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Abstract

In this paper we present and evaluate a social network model which exploits fundamental results coming from

the social anthropology literature. Specifically, our model focuses on ego networks, i.e., the set of active social

relationships for a given individual. The model is based on a function that correlates the level of emotional closeness

of a social relationship to the time invested in it. The size of the social network is limited by the time budget a person

invests in socializing. We exploit the model to define a constructive algorithm to generate synthetic social networks.

Experimental results show that our model satisfies, on average, known properties of ego networks such as the size,

the composition and the hierarchical structure. We also introduced a procedure for the integration of different ego

networks and the generation extended social networks.

Index Terms

social networks; ego networks; model;

I. INTRODUCTION

The emerging pervasive and social networks are drastically changing the (information) society. First of all, we

are experiencing a convergence between the cyber/virtual and physical worlds. The convergent cyber/physical world

will be content-centric where content generated in the physical space is immediately transferred to the cyber space

(e.g., multimodal sensing), and cyber outcomes have immediate impact on physical space. Humans are at the core

of this convergence; each person has several (mobile) devices through which he/she can interact with the virtual

world thus linking the physical world and the electronic world of users devices [1]. In this scenario, human and

online social networks have a very important role for accessing and circulating the massive scale of content that is

circulating in the network/society. By translating human relationships in the electronic world, we embed in electronic

devices the key characteristics that enable humans to effectively handling and sharing large amount of information.

Human relationships can be exploited in the virtual world for fast and effective circulation of data with spatial

temporal value and for content provision and personalized context, such as by sharing information of mutual

relevance.

There is significant evidence suggesting that human social networks (i.e. the set of social relationships people

maintain with each other) are not particularly affected by specific communication technologies [2]. Therefore, it is

reasonable to see the properties and structures of human social networks as an invariant with respect to the evolution

of the underlying means supporting social interactions.
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Human social networks exhibit remarkable dynamism and structural properties that may significantly affect the

quality of the information (i.e., trust and reputation, relevance, reliability, etc.) and the way information may circulate;

it is conjectured necessary to transverse only a small number of human social relationships in order to connect

any pair of people resulting in the “small world concept”. Therefore, understanding and modeling human social

networks is a fundamental step in designing efficient protocols for data dissemination in the cyber-physical world.

In this paper we present a first important step in this direction. Specifically by exploiting social anthropology results

we have developed a model of the ego network, i.e., the model describing the set of active social relationships of an

individual. Results from Dunbar et al. [3], [4] indicate that human relationships have a hierarchical structure and,

on average, an individual has up to 150 active social relationships, i.e., the Dunbar number. These results constitute

the bases for the model developed in this paper.

The properties of the ego networks are summarized in the next section and our model is presented in Section III.

In Section IV we define the functions and the parameters that characterize the model. In Section V we validate the

model and formulate the conclusions while in Section VI we introduce a procedure for the integration of different

ego networks and the generation of extended social networks.

II. EGO NETWORKS

Ego networks are a particular category of social networks made up of an individual (an “ego”) and the people

(“alters”) with which the ego has some kind of social relationship.

There are limits to the amount of social relationships that an individual can maintain, this is due to cognitive and

time constraints [5]. In fact, keeping social relationships demands cognitive resources and time available to invest

on them and both resources are limited. Different studies about ego network size have been conducted (e.g. in [4],

[6], and [7]). It has been demonstrated that ego networks have a hierarchical structure that consists of a series of

concentric layers of acquaintanceship with increasing sizes. Dunbar et al. suggests that the layers in an ego network

are: “support clique”, “sympathy group”, “band” and “active network” (the whole network) with sizes ∼ 5, ∼ 12,

∼ 35 and ∼ 150 respectively, [3], [4]. The layers are hierarchically inclusive, so that each layer includes all inner

levels. This structure is depicted in Figure 1. Sometimes in this paper, we use the term external part of a layer in

order to refer to the part of the layer not overlapped with its inner levels.

Support clique and sympathy group are made up by a relatively small number of alters the ego is emotionally

closest to. On the other hand the alters connected to the ego by weak ties, which represent the greatest part of the

network, are included in the external layers. Each layer of the network has specific characteristics: support clique

and sympathy group are well-defined in size and composition (see [8] and [9]) as well as the active network is

([4]), while no accurate information is currently available in literature about the band level. Therefore in this paper

we do not explicitly model the band level and we consider it merged within the active network layer.

Regarding the correlations among the layers’ sizes, the study in [8] suggests that there is a linear correlation

between support clique and sympathy group. On the contrary there is no information in literature about possible

correlations of their sizes and the size of the active network layer.
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Support clique: ~5

Sympathy group: ~12

Band: ~35

Network: ~150

Fig. 1. Hierarchical ego networks’ structure. The black circle represents the ego; dark red circles refer to the kin; light green ones refer to

non-kin.

Relationships in social networks may be classified into different categories such as: kin, friends, neighbors, work

colleagues, etc.. Moreover alters may be characterized by their gender, age, education level, marital status and so

on. In social networks each relationship is also characterized by a level of emotional closeness. Strong relationships

have a higher level of emotional closeness compared with weak ties. As suggested by Hill & Dunbar, the emotional

closeness level may be the key parameter to consider in order to select in which layer a relationship has to be

included [4].

The level of emotional closeness is positively correlated with the “frequency of contact”, which is estimated with

the inverse of the “time since last contact” [4]. The latter also reflects the time invested in a particular relationship

[5], therefore it is generally assumed that there is a relation between the time invested in a relationship and the

level of emotional closeness. Maintaining a relationship at high level of emotional closeness requires a lot of time

invested in it, for both friends and kin. On the contrary, for low levels of emotional closeness, kin relationships

require less invested time than the relationships with friends [5].

III. THE MODEL

Our model allows to define ego network graphs that, on average, have the properties described in literature, such

as the size, the hierarchical structure and the composition of each layer. The model is based on parameters and

functions, defined in Section IV, that are obtained exploiting results in the reference literature about the average

ego network.

As previously said, the size of the network is limited by cognitive and time constraints. Since cognitive constraints

are not easily quantifiable, our model focuses on time constraints, associating to each ego a certain time budget for

handling his/her social relationships. In the model each relationship requires a specific amount of time, therefore

the size of the ego network is constrained by the time budget.

In order to know the time requested by each relationship, the model exploits a function that, given the level

of emotional closeness of a relationship, returns the related amount of time to handle it. The level of emotional

closeness is distributed according to known probability distributions, and identifies the layer a relationship belongs

to. Each layer of the ego network is related to specific interval of values of emotional closeness. The function that

correlates emotional closeness and time is defined in order to obtain, on average, networks with a specific expected

size.



4

The size of the sympathy group follows a specific distribution and it is independent of the network size. On the

contrary it is linearly correlated to the support group according to a ratio defined by a probability distribution.

As previously said, the literature proposes different categorizations of relationships and alters. Our model only

considers the kinship with the ego and the gender of the alters because there are many data available about these

categories [8], [4]. Therefore, each relationship in the model is characterized by the type (kin or not-kin) and by

the gender of the alter according to the composition of an average ego network. Our model simply considers static

ego networks. Including the evolution over time, studied in [10], represents an interesting future work.

In the following subsection we present an algorithm for the generation of ego network graphs that are based on

the presented model.

A. The Algorithm

The algorithm generates an ego network graph iteratively, following the proposed model. It adds relationships

to the network from the inner to the outers layers, until the time budget is completely spent. To construct the ego

graph, the algorithm exploits a set of functions (hd, fS , fW , fB , fA,D and fE) and parameters (µl and m) whose

values are obtained in Section IV from the analysis of an average net.

The first step is the creation of an ego and the assignment of its gender. The gender of the ego is saved in the

variable g that can take values M (male) and F (female). The algorithm extracts g form a Bernoulli distribution

Ber(m) where m is the probability that gen = M (line 2-3).

The next step is the extraction of the sympathy group size ssym from the known probability density function fS

(line 4). The mean value of fS is µsym that is the size we expect to obtain, on average, by the algorithm execution.

Once the algorithm knows the value of ssym, it can obtain the size of the support clique ssup. In order to do this

the algorithm randomly extracts the ratio w between the two layers’ sizes from the density function fW . Once w

is extracted, the algorithm sets ssup = ssym · w (lines 5-6). The expected value of ssup is µsup.

Since the probability density functions used in the model return continuous values, but layer sizes have to be

natural numbers, values are rounded using the dithering method [11]. Moreover each negative value is converted

into a zero.

In the next step the algorithm assigns the time budget bdg. This amount is extracted from the known probability

density function fB (line 7).

At this point the main loop starts (lines 9-22). For each iteration the algorithm sets the parameters for a new

relationship that is created only if there is enough time available. The total amount of time spent by the created

relationships, is kept in the variable tot, that is updated after each relationship addition. The variable tot is initialized

before the loop begins together with the control variable done and the counter i, which represents the current size

of the network (line 8).

By the knowledge of the current size i and the layer sizes ssup and ssym, the algorithm infers the current layer

l. The variable l takes the values in the set L: sup (support clique), sym (sympathy group) or net (active network)

(line 10).
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Algorithm 1 Ego Network Creation

1: procedure CREATEEGONETWORK

2: g ← EXTRACTFROM(Ber (m))

3: ego← CREATEEGO(g)

4: ssym ← EXTRACTFROM(fS)

5: w ← EXTRACTFROM(fW )

6: ssup ← ssym · w

7: bdg ← EXTRACTFROM(fB)

8: done =← False, tot← 0, i← 0

9: repeat

10: l← SELECTLAYER(i, ssup, ssym)

11: a, d← EXTRACTFROM(fA,D|L=l,G=g)

12: e← EXTRACTFROM(fE|D=d in
(
lowl,d,upl,d

)
)

13: t← hd (e)

14: if t/2 < bdg − tot then

15: r ← CREATERELATIONSHIP(l, a, d, e, t)

16: ADDRELATIONSHIP(ego, r)

17: tot← tot + t

18: i← i + 1

19: else

20: done← True

21: end if

22: until done

23: return ego . snet is the final value of i

24: end procedure

For each relationship, the algorithm has to set the type of the relationship d and the gender of the alter a. The

variable d takes the values K and NK, in case of kin and non-kin relationship respectively. The variable a, such

as g, takes values M (male) or F (female). The algorithm randomly extracts the values of a and d from the joint

probability mass functions fA,D. Since each layer has a different composition, which also depends on the gender

of the ego, there is a specific function fA,D|L=l,G=g for each layer l and for each gender g. The functions refer

only to the composition of the external part of the layers. Considering the current layer l and the gender of the ego

g, the algorithm extracts a and d from the function fA,D|L=l,G=g (line 11).

For each relationship, the algorithm has to assign a level of emotional closeness to the variable e using the

probability density functions fE . There are two different fE functions, one to use in case of kin relationship fE|D=K,
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and the other for non-kin relationship fE|D=NK, therefore the algorithm selects the proper function according to d.

The extraction from fE|D=d is limited in an interval of emotional closeness
(
lowl,d,upl,d

)
related to the current

layer l and the type of the current relationship d (line 12). The method to infer these intervals is described in the

Subsection IV.G.

To relate the emotional closeness e to the time required to handle it, the algorithm is based on functions hd

that return an amount of time given a level of emotional closeness. There are two different functions hK and

hNK, for kin and non-kin relationships respectively. Using the proper function hd the algorithm sets the amount of

time t given the level of emotional closeness e (line 13). Functions hd must satisfy some properties listed in the

Subsection IV.H.

The current relationship has to be added to the ego network only if there is enough time available. However if

the algorithm discards a relationship when t > bdg− tot, the final value of tot is always less than the time budget

bdg. Since we want that E[tot] = E[bdg] the condition to add a relationship to the network is t/2 < bdg − tot

(lines 14-18). When the previous condition gets false, the boolean control variable done becomes equal to True,

therefore the loop ends and the algorithm returns the object ego with the related ego network (lines 19-23).

The final value of the counter i represents the network size snet. If the functions and the parameters of the model

are defined satisfying the properties given in the following subsections, the algorithm generates, on average, ego

networks with the expected size µnet.

IV. PARAMETERS AND FUNCTIONS

In this section we define all the parameters and functions the model uses exploiting results in the reference

literature.

A. Layer sizes

In the literature there are different values for the layer sizes, often with significant differences. In [7], the authors

collected all the required data about layer sizes and extracted the mean value for each layer. Therefore, basing on

this work, we set the mean support clique size µsup = 4.6, the mean sympathy group size µsym = 14.3 and the

mean active network size µnet = 132.5.

B. Parameter m

Parameter m is the probability to have a male ego, that is gen = M. We can reasonably assume that m = 0.50.

C. Function fS

The sympathy group size distribution is presented in a histogram format ([8]) which can be fitted by a Gamma

distribution. As fS must be consistent with the mean size of the sympathy group µsym, we obtained fS =

Gamma(4.1, 3.49) with mean 14.3.
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TABLE I

COMPOSITION OF SYMPATHY GROUP

a, d g = M g = F

a = M, d = K 2.28 15.98% 2.38 16.64%

a = F, d = K 2.47 17.26% 3.53 24.72%

a = M, d = NK 7.38 51.61% 2.02 14.14%

a = F, d = NK 2.17 15.15% 6.36 44.51%

sum 14.3 100% 14.3 100%

D. Function fW

The ratio between the support clique and the sympathy group sizes is given by the function fW . Since we have set

the mean sizes µsup and µsym, we define fW thought a normal distribution with mean equal to µsup/µsym = 0.3217.

We have no explicit information about the standard variation of the distribution, however it can be experimentally

approximated, using the scatter plot proposed in [8]. A good approximation is obtained by setting the standard

variation to half of the mean, therefore the function is defined as fW = Normal(0.3217, 0.1608).

E. Function fB

We have no exact information about the distribution of time spent in socializing but we know that on average

a person spends for it about the 20% of the time [12]. Therefore we define fB with a mean value equal to

8760 · 0.2 = 1752 where 8760 is the number of hours in a year. In this way expected value of time budget is

E[bdg] = 1752.

The probability function fB directly influences the distribution of the network sizes, therefore we chose its

distribution and parameters experimentally, after we have done some tests, in order to obtain a network size

distribution close to the one presented in [4]. The function we selected is fB = Gamma(205.48, 8.5264).

F. Functions fA,D

Dunbar & Spoors in [8] studied the composition of the sympathy group for male and female egos. Considering

the given mean size µsym, that is independent of the gender of the ego, the resulting compositions are reported in

Table I.

In the same work, the authors studied the support clique and they observed that there are not significant differences

between the compositions of the two layers. For this reason we can set the function fA,D|L=sym, that refers to the

external part of the layer, with the values in Table I, related to the whole sympathy group. Moreover we can set

fA,D|L=sup = fA,D|L=sym.

Regarding the external part of the active network layer we can indirectly estimate its composition starting from

results in [6]. Specifically, we set fA,D|L=net with the results presented in Table II.
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TABLE II

COMPOSITION OF ACTIVE NETWORK LAYER (EXTERNAL PART)

a, d g = M g = F

a = M, d = K 11.46 9.70% 17.35 14.68%

a = F, d = K 18.00 15.23% 17.18 14.53%

a = M, d = NK 52.50 44.41% 38.90 32.91%

a = F, d = NK 36.24 30.66% 44.78 37.88%

sum 118.2 100% 118.2 100%

G. Emotional closeness intervals and functions fE

As shown in Figure 2 the value of emotional closeness will be extracted by different range of the fE distribution

depending on the layer. The intervals of emotional closeness can not be chosen arbitrarily but they must be consistent

with the expected layer sizes (µsup, µsym and µnet) and with the probability density functions fE . The probability

to extract a value of emotional closeness in an interval must be equal to the proportion of the network the related

layer represents.

Our model uses two different density functions for kin fE|D=K and non-kin fE|D=NK, therefore, in order to

define the intervals, we need to know the mean proportion of kin for each layer. Using the Equation (1) we obtain

the probability k′l to have a kin in the external part of a layer l.

k′l =
∑

a∈{M,F}

(
m · fA,D|L=l,G=M (a,K)

+ (1−m) · fA,D|L=l,G=F (a,K)
)

,∀ l ∈ L

(1)

Using the values k′l it is possible to obtain the probability to have a kin, kl, in the whole layer l by the Equation

(2), where c is a sublayer of l.

kl =
∑
c⊆l

µ′
c

µl
· k′c ,∀ l ∈ L (2)

For example, the probability to have a kin in the whole network, knet, is:

knet =
µ′

net · k′net + µ′
sym · k′sym + µ′

sup · k′sup

µnet
(3)

Considering a type of relationship d, the probability to extract a value from fE|D=d in the interval
(
lowl,d,upl,d

)
related to a layer l, must be equal to the expected proportion of the network the layer l represents, considering only

relationships with type d.

Knowing the cumulative distribution functions FE of the densities fE , it is possible to calculate the limits of the
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Fig. 2. Distribution of emotional closeness for kin with the proportion of the network for each layer and the related limits.

intervals of emotional closeness, considering them as quantiles that satisfy the following equations:

FE|D=K (lowsup,K) = 1− µsup · ksup

µnet · knet
(4)

FE|D=NK (lowsup,NK) = 1− µsup · (1− ksup)
µnet · (1− knet)

(5)

FE|D=K (lowsym,K) = 1− µsym · ksym

µnet · knet
(6)

FE|D=NK (lowsym,NK) = 1− µsym · (1− ksym)
µnet · (1− knet)

(7)

For example, considering kin relationships and the support clique layer, the limit lowsup,K defines an area in

fE whose size is equal to µsup·ksup
µnet·knet

(the dark area in Figure 2) where µsup · ksup is the number of kin relationships

in the support clique and µnet · knet is the number of kin relationships in the whole network.

The lower limits for the active network layer are lownet,d = 0 while the upper limits are upsup,d = emax, where

emax is the max value of emotional closeness, upsym,d = lowsup,d and upnet,d = lowsym,d, for each type of

relationship d.

Distributions of emotional closeness for kin and non-kin are presented in [6]. As we do not have the exact

distributions’ values, we can only approximate them. Setting the maximum level of emotional closeness emax = 1,

obtained distributions are fE|D=K = Gamma(0.2, 2.296) and fE|D=NK = Normal(0.5, 0.172), both defined only

in the interval (0, emax). Considering the cumulative distributions FE it is possible to solve the Equation (4), (5),

(6) and (7), obtaining the limits of the intervals of emotional closeness: lowsup,K = 0.8582, lowsup,NK = 0.8185,

lowsym,K = 0.6852 and lowsym,NK = 0.7247.

H. Functions hd

hd functions correlates the level of emotional closeness to the time spent in a relationship. Considering the studies

[4] and [5] we know that hd functions are increasing with the level of emotional closeness and that hK returns

lower or equal values than hNK . The latter observation is due to the fact that kin relationships demand less time

invested on them than non-kin relationships. However, for high level of emotional closeness, the invested time in

social relationships is equal for both kin and non-kin, therefore we set the following constraint:

hK (emax) = hNK (emax) (8)
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TABLE III

RESULTS: LAYER SIZES AND TIME BUDGET

min max avg st. dev.

snet 3 510 132.84 65.80

ssym 0 74 14.06 7.25

ssup 0 43 4.62 3.55

bdg 195.62 5197.87 1748.40 598.42

where emax is the maximum level of emotional closeness.

Since the network size snet is limited by time constraints, it is fundamental to properly define the functions hd

in order that E[snet] = µnet. In order to do this we impose that, in an average network with size µnet, the total

amount of time spent in relationships is equal to the main value of the time budget E[sbdg], obtained from the

density function fB . Considering the given density functions of emotional closeness fE and the proportion of kin

in the network knet, the constraint can be expressed by the Equation (9). In this equation, the value of the integral

is the weighted sum of the expected values of the functions hK and hNK, multiplied for the probability to have a

kin or a non-kin respectively.

µnet ·
∫ [

hK(e) · fE|D=K(e) · knet

+hNK(e) · fE|D=NK(e) · (1− knet)
]
de = E[bdg]

(9)

Through the graphics in [5] and in [4], we presume that hd functions have an exponential trend therefore we

define a generic h function: h(e) = ce + t0−1. The parameter t0 is the value returned by h(0). It can be considered

as the minimum amount of time spent in a relationship in order to keep it active.

hK and hNK have the same form as h but have different values for the parameters c and t0: respectively cK and

t0K in hK, and cNK and t0NK in hNK.

As previously said hK has to return lower or equal values than hNK therefore t0K must be less or equal than

t0NK. We have no any indication on how estimate t0 parameters, therefore we assume to be reasonable to set

t0K = 0.5 and t0K = 2. In order to extract parameters c we can put in a system the Equation (8) and (9) where

µnet = 132.5, knet = 0.2817 and E[bdg] = 1752.

With numeric methods we can solve the system of equations with a very good approximation obtaining cK =

95.3275 and cNK = 93.8275. Finally we can define the functions:

hK(e) = 95.3275e − 0.5 (10)

hNK(e) = 93.8275e + 1 (11)

V. RESULTS

We have implemented the algorithm presented in Section III.A in Java programming language and we performed

100.000 run tests creating as many ego network graphs. Results are presented in the Tables III and IV.
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TABLE IV

RESULTS: COMPOSITION OF THE NETWORK

ai, di g = M (49.85%) g = F (50.15%)

ai = M, di = K 13.63 10.35% 19.97 14.89%

ai = F, di = K 20.37 15.48% 20.93 15.61%

ai = M, di = NK 59.44 45.17% 41.50 30.96%

ai = F, di = NK 38.16 29.00% 51.68 38.54%

sum 131.59 100% 134.08 100%

As we can see, the average network size converges to a value close to the expected value 132.5. The little gap

is due to approximation errors.

Also the mean average of the sympathy group is very close to the reference value 14.3. In this case the gap is

due to the correlation between the time budget and the size of the layer. The algorithm extracts ssym values from

the distribution fS but in a few cases the algorithm exhausts the time budget before completing to populate the

sympathy group layer, making lower its mean size. This happens especially when the algorithm extracts a low value

for bdg. In our tests, the sympathy group size is constrained by time budget in the 3.17% of the runs.

The average size of the support clique meets perfectively its expected value. Such as in case of the sympathy

group, the time budget extracted can constrain the size of the layer however, in case of the support clique, this

happened only in the 0.38% of the runs.

The shapes of the layer size distributions are similar to the distributions in the reference literature. See for example

the shape of the network size distribution presented in Figure 3.

In Table IV we can see that the composition of the network is coherent with the fA,D functions we set. Male

egos have smaller network than females. This is due to female egos have a little more kin relationships which

request less time that non-kin relationships.

We have validated the model, demonstrating that it allows generating ego network graphs that are coherent with

the results in the reference literature.
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VI. EXTENDED SOCIAL NETWORKS

The ego network model, defined in section III, allows us to generate typical social structures from the ego’s point

of view, however it does not provide any information about how different ego networks are connected to each other.

In order to develop and validate protocols for data dissemination in the cyber-physical world, researchers need to

have at their disposal the whole social network graph. The next step of our work is, hence, to extend our model

in order to allow the generation of wide social network graphs, which have to be coherent with the defined ego

network model and with available real data.

In the next subsection we presents a method for the generation of extended social network graphs. This is a

preliminary work that currently lacks in a deep analysis and in a comparison with available real data for different

configurations, however obtained results satisfy some common hypothesis about social networks, like the small-

world property.

A. Assumptions

In social networks, links are typically reciprocal: if a person has an active social relationship with another person,

there is a high probability to have an active relationship also in the opposite direction. This is especially true for

strong relationships. In any case reciprocal social ties can have different strength. In this preliminary work we

consider that every link is bidirectional and it has the same strength in both direction. In future work, the model

will be extended in order to consider also unidirectional ties.

Defining the procedure for the generation of social network graphs we introduced some simplifications in respect

to the ego network model. The gender of the nodes is not taken into account and the social relationships are not

divided into kin and non-kin ones. Also in this case, the model may be extended in future in order to consider

different kinds of egos and relationships.

B. Overview

An extended social network can be defined as the social graph resulting from the interconnection of the nodes’

ego networks. For this reason the idea is to initialize the network with a certain amount of nodes and then execute

for each node the generative procedure defined for the ego network model.

Nodes are initialized assigning the attributes related to their ego networks: the time budget, the support clique

and the sympathy group sizes. Ego networks are generated at the same time, starting from the inner toward the

outer layers, like in the ego network model. At each step, the procedure selects a pair of nodes between which

create a new relationship, until all the ego networks are completed.

Once the algorithm selected the first of two nodes involved in the new relationship, the choice of the other

end-point is fundamental in order to determine the social structure of the network. We know that social networks

exhibit the small-world property therefore nodes are organized in communities where interconnections are more

common than in random graphs. A simple and effective way to obtain this property is to induce the triadic closure.
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The method consists of two steps: first, a node k is chosen from the neighbors of the selected node i, then a link

is created between i and a node j, chosen from the neighbors of k apart from i.

As Granovetter’s studies demonstrate [13], the triadic closure is more probable if the strength of the existing

links between the nodes i and k and between k and j is high. This is intuitively true for real human social networks.

For this reason our procedure selects with a higher probability the nodes which have stronger ties with the starting

node.

However in real human network, not all the relationships born because of a common friends. Sometime a new

relationship is created with a node of the network regardless the current ego network structure, choosing the node

apparently in a random fashion.

Our procedure for the generation of social networks takes into account both methods to form a new link: triadic

closure method (TC) and random selection method (RS).

We can reasonably suppose that the inner layers of different ego networks are highly clusterized among each

other therefore, in our procedure, TC method has to be selected with higher probability for inner layers than for

the outer ones. For this reason our procedure relies on parameters psup, psym and pnet which define the probability

to select TC method against RS method for each different layer.

C. The Algorithm

The algorithm we are going to present, generates a social network following the procedure introduced in the

Section VI-B.

In the first part of the algorithm (lines 2-6), data structures and objects are initialized, taking the parameter N

as the number of nodes to be created.

Each node is created by the procedure CREATEEGO (line 4) which also initializes its ego network parameters:

the size of the sympathy group ssym, the size of the support clique ssup and the time budget bdg. Each parameter

is extracted from the proper distribution function as in the ego network model.

The sets Al contain the nodes those have available resources to form new relationships for the layer l, that is

the nodes having free slots, in case l ∈ {sup, sym}, or those having enough residual time budget, in case l = net.

The algorithm initializes these sets with the whole set of nodes V (line 6).

The main loop (lines 7-29) manages the construction of the network from the inner layer (sup) to the outer layer

(net). For each layer l, the algorithm generates relationships until the set of nodes with available resources Al is

empty (lines 8-28).

At each step of the inner loop, the algorithm tries to create a new relationship between a node i and a node

j. The node i is chosen from the set Al proportionally to its available resources for the current layer l (line 9).

Therefore node i is selected with probability slotl[i]/
∑

i?∈Al
slotl[i?], where slotl is the number of slots available

for the current layer l, in case of l ∈ {sup, sym}, and with probability rds[i]/
∑

i?∈Al
rsd[i?], where rsd is the

residual time budget (bdg − tot), in case of l = net.
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Algorithm 2 Create Social Network
1: procedure CREATENETWORK(N )

2: initialize sets of nodes V and edges E

3: for i← 1, N do

4: V [i]← CREATEEGO

5: end for

6: Asup, Asym, Anet ← V

7: for all layer l in {sup, sym,net} do

8: while Al is not empty do

9: i← WEIGHTEDSELECTION(Al)

10: e← EXTRACTFROM(fE in (lowl,upl))

11: t← h(e)

12: if t/2 < bdg[i]− tot[i] then

13: j ← null

14: if RAND() < pl then

15: j ← TC(V,Al, i, t)

16: end if

17: if j is null then

18: j ← RS(V,Al, i, t)

19: end if

20: if j is not null then

21: E ← E + CREATELINK(i, j, e)

22: UPDATE(i, j, Al)

23: else

24: RECOVERY

25: end if

26: else

27: Al ← Al − i

28: end if

29: end while

30: end for

31: return V , E

32: end procedure
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TABLE V

MEASURES OF GENERATED SOCIAL NETWORK

Average degree 132.55

Clustering coefficient 0.0695

Assortativity 0.0002

Average path length 2.2488

Support clique average size 4.59

Sympathy group average size 14.07

Emotional closeness of the new relationship e is extracted from fE distribution function, within the bounds lowl

and upl (line 10), while the time required t is calculated with the function h (line 11). Like in the ego network

model, the algorithm checks if the selected node i has enough residual time budget for create the new relationship

which requires time t (line 12). If it is not, node i is removed from the set Al (line 26).

As introduced in the Section VI-B, node j can be selected through TC or RS method. TC method is chosen with

probability pl, while RS method is chosen with probability pl − 1 or if TC method fails (lines 16-18).

Let K the set of the neighbors of the selected node i, TC method selects a node k in K with probability

eik/
∑

k?∈K eik? , where eik is the emotional closeness level of the existing relationship between i and k. Once

selected the node k and let J the set of its neighbors, the procedure try to extract a node j from the set J? =

J ∩ Al − K − {i} with probability ekj/
∑

j?∈J? ekj? . After the selection of the node j, the procedure checks

if selected node has enough residual time budget for the new relationship requiring time t. If it is not, node j is

removed from the set Al and TC method tries to select another node j given the node k. If it is not possible because

of J? is empty, the procedure restarts selecting another node k. If for each node k selected, it is not possible to

select a node j, the TC procedure fails.

In RS method, the selection of the node j is performed in a pure random fashion from the set Al −{i}. Also in

this case the algorithm checks if the selected node has enough residual time budget for the new relationship. If it

is not, it is removed from the set Al. If Al = {i}, the RS procedure fails.

If the algorithm fails selecting a node j, a procedure recoveries the deadlock adding resources for a random node

j or reducing them for the node i (line 24).

On the contrary, if nodes i and j are selected, the algorithm creates a new relationship, with emotional closeness

level e, between them (line 21). In the next step, UPDATE procedure calculates the new values for rsd and slotl

for the nodes i and j. Then, according to these values, the set Al is updated, eventually removing the nodes, if

they exhausted the available resources for the current layer l (lines 22).

D. Simulations

The model of social network presented in this section shares many parameters with the ego network model

introduced in Section III. The functions fS , fW and fB , used to initialize the nodes in the network, are defined in
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Fig. 4. Degree Distribution in Simulated Social Network

the same manner as in the Subsections III-C, III-D and III-E. Removing the categories kin and non-kin we need

to define a new function fE and, consequently, new layer limits and a new h function.

In these preliminary simulations we set the function fE as a Normal distribution with mean 0.54 and variance

0.25. The limits of the emotional closeness intervals, calculated with the same procedure as in the Subsection III-G

are lowsup = 0.9174 and lowsym = 0.8161 while h function is defined as h(e) = 62.27e + 1.

We performed a preliminary simulation with N = 10000, psup = 1.0, psym = 0.9 and psup = 0.6. Relevant

measures of the generated social network graph are reported in Table V.

As we can expect, the ego network properties, like the average degree and the average layer sizes, are coherent

with the results presented in Section IV. Also the obtained distribution of the degree in Fig. 4 is almost identical

to the distribution reported in Fig. 3.

Clustering coefficient is calculated as the average of the local clustering coefficients defined in [14]. In respect to

the clustering coefficients reported by Newman for some real social networks in [15], generated network exhibits

a lower value. Further analysis will demonstrate if this gap is acceptable. An analysis of the relation between the

clustering coefficient of a node and its degree is reported in Fig. 5. It has a very similar trend compared with the

same analysis performed on a virtual social network in [16].

The average path length index is very low, demonstrating that generated network has the small-world property.

Assortativity index indicates that there is no correlation between the degrees of connected nodes. However social

networks reported by Newman in [15] always exhibits a certain degree of positive assortativity. Also in this case

further studies are necessary in order to know if our values is acceptable or not.

We also analyzed the similarity between connected nodes, defined as the number of neighbors they share. In

Fig. 6 we analyze the relation between the number of common neighbors and the emotional closeness level of the

relationship. As we can expect, nodes with strong relationships share a higher number of friends, on average about

17. Moreover we can observe remarkable discontinuities between different layers.

ACKNOWLEDGMENT

This work was funded by the European Commission under the FIRE SCAMPI (258414) project. Authors wish

to acknowledge the very fruitful discussions with Prof. R. I. M. Dunbar of the University of Oxford, which have



17

1 2 5 10 20 50 100 200 500

0.
05

0.
10

0.
20

0.
50

1.
00

k

C
Fig. 5. The relation between the local clustering coefficient C of the degree k.

0.0 0.2 0.4 0.6 0.8 1.0

8
10

12
14

16

e

co
m

m
on

 n
ei

gh
bo

rs

Fig. 6. The relation between the number of common neighbors of each pair of connected nodes and the level of emotional closeness e of the

relationship.

been fundamental to deeply understand the structures of human social networks, and how to correctly model them.
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