structures. On the contrary, B

(A) will always remain in the A’s community (B’s community) even though they will not meet again.

From the above discussion, it turns out that the presented community detection algorithms need to be

improved to well represent the dynamic users’social behaviours. This can be achieved by implementing

some policies which take into account:

i) mechanisms for aging contacts among users;

ii) rules for deleting nodes from communities.

To this aim, in the following we present a novel social community detection algorithm, namedAdaptive
Detection SIMPLE (AD-SIMPLE), which is able to dynamically change social structures.



AD-SIMPLE takes inspiration from the original distributedSIMPLE. We focus on it since SIMPLE

represents a good compromise among complexity and performance.

The main idea behind this algorithm is to maintain the basic features of the original SIMPLE for what

concerns the inclusion of nodes while to improve its behaviour with additional policies in order to identify

and remove from communities the nodes which have not be seen for a long period of time. Therefore,

during a contact time, nodes exchange the Familiar Set and the Local Community and update their local

view of social communities by applying the same criteria of SIMPLE (see section II-B). The additional

policies to remove nodes from communities are carefully described in the following subsections.

A. Familiar Set pruning policy

The idea is to keep a running average of the percentage of the contact duration (over the total simulation

time) for each node in the Familiar Set and to decide whether to remove or not a node if this percentage

falls below a given threshold. To this aim, time is divided inslots (i.e.,T ) and the node computes the

percentage of the contact duration in each slot for all the nodes in its Familiar Set as aSample∆T . At the

end of the slot, the node computes anEstimated∆T as a weighted average value between the previous

estimate and this new sample, as defined by equation 4:

Estimated∆T = α · Estimated∆T + (1 − α) · Sample∆T (4)

whereα is a parameter to smooth theEstimated∆T . Note that a smallα tracks more quickly changes

in the ∆T , while a largeα guarantees a more stable value but it is not able to quickly adapt to real

changes.

Finally, a nodevi with Estimated∆Ti is deleted from the Familiar Set if the following equation is

true:

Estimated∆Ti < FSoutth (5)

whereFSoutth is the minimum threshold to be kept in the community.

B. Local Community pruning policy

The idea is to keep a timer for each node in the Local Community(i.e., LCouttimer). The timer is set

when a node is inserted into the Local Community (e.g.,vi is inserted inC0) and is refreshed when one

of the following conditions occurs:

i) v0 encounters directlyvi;

ii) v0 encounters another node (e.g.,vj) andvi is stored in the Local Community ofvj .

A node is removed from the Local Community when the corresponding timer expires.

If this happens and the node is in the Familiar Set, it is also removed from it. This guarantees to

maintain consistency among the two sets during the pruning process.

In practise,i) and ii) are analogous to the criteria used for including nodes into Local Community. Note

also that criterionii) guarantees that a node is deleted only if no node of the community has met him for

a long time. In fact, if there exists at least one node in the community with which it has still some social

interactions, the node must still be kept in the Local Community of all the community members.



TABLE III
PARAMETERS USED FOR THE EVALUATION

Parameter Value Parameter Value

Simulation time 172800 sec Traveller number 1

Reconfiguration time 21600 sec tth 150 sec

N 54 γ 0.6

Community number 3 λ 0.6

V. RESULTS

In this section we evaluate the performance of the proposed protocol first in isolation and then by

a comparison with the SIMPLE algorithm. We show that AD-SIMPLE results in higher values of the

similarity metric because it identifies and correctly adapts to social changes.

A. Sensitiveness of AD-SIMPLE onα, FSoutth and LCouttimer

As first analysis, we evaluated the sensitiveness of AD-SIMPLE on its parameters.

In scenarios such as those described in the previous section, we find out that the behaviour of AD-

SIMPLE when varyingtth, λ andγ is similar to the original SIMPLE algorithm. This is quite intuitive

since AD-SIMPLE makes use of the same criteria for what concern the inclusion of nodes in social

communities. Specifically, we observe high variability by changingtth (i.e., the similarity increase when

the threshold becomes lower), while we find almost the same behaviour when varyingλ andγ.

Concerning to parameters introduced for the Familiar Set policy, we observe that, for a fixed value of

time slot T , FSoutth should be chosen taking into account also the dynamic of social interactions. In

our case study, where nodes have short social interactions (i.e., the cumulative contact duration is low),

we note thatFSoutth should not exceed 5%, otherwise the Familiar Sets would remain empty for most

of the time. Regarding theα parameter, we note that high values (i.e, more than0.6) imply that quick

changes at the social level are not reproduced so quickly at the Familiar Set level. Hence, it is important

to maintainα <= 0.3.

To better investigate how a proper tuning of theLCouttimer parameter affects the performance of the

LC pruning policy, we refer to a dynamic scenario where nodesmay be connected to two communities

simultaneously, i.e., home and foreign, and move between them for an entire reconfiguration interval. At

each reconfiguration, such nodes select randomly one foreign community to start visiting. The simulation

parameters are specified in Table III.

Figure 5 provides relevant examples of different behavior that can be obtained if such parameter is not

correctly tuned. Each bar represents a snapshot of the LocalCommunity composition for a traveller at

the end of two reconfiguration intervals when varyingLCouttimer and theFSoutth. Note that the number

in brackets above the bars indicates the foreign community visited by the traveller during that period of

time.

By fixing T (3600sec in this example),LCouttimer (on the x-axis) must be of the same order. In fact, if

LCouttimer is set too high (e.g., 10800 sec), nodes of a community previously visited may still stored in

the Local Community. This is apparent for example in Figure 5(a) at 12h, where some nodes of community
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Fig. 5. Representative cases of the composition of the LocalCommunity for AD-SIMPLE as a function ofLCouttimer andFSoutth.
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Fig. 6. Representative cases of the composition of the LocalCommunity for AD-SIMPLE for different values ofα.

2 are present in the Local Community or in Figure 5(b) at 18h, where nodes of community 1 are still

present. Furthermore,LCouttimer must not set less than T, as this could lead to a too rapid emptying of

the Local Community (i.e., timer expires too rapidly). For example, in Figure 5(a) at 18h, only a small

percentage of nodes of community 2 are present in the Local Community in case ofLCouttimer equal

to 1800 sec. This means that the system has not a sufficient time to detect all the nodes which belong

to the communities. From this analysis, we points out that itis important to properly tuneLCouttimer in

order to maintain a consistent view of the social community at each point in time and a reasonable value

is obtained by settingLCouttimer = T.

Finally, note thatLCouttimer is influenced in part by the value ofFSoutth and in part by the value

of α. For example, some nodes of community 2 still remain in LC when FSoutth is set to 5% (see,



TABLE IV
AD-SIMPLE PARAMETERS

Parameter Value Parameter Value

α 0.2 FSoutth 2

T 3600 sec LCouttimer 3600 sec

for example, results of 3rd and 4th bars at 12h in Figure 5(b)). As far as theα parameter, if it set too

high, not only the Familiar Set is not able to report changes,but Local Community too: a variation ofα

impacts also on the social community. This is highlighted byFigure 6 that shows results for two different

value ofα (i.e., 0.2 and 0.8). As it is apparent, it is important to maintain α low and specifically<= 0.3,

which is also in line with that found earlier for the FamiliarSet policy, otherwise this might cause wrong

decisions when deleting nodes from the Local Community.

B. SIMPLE vs AD-SIMPLE: a comparison analysis

As far as the comparison with SIMPLE, we consider the same scenario as before (see Table III),

which is composed of 54 nodes divided into 3 social communities. The simulation lasts for 48 hours with

reconfigurations every 6 hours. This means that, after each reconfiguration, the traveller selects randomly

one of the two foreign communities to start visiting. The rest of simulation parameters for AD-SIMPLE

are summarised in Table IV.

In this scenario we aim at verifying the ability of AD-SIMPLEto correctly detect social communities,

reflecting also any dynamic changes. To this aim, we mainly investigate the number of nodes discovered

by the traveller during each reconfiguration interval.

Figure 7 and 8 show the simulation results of two selected simulation runs (SR), breaking down the

Local Community composition for the traveller. The two simulation runs differ for the exact mobility

actions taken by nodes, as well as for the sequence of foreigncommunities visited by the traveller during

the simulation.

The limitation of SIMPLE is clearly illustrated by the figures. In both runs, the traveller’s Local

Community increases with the simulation time. After each reconfiguration interval, the traveller adds

continuously new nodes to its community, while maintains memory of all the past encountered nodes.

As a consequence, the community size reaches 54 after some time (i.e., 24h for both scenarios) and

maintains the maximum size for the rest of the simulation. Itis worth pointing out a particular behaviour

of SIMPLE between 6h and 12h. Referring for example to SR 1, the number of nodes of community 2

increases even though the traveller is in contact with community 1. This is due to a transient phase which

follows the beginning of each reconfiguration and it is strictly connected with the traveller location. As

explained in Section III-A, if the traveller is visiting nodes of a foreign community, it goes back home

with probability1−pe while it remains in the foreign community for the next movement with probability

(pe). Thus, if the latter event occurs it will continue meeting nodes of the previous foreign community.

This is the reason behind the highlighted increase at 12h.

As highlighted by Figures 7(b) and 8(b), AD-SIMPLE is able tokeep always updated the community

view of the traveller. Thanks to the implemented pruning policies, the traveller maintains in its Local
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Fig. 7. SR 1: Local Community composition of the traveller for SIMPLE (a) and AD-SIMPLE (b).
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Fig. 8. SR 2: Local Community composition of the traveller for SIMPLE (a) and AD-SIMPLE (b).
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Fig. 9. SR1: Local Community evolution of the traveller for SIMPLE (a) and AD-SIMPLE (b).
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Fig. 10. SR3: Local Community evolution of the traveller forSIMPLE (a) and AD-SIMPLE (b).
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Fig. 11. SR4: Local Community evolution of the traveller forSIMPLE (a) and AD-SIMPLE (b).

Community only nodes belonging to its home community and to the foreign community that it is visiting,

while it removes the nodes that are not part of its community anymore. These entries either belong to

the previous visited community (e.g., passing from community 1 to 2, it removes all the entries related

to community 1 and viceversa) or are nodes of the currently visited community that it has not met for

sufficient time. For example, this happens in SR 1 at 30h, where the Local Community size decreases

even though the foreign community is not changed after the reconfiguration.

Note also the high increase of the Local Community from 12h to18h. In this period, the traveller visits

one of the community already visited. Thus, it is high probable to add more nodes as the correspondent

cumulative durations are close to the thresholdtth. Figure 9 shows the evolution of the traveller’s

Local Community during the reconfiguration interval [6h,12h] (note that nodes belonging to the home

community are not included in the graph) for both community detection algorithms. Focusing on the

SIMPLE behaviour (see Figure 9 (a)), at the beginning (21600sec), the Local Community is composed of

only 4 nodes of community 2. Between 21600sec-24000sec (transient phase), the curve of Community 2

increases since the traveller has still some social integrations with community 2. When these interactions

become sporadic and eventually completely disappear, the curve remains constant. At the same time, since

interactions with community 1 become predominant, the curve related to community 1 increases too.

Figure 9 shows the evolution of the traveller’s Local Community during the reconfiguration interval
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Fig. 12. SR5: Local Community evolution of the traveller forSIMPLE (a) and AD-SIMPLE (b).
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Fig. 13. SR6: Local Community evolution of the traveller forSIMPLE (a) and AD-SIMPLE (b).

[6h,12h] (note that nodes belonging to the home community are not included in the graph) for both

community detection algorithms. Focusing on the SIMPLE behaviour (see Figure 9 (a)), at the beginning

(21600sec), the Local Community is composed of only 4 nodes of community 2. Between 21600sec-

24000sec (transient phase), the curve of Community 2 increases since the traveller has still some social

integrations with community 2. When these interactions become sporadic and eventually completely

disappear, the curve remains constant. At the same time, since interactions with community 1 become

predominant, the curve related to community 1 increases too.

Figure 9(b) shows the same simulation period for AD-SIMPLE.The behaviour of the curve of Com-

munity 2 is similar to the previous graph until 26500sec, then the curve decreases reaching 0 at 30000sec

due to the expiration of the timeouts associated with Local Community entries. On the contrary, from

32000sec the curve of Community 1 increases since contacts with community 1 become frequent. At the

end of the interval, the traveller’s Local Community is composed only of nodes belonging to community

1 (and home, of course).

Figures from 10 to 13 provide results for additional simulation runs, here referred to as SR 3 - SR 6. It

is worth noting that they show the same behaviour of SR 1 and SR2. For what concern SIMPLE, when

the scenario becomes more complex and dynamic (e.g., peoplebelong to more than one communities

simultaneously and spend much time in them), nodes no longerhave a consistent vision of the true



TABLE V
SIMILARITY FOR SIMPLE AND AD-SIMPLE IN SR 1

Sim time SIMPLE AD-SIMPLE Sim time SIMPLE AD-SIMPLE

6h 0.611 0.611 30h 0.66 0.88

12h 0.477 0.58 36h 0.66 0.972

18h 0.923 1 42h 0.66 0.972

24h 0.66 1 48h 0.66 0.88

composition of the community, mainly because they keep memory of all the nodes encountered so far. On

the contrary, AD-SIMPLE overcomes such limitation and the traveller maintains only nodes belonging to

the two communities which are currently visiting, while it removes those nodes which are not part of its

community anymore.

We conclude this section with Table V which summarises the similarity results for SR 1. AD-SIMPLE

reaches higher performance while SIMPLE results in very lowperformance due to its inefficiency of

adapting to social changes. Similarity results of SR 2-6 arealigned with those of SR 1 and are omitted

mainly for sake of space.

To summarise, AD-SIMPLE results a good solution as it performs better that SIMPLE when detecting

social communities and keeps low the computational burden.In addition, its ability to capture the evolution

of social interactions adapting to the changes makes it veryattractive.

VI. CONCLUSIONS

In this paper we have evaluated the performance of three distributed community detection algorithms for

Opportunistic Networks. We have compared them by a simulation analysis in scenarios where nodes move

according to a mobility model which realistically reproduces the human mobility patterns. Results from

this analysis have shown a good correspondence degree between the communities detected by the three

distributed algorithms and the corresponding centralisedalgorithms. We have also highlighted a common

limitation: nodes moving in different social communities may not have a consistent view of their local

community since they maintain memory of all encountered nodes. To this aim, we have also investigated

a new computationally light-weight solution, namely AD-SIMPLE, which overcomes the above problem.

We have shown by simulation that AD-SIMPLE is able to adapt tothe dynamic evolutions of social

communities maintaining a consistent view of each user.
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