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Abstract—Results about offline social networks demonstrated
that the social relationships that an individual (ego) maintains
with other people (alters) can be organised into different groups
according to the ego network model. In this model the ego can
be seen as the centre of a series of layers of increasing size.
Social relationships between ego and alters in layers close to
ego are stronger than those belonging to more external layers.
Online Social Networks are becoming a fundamental medium for
humans to manage their social life, however the structure of ego
networks in these virtual environments has not been investigated
yet. In this work we contribute to fill this gap by analysing a large
data set of Facebook relationships. We filter the data to obtain
the frequency of contact of the relationships, and we check - by
using different clustering techniques - whether structures similar
to those found in offline social networks can be observed. The
results show a strikingly similarity between the social structures
in offline and Online Social Networks. In particular, the social
relationships in Facebook share three of the most important
features highlighted in offline ego networks: (i) they appear to be
organised in four hierarchical layers; (ii) the sizes of the layers
follow a scaling factor near to three; and (iii) the number of
active social relationships is close to the well-known Dunbar’s
number. These results strongly suggest that, even if the ways to
communicate and to maintain social relationships are changing
due to the diffusion of Online Social Networks, the way people
organise their social relationships seems to remain unaltered.

I. INTRODUCTION

We are seeing a very significant process of integration

between the physical world of the users of ICT technologies,

and the cyber (virtual) world formed by the broad range of

Internet applications. This is particularly evident in the area

of social networks. Online Social Networks (OSNs) and offline

social networks - which represent the social networks formed

by the users due to personal interactions in the physical world

- definitely influence each other. People become friends in

OSNs with individuals they also know “in the real life”,

while OSNs can be a means of reinforcing and maintaining

social relationships existing in the physical world. Facebook,

Twitter and many other OSNs have introduced a set of new

communication mechanisms that are becoming part of the way

in which we interact socially.

Although several aspects are still under investigation, key

properties regarding offline social networks have been investi-

gated quite extensively (e.g., the difference between strong and

weak ties and the importance of the latter [1], the structural

properties of the network [2], just to mention a few examples).

On the other hand, the analysis of the properties of OSNs is

much less advanced. The interplay between social interactions

in the two types of networks is only partially understood

and still under investigation [3], [4]. Moreover, the structural

properties of OSNs, and their differences and similarities with

offline social networks are not yet fully understood.

In this paper we focus on the latter aspect, providing a

characterisation of structural properties of Facebook networks,

and comparing them with well known results available in the

anthropology literature about offline social networks’ struc-

ture [2]. Our results provide two major contributions. On the

one hand, we contribute to better characterise OSNs per se.

On the other hand, we compare equivalent properties on OSNs

and offline social networks, thus contributing to better under-

standing similarities and differences of social structures in the

cyber and physical worlds. Assessing such similarities can be

very useful also to exploit OSNs to better understand some

offline social networks’ properties. For example, collecting

data regarding offline social networks is a rather difficult task,

which involves lengthy processes to distribute, compile and

collect questionnaires. Studying similar properties on OSNs

would clearly be much simpler and quicker.

In this work, we focus on characterising the properties

of ego networks in OSNs. While a lot of work has been

done to describe the global structure of OSNs [5]–[7], the

study of ego networks in virtual environments has received

little attention so far. Ego networks are social networks made

up of an individual (called ego) along with all the social

ties she has with other people (called alters). Ego networks

are an important subject of investigation in anthropology, as

several fundamental properties of social relationships can be

characterised by studying them. In particular, it has been

shown that in (offline) ego networks there are a series of

“circles” of alters arranged in a hierarchical inclusive sequence

based on an increasing level of intimacy [8], [9]. The inner-

most circle includes alters with a very strong relationship with

the ego. Each subsequent circle (in hierarchy) includes all the

relationships of the previous circles along with an additional

set of social links with a weaker level of intimacy. The last

set, included in the outermost circle only, contains simple

acquaintances, with a relatively weak relationship with the ego



(we describe in greater detail this structure in Section II). The

scaling factor of the size of the circles (i.e., the ratio between

the sizes of two successive circles) is almost constant, and

very close to three. A well-know result is that the overall

size of the ego network is - on average - around 150. This

is typically called the Dunbar’s number, and identifies the

maximum number of active social relationships people are able

to maintain [2]. It has been shown that maintaining a social

relationship active costs cognitive resources, and thus requires

investing time in interactions, and memory to remember facts

about the alter. Therefore, the Dunbar’s number corresponds

to cognitive limits of the human brain, i.e., it is the number

that “saturates” the human cognitive capacities devoted to

maintaining social relationships [8].

In this work we analyse a publicly available large-scale

Facebook data set, to check whether similar clustered struc-

tures can be identified also in Facebook ego networks. It is

difficult to anticipate the outcome of such an analysis. On the

one hand, one could postulate that, as in the end OSNs are just

one of the possible means of interactions between humans, the

same structures found in offline ego networks should also be

found in OSN ego networks. On the other hand, one could also

postulate that the type of social relationships in the virtual and

physical worlds could be different, and that therefore different

structures could be found in OSN ego networks.

The Facebook data set we analyse to investigate this aspect

contains information regarding social interactions between

more than 3 million users. This is one of the few Facebook

large-scale publicly available data sets that can be used for our

purposes. As will be clear from the discussion in Section II, to

characterise ego networks we don’t simply need the Facebook

network graph - i.e. the graph formed by the links between

users that are friends on Facebook -, but we need the Facebook

interaction graph - i.e., the weighted version of the network

graph, where weights represent the strength of the social

relationship, measured as the frequency of interaction (or

contact frequency) between the two users.

As described in detail in the rest of the paper, from this data

set: (i) we extract a large number of ego networks, (ii) we esti-

mate for each network the contact frequency between the ego

and her alters, and (iii) we apply different clustering techniques

on the contact frequency between them. Very interestingly,

we find a striking similarity between the structures in offline

social networks and in OSNs. Specifically, we find that also

Facebook ego networks can be seen as organised in concentric

circles, and the (i) number of circles, (ii) size of the circles, and

(iii) scaling factor between successive circles are remarkably

similar to those found in offline social networks [10]. Note

that this strongly suggests that the structural properties of

social networks in the two worlds are determined by similar

human cognitive processes. In particular, our work confirms

the results in [11] which suggest that the Dunbar’s number

(and the cognitive constraints determining it) hold also in

OSNs. This confirms also other results indicating that other

types of communication technologies (such as cellular phones)

do not significantly change the structural properties of social

Support clique
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A nity group

Active network

Ego

Alter

Contact frequency

Fig. 1. Dunbar Circles

networks [12], [13]. However, to the best of our knowledge,

this is the first time such a precise characterisation of ego

networks is carried out for OSNs, one of the most important

means of social communication we are using today.

The reminder of this paper is organised as follows: in

section II we give an overview of the existing work regarding

offline ego networks. in Section III we describe the data set we

use in the analysis. Then, in Section IV we process the data

set to extract the ego networks from it. Hence, in Section V

we give an overview of the techniques we use to analyse the

structure of the obtained ego networks. Section VI presents the

results we obtain and a discussion on the related implications.

In Section VII we define a relevant subgraph of the network.

Section VIII draws the main conclusions of our work.

II. BACKGROUND WORK ON OFFLINE EGO NETWORKS

Studies in the anthropology literature demonstrated that the

cognitive limits of the human brain constrain the number

of social relationships an individual can actively maintain.

Indeed, keeping a social relationship “active” requires a non

negligible amount of cognitive resources, which are limited

by nature. Studying the correlation between the neocortex size

in primates and the dimension of their social group, anthro-

pologists hypothesised that the average number of social ties

an individual can actively maintain is approximately 150 [8],

(widely known as Dunbar’s number). These results have been

validated in various studies on offline ego networks [9], [10].

Offline ego networks show a characteristic series of “cir-

cles” of alters arranged in a hierarchical inclusive sequence,

based on an increasing level of intimacy [8], [9]. An ego can

be depicted at the centre of these concentric circles (called

Dunbar’s circles), as shown in Fig. 1. Previous studies found

that the circles of this structure have typical dimensions and

characteristics [2] and that the scaling factor between their

sizes is near to three [10]. The first circle (also called support

clique) is the set of alters from whom ego seeks advice in

case of severe emotional distress or financial disasters [2]

and is, on average, limited to five people. The other circles

are called sympathy group (� 15 members), affinity group

(� 50 members) and active network (� 150 members). The

last circle delimits the boundaries dividing “active” ties, for

which ego spends a non negligible amount of mental effort to

maintain the relationship, and “inactive” ties, related to mere

acquaintances.

Since the intimacy between people is not directly ob-

servable, the concentric structure in offline ego networks is



commonly defined using the contact frequency between ego

and alters. This definition relies on the strong relation existing

between the intimacy of a social link and the contact frequency

between their members [9], [14]. The support clique is thus

defined as the group of people ego contacts weekly, the

sympathy group as the people contacted at least monthly and

the active network as the people contacted at least yearly [15].

No accurate information is available in literature about the

affinity group circle, neither for its typical contact frequency,

nor regarding properties of the alters contained in this circle.

Apart from the anthropological studies on offline ego net-

works, limited research work has been done to analyse the

properties of virtual ego networks. Indeed, most of the work

in social network analysis focuses on the study of global

properties of OSNs. Specifically, much effort has been spent to

validate the famous “small world property” [5]–[7] in virtual

environments. Moreover, it has been proved that in OSNs

the distribution of the degree (the number of social links

of an individual) typically follows a power law, with a long

tailed shape [16]. Recently, in [7], [12], [13], the intensity of

communication in OSNs has been used as a first attempt to

discern between “active” and “inactive” virtual relationships

and to validate at the same time the distinction between weak

and strong ties, hypothesised in [1]. In [11], [17] authors

discovered evidences of the Dunbar’s number in OSNs. In

addition, new models for the generation of synthetic social

networks based on Dunbar’s findings are beginning to spring

in literature [11], [18]. Although these findings highlight

some important properties of OSNs, a clear description of the

structure of OSN ego networks and a detailed analysis of the

differences emerging from the comparison between real and

virtual ego networks are still missing. The aim of this work is

to contribute to bridge the gap between offline ego networks

and OSN analysis, presenting a detailed study of the structure

of ego networks in Facebook.

III. DATA SET DESCRIPTION

Public available data regarding social relationships is getting

more and more difficult to be obtained from OSNs. Indeed,

Facebook and other popular social networks have started to

strengthen their privacy policies to limit the amount of user’s

sensible data that can be accessed without having the explicit

consent of the user. At the same time, users have become

less inclined to disclose their personal information, since they

know that their data can be potentially used for commercial

purposes. For this reason, people are limiting as much as

possible the amount of data they put on their public profiles.

Thereby, collecting large data sets of social relationships is,

at present, a rather difficult task and requires a large amount

of time. Each user must be contacted individually and must

be prompted for special permissions before her data can be

downloaded.

Before Facebook removed regional networks feature in

2009, the default privacy settings allowed people inside the

same regional network to have full access to each others’

personal data. At that time many crawlers were built to gather

TABLE I
STATISTICS OF THE SOCIAL GRAPH

# Nodes 3; 097; 165

# Edges 23; 667; 394

Average degree 15:283

Average clustering coefficient 0:098

Assortativity 0:048

as much data as possible from the largest regional networks.

Data coming from these regional networks have been widely

used for social network analysis [19], [20].

To assess the presence in OSNs of social structures found in

offline ego networks [2], we decided to analyse a large data set

crawled from a Facebook regional networks on April 20081.

The data set has been studied in previous research work for

purposes different than ours [21].

A. Data Set Features

The data set consists of a “social graph” and four “inter-

action graphs”. These graphs are defined by lists of edges

connecting pairs of anonymised Facebook user IDs.

The social graph describes the overall structure of the

downloaded network. It consists of more than 3 million nodes

(Facebook users) and more than 23 million edges (social

links). An edge represents the mere existence of a Facebook

friendship, regardless of the quality and the quantity of the

interactions between the involved users. Basic statistics of the

social graph are reported in Table I.

Interaction graphs describe the structure of the network

during specific temporal windows, providing also the number

of interaction occurred for each social link. The four temporal

windows in the data set, with reference to the time of the crawl,

are: last month, last six months, last year and all. The latter

temporal window (“all”) refers to the whole period elapsed

since the establishment of each social link, thus considering all

the interactions occurred between the users. In an interaction

graph, an edge connects two nodes only if an interaction

between two users occurred at least once in the considered

temporal window. An interaction can be either a Facebook

Wall post or a photo comment.

The social graph can be used to study the global properties

of the network, but alone it is not enough to make a detailed

analysis of the structure of social ego networks in Facebook.

Indeed, this analysis requires an estimation of the intimacy

between people involved in the social relationships. To this

aim we leverage the data contained in the interaction graphs

and we extract the contact frequency of each social link, using

it as an estimate of the intimacy of the relationships.

In Facebook, an interaction can occur exclusively between

two users who are friends. In other words, if a link between

two nodes exists in an interaction graph, an edge between the

same nodes should be present in the social graph. Actually,

the data set contains a few interactions between users which

are not connected in the social graph. These interactions

1This data set is publicly available for research at http://current.cs.ucsb.edu/
facebook/, referred as “Anonymous regional network A”.



TABLE II
STATISTICS OF THE INTERACTION GRAPHS (PREPROCESSED)

Last mo. Last 6 mo. Last year All

# Nodes 414; 872 916; 162 1; 133; 151 1; 171; 208

# Edges 671; 613 2; 572; 520 4; 275; 219 4; 357; 660

Avg. degree 3:238 5:616 7:546 7:441

Avg. weight 1:897 2:711 3:700 3:794

probably refer to expired relationships or to interactions made

by accounts that are no longer active. To maintain consistency

in the data set we exclude these interactions from the analysis.

The amount of discarded links is, on average, 6:5% of the total

number of links in the data set.

In Table II we report some statistics regarding the different

interaction graphs. Each column of the table refers to an

interaction graph related to a specific temporal window. The

average degree of the nodes (named “avg. degree” in the table)

can be interpreted as the average number of social links per

ego, which have at least one interaction in the considered

temporal window. Similarly, the average link weight (“avg.

weight” in the table) represents the average number of inter-

actions for each social link. The measures reported in table

are highly influenced by the presence in the data set of a

large number of outliers which are identified and discarded in

Section IV-D.

The data set contains only a partial view of the original

Facebook regional network processed by the crawler. Since

we don’t have any further information regarding how the data

were crawled, we assume that the crawler has picked up a

random sample of the original Facebook regional network.

In addition, from the statistics of other regional networks

downloaded by the same crawler [19], we know that the

average percentage of nodes downloaded by the crawler is

56:3% and the average percentage of downloaded links is

43:3%. Thus we might assume that the network analysed

in this study represents a similar percentage of the crawled

network. Starting from this assumption, in Section VI we

analyse the size of the obtained ego networks and their

components, by multiplying them by 2:31 (i.e., 1=0:433). This

assumption allows us to compare our results with those found

in offline networks.

IV. PROCESSING DATA FOR EGO NETWORK ANALYSIS

The data set contains some relationships with no interac-

tions associated with them. We consider these social links as

“inactive”. On the other hand we define as “active” all the

relationships that have at least one interaction, that is to say

the relationships included in the interaction graphs. The data

set contains 4; 357; 660 active links and 19; 309; 734 inactive

links. We are particularly interested in the analysis of active

social relationships, since we want to assess the dimension and

the structural composition of active ego networks, as defined

for offline ego networks [2]. Hence, in the next part of the

analysis we only consider active relationships. Since the data

set contains social data over a temporal slice of several years,

 0 6 12 18 24 30 36 42

Months before the crawl

w0w1w2w3w4

last month

last 6 months

last year

all

Fig. 2. Temporal windows.

our definition of active relationship is compatible with that

given in [15].

In order to characterise active relationships we need to

estimate the temporal span of social links (i.e., the time elapsed

since the establishment of the link), since it can be used to

find the frequency of contact between the involved users. The

frequency of contact is then used as an estimate of the intimacy

between ego and alters, to characterise the structure of virtual

ego networks. In literature, the duration of a social link is

commonly estimated using the time elapsed since the first

interaction between the involved users [22]. Unfortunately,

the data set does not provide any indication regarding the

time at which the interactions occurred. To overcome this

limitation, we approximate social links duration leveraging the

difference between the number of interactions made at the

different temporal windows.

In Section IV-A we give some definitions we use in the

following subsections. The methodologies we use to estimate

the duration and the contact frequency of each social link in the

data set are described in Sections IV-B and IV-C respectively.

Then, in Section IV-D, we identify, from the available data, a

set of ego networks that are meaningful for our study, while

we discard the ego networks that we consider as outliers and

hence not relevant for us.

A. Definitions

We define the temporal window “last month” as the interval

of time (w

1

; w

0

), where w

1

= 1 month (before the crawl)

and w

0

= 0 is the time of the crawl. Similarly we define

the temporal windows “last six months”, “last year” and “all”

as the intervals (w
2

; w

0

), (w
3

; w

0

) and (w

4

; w

0

) respectively,

where w
2

= 6 months, w
3

= 12 months and w
4

= 43 months.

w

4

is the maximum possible duration of a social link in the

data set, obtained by the difference between the time of the

crawl (April 2008) and the time Facebook started (September

2004). The different temporal windows are depicted in Fig. 2.

For a social relationship r, let n
k

(r) with k 2 f1; 2; 3; 4g be

the number of interactions occurred in the temporal window

(w

k

; w

0

). Since all the temporal windows in the data set are

nested, n
1

� n

2

� n

3

� n

4

. If no interactions occurred

during a temporal window (w

k

; w

0

), then n

k

(r) = 0. As

a consequence of our definition of active relationship, since

n

4

(r) refers to the temporal window “all”, n
4

(r) > 0 only if r

is an active relationship, otherwise, if r is inactive, n
4

(r) = 0.

The first broad estimation we can do to discover the duration

of social ties in the data set is to divide the relationships

into different classes C

k

, each of which indicates in which



interval of time (w

k

; w

k�1

) the relationships contained in

it started (i.e., the first interaction has occurred). We can

perform this classification analysing for each relationship the

number of interactions in the different temporal windows.

If all the temporal windows contain the same number of

interactions, the relationship must be born less than one month

before the time of the crawl, that is to say in the time

interval (w
1

; w

0

). These relationships belong to the class C
1

.

Similarly, considering the smallest temporal window (in terms

of temporal size) that contains the total number of interactions

(equal to n

4

), we are able to identify social links with duration

between one month and six months (class C
2

), six months and

one year (class C
3

), and greater than one year (class C
4

). The

classes of social relationships are summarised in Table III.

B. Estimation of the Duration of the Social Links

Although the classification given in the previous subsection

is extremely useful for our analysis, the uncertainty regarding

the estimation of the exact moment of the establishment of

social relationships is still too high to obtain significant results

from the data set. For example, the duration of a social

relationship r

3

2 C

3

can be either a few days more than six

months or a few days less than one year. To overcome this

limitation, for each relationship r in the classes C
k2f2;3;4g

we

estimate the time of the first interaction comparing the number

of interactions n
k

, made within the smallest temporal window

in which the first interaction occurred (w

k

; w

0

), with the

number of interactions (n
k�1

), made in the previous temporal

window in terms of temporal size (w

k�1

; w

0

). If n

k

(r) is

much greater than n

k�1

(r), a large number of interactions

occurred within the time interval (w
k

; w

k�1

). Assuming that

these interactions are distributed in time with a frequency

similar to that in the window (w

k�1

; w

0

), the first occurred

interaction must be near the beginning of the considered time

interval. On the other hand, a little difference between n

k

(r)

and n

k�1

(r) indicates that only few interactions occurred in

the considered time interval (w
k

; w

k�1

). Thus, assuming an

almost constant frequency of interactions, the first contact

between the involved users must be at the end of the time

interval (see Fig. 3 for a graphical representation of this

concept).

In order to represent the percentage change between the

number of interactions n

k

and n

k�1

, we calculate for each

relationship r 2 C

k

what we call social interaction ratio h(r),

defined as:

h(r) =

�

n

k

(r)=n

k�1

(r) � 1 if r 2 C

k2f2;3;4g

1 if r 2 C

1

: (1)

TABLE III
CLASSES OF RELATIONSHIPS

Class Time interval (in months) Condition

C

1

(w

1

= 1; w

0

= 0) n

1

= n

2

= n

3

= n

4

C

2

(w

2

= 6; w

1

= 1) n

1

< n

2

= n

3

= n

4

C

3

(w

3

= 12; w

2

= 6) n

1

� n

2

< n

3

= n

4

C

4

(w

4

= 43; w

3

= 12) n

1

� n

2

� n

3

< n

4

 0 2 4 6 8 10 12 14

Months before the crawl

w0w1w2w3

r1

r2

n2(r1)=6; n3(r1)=7

n2(r2)=6; n3(r2)=12

Fig. 3. Graphical representation of two different social relationships r

1

,
r

2

2 C

3

. The difference between the respective values of n
2

and n

3

is small
for r

1

and much larger for r
2

. For this reason, fixing the frequency of contact,
the estimate of the time of the first interaction of r

1

is near to w

2

, while the
estimate for r

2

results closer to w

3

.

If r 2 C

1

we set h(r) = 1 in order to be able to perform the

remaining part of the processing also for these relationships.

The value assigned to h(r) with r 2 C

1

is arbitrary and can

be substituted by any value other than zero without affecting

the final result of the data processing. Considering that n
k

(r)

is greater than n

k�1

(r) by definition with r 2 C

k22;3;4

, the

value of h(r) is always in the interval (0;1)

2.

Employing the social interaction ratio h(r), we define

the function ^

d(r) that, given a social relationship r 2 C

k

,

estimates the point in time at which the first interaction of r

occurred, within the time interval (w
k

; w

k�1

):

^

d(r) = w

k�1

+ (w

k

� w

k�1

) �

h(r)

h(r) + a

k

r 2 C

k

; (2)

where a

k

is a constant, different for each class of relation-

ship C

k

.

Note that the value of ^

d(r) is always in the interval

(w

k�1

; w

k

). The greater h(r) - which denotes a lot of in-

teractions in the time window (w

k

; w

k�1

) - the more ^

d(r)

is close to w

k

. The smaller h(r), the more ^

d(r) is close to

w

k�1

. Moreover, the shape of the ^

d(r) function and the value

of a
k

are chosen relying on the results about the Facebook

growth rate, available in [19]. Specifically, the distribution

of the estimated links duration, given by the function ^

d(r),

should be as much similar as possible to the distribution of

the real links duration, which can be obtained analysing the

growth trend of Facebook over time. For this reason, we set

the constants a
k

in order to force the average link duration of

each class of relationships to the value that can be obtained

by observing the Facebook growth rate. In the Appendix we

provide a detailed description of this step of our analysis.

C. Estimation of the Frequency of Contact

After the estimation of social links duration, we are able to

calculate the frequency of contact f(r) between the pair of

individuals involved in each social relationship r:

f(r) = n

k

(r)=

^

d(r) r 2 C

k

: (3)

Previous research work demonstrated that the pairwise user

interaction decays over time and it has its maximum right after

2In case n

k�1

(r) = 0, we set n
k�1

(r) = 0:3. This constant is the
expected number of interactions when the number of interactions, within a
temporal window, is lower than 1.
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link establishment [20]. Therefore, if we assessed the intimacy

level of the social relationships with their contact frequencies,

this would cause an overestimation of the intimacy of the

youngest relationships. In order to overcome this problem,

we multiply the contact frequencies of the relationships in

the classes C

1

and C

2

by the scaling factors m

1

and m

2

respectively, which correct the bias introduced by the spike

of frequency close to the establishment of the link. Assuming

that the relationships established more than six months before

the time of the crawl are stable, we set m
1

and m

2

comparing

the average contact frequency of each of the classes C

1

and

C

2

, with that for the classes C
3

and C
4

. Obtained values of the

scaling factors are: m
1

= 0:18, m
2

= 0:82. Setting m

3

= 1

and m

4

= 1, scaled frequencies of contact are defined as:

^

f(r) = f(r) �m

k

r 2 C

k

: (4)

To be able to extract the ego networks of the data set we

group the relationships of each user into different sets R

e

,

where e identifies a specific ego. We duplicate each social

link in the data set in order to consider it in both the ego

networks of the users connected by it.

Since each ego in the data set has different Facebook

usage, the calculated frequencies of contact are not directly

comparable. For example, the same frequency of contact can

represent, for different users, different levels of intimacy. To

overcome this limitation, for each ego network in the data

set, we normalise the frequency of contact related to every

relationship by applying (5). Specifically, we divide it for the

maximum value of frequency of contact of all the links of the

ego, obtaining values between 0 and 1. This normalisation is

essential to be able to compare the results of our analysis for

different ego networks.

f

norm

(r) =

^

f(r)

max

r

?

2R

e

^

f(r

?

)

r 2 R

e

: (5)

D. Ego Networks Selection

A high number of ego networks in the data set started just

before the time of the crawl while other ego networks have

a very low interaction level. The analysis could be highly

biased by considering these outliers. Thus, we selected a

subset of the available ego networks according to the following

criteria. First of all we intuitively define as “relevant” the

users who joined Facebook at least six months before the

time of the crawl and who have made, on average, more than

10 interactions per month. We estimate the duration of the

presence of a user in Facebook as the time since she made her

first interaction. The new data set obtained from the selection

of relevant ego networks contains 91; 347 egos and 4; 619; 221

social links3.

The average active ego network size after the cleanup is

equal to 50:6. The reader could notice a rather high dis-

crepancy between this average active network size and those

found in other studies [9], [11], [17]. The main cause of

this difference is due to the fact that the data set does not

contain entire ego networks, but about 43% of their size (see

section III). We come back to this point in Section VIII, where

we discuss in greater detail how to fairly compare the ego

networks in the Facebook data set with those analysed in

the anthropology literature [2], [10]. We anticipate that this

comparison highlight a significant similarity between the sizes

of the active ego networks in the two cases. Moreover, the

active network size distribution (depicted in Fig. 4) has a

similar shape to those found in other analysis both in real

and virtual environments [9], [17], [18].

V. METHODOLOGY TO DISCOVER THE STRUCTURE OF

EGO NETWORKS

The first attempt we make in order to check whether

concentric structures are present in Facebook ego networks is

to observe the complementary cumulative distribution function

(henceforth CCDF) of the frequency of contact calculated

aggregating all the frequencies of all the ego networks. We

may expect this CCDF to have some kind of irregularities (i.e.,

jumps) introduced by the possible presence of the clustered

structure in the frequency of contact of the various ego

networks. Yet, the CCDF (depicted in Fig. 5) shows a smooth

trend. This is not necessarily an indication of absence of

clustered structures in individual ego networks, but it could

be caused by the aggregation of the different distributions of

the ego networks’ frequency of contact. In fact, even if the

single ego networks showed the circular hierarchical structure

described in Section II, the jumps between each circular cluster

could appear at different positions from one ego network to

another. This could mask jumps in the aggregated CCDF as

we superpose the ego networks.

The CCDF of the aggregated frequency of contact shows

a long tail, which can be ascribed to a power law shape.

Power-law-shaped contact frequency distributions would be

another indication of similarity between ego networks in

real and virtual social networks, as offline ego networks are

characterised by a small set of links with a very high contact

frequency (corresponding to the links in the support clique).

A power law shape in the aggregate CCDF is a necessary

condition to have power law distributions also in each single

ego networks [23]. However, this is not a sufficient condition

to have power law distributions in each single CCDF [24].

Therefore, to further analyse the ego-network structure we

3
3; 353; 870 unique social links. Some of them are counted twice because

we duplicate each social link (see Section IV-C) and the ego networks of the
users they connect can be both selected as relevant.
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Fig. 5. Aggregated CCDF of the normalised contact frequency for all the
ego networks in the data set.

apply clustering techniques to each ego network looking for

the emergence of the layered structure observed in offline so-

cial networks. Specifically, we leverage two different families

of clustering techniques: partitioning clustering and density-

based clustering.

Partitioning clustering algorithms start with a set of objects

and divide the data space into k clusters so that the objects

inside a cluster are more similar to each other than the objects

in different clusters. In our analysis, similarity means closeness

in contact frequency. Specifically, for each ego network, we

order alters in a one dimensional space, according to the

contact frequency with the ego, and we seek clusters in this

one dimensional space. Density-based clustering algorithms

are able to identify clusters in a space of objects with areas

with different densities, see [25].

We start the structural analysis of ego networks applying

a partitioning clustering technique. Specifically, we use an

algorithm able to find the optimal solution of the k-means

problem for the special case of one-dimensional data [26]. The

k-means problem is to partition the data space into k different

clusters of objects, so that the sum of squared Euclidean

distance between the centre of each cluster and the objects

inside that cluster is minimised. The goodness of the result of

k-means algorithms is often expressed in terms of “explained

variance”, defined by the following formula:

V AR

exp

=

SS

tot

�

P

k

j=1

SS

j

SS

tot

; (6)

where j is the jth cluster, SS
j

is the sum of squares within

cluster j and SS

tot

is sum of squares of the all the values in

the data space. The sum of square of a vector X is defined by

the following formula:

SS

X

=

X

i

(x

i

� �

X

)

2

; (7)

where �

X

denotes the mean value of X.

The explained variance is analogous to the coefficient of

determination R

2 used in linear regression analysis. V AR
exp

ranges from 0 to 1. Therefore, the goal of k-means algorithms

is to assign the objects of a set of data to k clusters, so that the

resulting V AR

exp

is maximised. However, there is a inherent

over fitting problem. Indeed, the maximum value of V AR
exp

is obtained when k is equal to the number of objects in the

 0  0.2  0.4  0.6  0.8  1

k-means

DBSCAN

clust 1 clust 2 clust 3 clust 4

clust 1 clust 2 clust 3 clust 4

Fig. 6. Example of different results obtained applying k-means and the
iterative DBSCAN over a noisy data space, using k = 4.

data space. To avoid this overfitting we use an elbow method

with a fixed threshold of 10% of the explained variance. This

is a standard way to determine the optimal number of clusters

in a data set [27]. If, after adding a new cluster, the increment

in terms of V AR
exp

is less than 0:1, we take the value of k as

the optimal number of clusters. Hence, we apply this method

to extract the optimal k and the cluster composition of all the

ego networks in the data set.

The results obtained with k-means could be potentially

affected by the presence of noisy data. We use the notion of

noise to define points in the data space with a very low density

compared to the other points around them. Noise can affect

the result of k-means in two different ways: (i) the presence

of noisy points between two adjacent clusters could force the

algorithm to discover a single cluster instead of two (the so

called “single link effect” [25]); (ii) the presence of a large

number of noisy points in the data set could lead k-means to

detect clusters with a size larger than it should be according

to a natural and intuitive definition of clustering (see Fig. 6

for a graphical example). To verify that the noisy points in

the data set do not eccessively affect k-means we compare

the results of the former with the results of a density-based

clustering algorithm called DBSCAN [28]. DBSCAN takes

two parameters, namely � and MinPts. If an object has more

than MinPts neighbours within an � distance from it, it is

considered a core object. A cluster is made up by a group of

core objects (where two contiguous elements have a distance

shorter than �) and by the “border objects” of the cluster.

Border objects are defined as non-core objects linked to a

core object at a distance shorter than �. For a more formal

definition of density based clusters see [28]. Points with less

than MinPts neighbours within a distance equal to � are

considered noise by DBSCAN, and they are excluded from

the clusters.

We iterate DBSCAN and we stop as we find a number of

clusters equal to the number of clusters obtained by k-means.

Hence, by comparing the results of k-means and DBSCAN in

terms of cluster size we can verify that the former are valid

and not influenced by noisy points. To allow noisy data to

be identified by the iterative DBSCAN procedure we set the

parameter MinPts to be equal to 2. In this way isolated points

are excluded from the clusters.
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VI. THE STRUCTURE OF FACEBOOK EGO NETWORKS

Using the iterative procedure based on the k-means algo-

rithm (see Section V) we find that the optimal number of

clusters of each ego network (henceforth k
opt

) ranges between

1 and 5. Fig. 7 depicts the number of ego networks for each

k

opt

. We find a positive correlation (r = 0:25, p: < 0:01)

between k

opt

and the active network size, as can be seen in

Table IV. In the table the total contact frequency is expressed

in terms of number of interactions per month made by ego to

all her alters. The average value of k
opt

is 3:76 (SD = 0:48)

and the median is 4. The presence of a typical number

of clusters near to 4 in Facebook is the first indication of

similarity between the findings in offline ego networks and

the ego networks in virtual environments. Since the amount

of ego networks with k

opt

equal to 1 and 2 is negligible w.r.t

the total number of ego networks in the data set, we consider

them as outliers and we exclude them in the subsequent part

of the analysis.

We apply the iterative DBSCAN procedure (see Section V)

on the ego networks with k

opt

= 4. The comparison between

the inclusive circles found by k-means and DBSCAN on these

ego networks and those found in offline ego networks [10]

are reported in Table V. For each circle we show its average

size (“size” in the table) and the ratio between the latter and

the average size of the previous circle in the hierarchy (“sc.

f.” in the table). We refer to this ratio as scaling factor. We

find that the results of k-means and DBSCAN are compatible

in terms of circles size and their respective scaling factors.

This means that k-means results are not highly influenced by

noisy points (see Section V). The discrepancy between the

sizes of the support clique can be ascribed to the fact that

DBSCAN considers isolated points as noise and, in many ego

networks, the support clique could contain only one alter. The

scaling factors found by k-means in Facebook (for k
opt

= 4)

are strikingly similar to the findings in offline ego networks

(reported in Table V as “off-l”). Indeed, the average value of

TABLE IV
# OF EGO NETWORKS AND AVERAGE ACTIVE NETWORK SIZE WITH 95%

CONFIDENCE INTERVALS PER EACH k

opt

k

opt

# of nets Active net size [95% c. i.] Total contact freq.

1 315 1:50 [1:23, 1:77] 15:21

2 107 3:81 [2:86, 4:75] 18:83

3 21; 575 34:42 [34:09, 34:74] 26:96

4 68; 079 55:23 [54:93, 55:54] 35:64

5 1; 271 77:74 [74:70, 80:78] 37:87

TABLE V
RESULTS FOR k = 4 OF k-MEANS (k-M) AND DBSCAN (DB) ON EGO

NETWORKS WITH k

opt

= 4 WITH 95% C.I..

support
clique

sympathy
group

affinity
group

active
network

size (k-m) 1:84 [:01] 6:36 [:03] 18:68 [:09] 55:48 [:3]

sc. f. (k-m) - 3:45 2:94 2:97

min freq. 4:46 1:81 0:66 0:11

size (DB) 2:74 [:01] 6:85 [:04] 17:24 [:1] 49:11 [:4]

sc. f. (DB) - 2:5 2:52 2:85

size (off-l) 4:6 14:3 42:6 132:5

sc. f. (off-l) - 3:10 2:98 3:11

estim. (k-m) (3:42) (14:69) (43:15) (128:16)

the scaling factors are equal to 3:12 in Facebook and 3:06

in offline ego networks. In addition, the last row of the table

(“estim.”) reports an estimation of the size of the circles in

Facebook ego networks, obtained multiplying by 2:31 the

results found by k-means - i.e., considering that the average

percentage of each circle w.r.t. its real size is 43:3% (see

Section III-A). Even in this case, there is a strong resemblance

between the sizes of the circles in Facebook and in offline ego

networks.

The minumum contact frequency of the relationships within

each circle (“min freq.” in Table V) is expressed in number

of interactions per month. Using this variable, calculated

averaging the results on all the ego networks, we are able

to describe the circles of the discovered structure in terms

of typical frequency of contact. Our results indicate that, in

Facebook, the support clique contains people contacted at least

� weekly, the sympathy group � twice a month, the affinity

group � eight times a year and the active network � yearly.

These results indicate that also the typical frequency of contact

of the Dunbar’s circles in Facebook appear to be very similar

to that found in offline ego networks.

As regards the ego networks with k

opt

equal to 3, it is

interesting to notice that they don’t have a counterpart in

offline ego networks. Their size is, on average, smaller than

the size of ego networks with k

opt

equal to 4 and they show a

lower rate of Facebook usage, defined by the total frequency of

contact of each ego (see Table IV). We hypothesise that these

ego networks have the same structure of the ego networks with

k

opt

equal to 4, but the results of k-means could be influenced

by the presence of too few social links. To prove this fact we

apply k-means on these ego networks forcing k = 4 and we

compare the results with those found on ego networks with

k

opt

= 4. Table VI reports the results of this analysis. The

last two rows of the table (“off-l perc.” and “k
opt

= 4 perc.”)

represent the percentage of size of the obtained circles w.r.t.

the size of the respective circles found in offline ego networks

and those found with k-means on the ego networks of the data

set with k

opt

= 4.

Ego networks with k
opt

= 3 show a support clique with size

near to the dimensions found in offline ego networks (81:30%)

and to that found by k-means on ego networks with k

opt

= 4

(86:18%). The dimensions of the other circles are noticeably

lower. This result indicates that, in Facebook, users tend to



TABLE VI
RESULTS FOR k = 4 OF k-MEANS (k-M) ON EGO NETWORKS WITH

k

opt

= 3 WITH 95% C.I..

support
clique

sympathy
group

affinity
group

active
network

size 1:62 [:01] 4:14 [:03] 11:9 [:1] 34:63 [:3]

sc. f. - 2:56 2:87 2:91

min freq. 7:07 2:39 0:71 0:12

estim. (3:74) (9:56) (27:49) (80)

off-l perc. 81:30% 66:85% 64:53% 60:38%

k

opt

= 4 perc. 109% 65:08% 63:71% 62:42%

have a set of core friends whom they contact frequently even

if they have a lower rate of Facebook usage compared to the

average. Nevertheless, the dimensions of the remaining circles

are sensibly lower than the dimensions of the circles found in

larger ego networks with higher Facebook usage. Still, the

average scaling factor for the circles of the ego networks with

k

opt

= 3 - equal to 2:78 - remains close to three, as an

additional proof of the similarity between virtual and real ego

networks.

The typical contact frequencies of the circles of ego net-

works with k

opt

= 3 are the following: the support clique

contains people contacted at least � seven times a month, the

sympathy group � twice a month, the affinity group � eight

times a year and the active network � yearly.

As far as the ego networks with k

opt

equal to 5, we add

them to the ego networks with k

opt

equal to 4 and we re-

apply k-means on the resulting set, forcing k = 4. The results

do not differ significantly (in terms of circle sizes and scaling

factors) from the results found on ego networks with k

opt

= 4,

reported in Table V.

VII. FACEBOOK “ACTIVE” GRAPH DESCRIPTION

The Facebook network given by the data set contains a high

number of low-activity users therefore, in order to analyse a

network as similar as possible to an offline social network,

we consider the subgraph formed by the relevant users (see

Section IV-D) and the social links among them. In addiction,

in order to better analyse the correlation between connected

ego networks, we include in the graph the results about the

ego networks’ structures obtained in Section VI. We call this

network Facebook “active” graph.

The links in the active graph are directed and connect pairs

of relevant egos. Considering that for each relevant ego we can

perform the analysis of its ego network structure, we can label

each of its outgoing links with a layer ID. In order to maintain

consistency between the structures of different ego networks,

we assign the layer IDs to the links by applying k-means with

k = 4 for each relevant ego. Note that, for 422 of 91; 347

relevant egos, it is not possible to force k = 4 because their

interaction frequencies assume less than 4 different values.

These egos are thus not included in the active graph.

Statistics of the Facebook active graph are reported in

Table VII.

TABLE VII
STATISTICS OF THE ACTIVE GRAPH.

# Nodes 90; 925

# Edges (directed) 2; 529; 316

Average out-degree 27:82

Average cluster coefficient 0:109

Average shortest path 4:06

Assortativity 0:16

VIII. CONCLUSIONS

In this paper we aim to discover the presence of Dunbar’s

circles in OSN ego networks. With this purpose, we analyse a

data set containing more than 23 million social interactions in

Facebook. We extract the frequency of contact from the ego

networks in the data set. Then, we apply different clustering

techniques on the distributions of the frequency of contact of

the different ego networks (specifically, partitioning clustering

and density-based clustering). Hence, we analyse the results

seeking for the presence of the possible circular structure.

We find that the properties of OSN ego networks have a

strong similarity with those found in offline ego networks.

Namely, the typical number of circles in the structure of virtual

ego networks is, on average, equal to 4 and the average scaling

factor between the concentric circles of the social structure

is near to 3, as found in real environments. Moreover, the

sizes of the circles, i.e. the number of social relationships of

each type, is remarkably similar to those existing in offline

social networks. Notably, the average size of the OSN ego

networks is very close to the well known Dunbar’s number,

which denotes the average size of ego networks in offline

social networks.

We can conclude that, even if OSNs introduce new commu-

nication paradigms and plenty of new ways to maintain social

relationships with others, the structure of the personal social

networks of the users maintains the same properties of ego

networks formed offline.

APPENDIX

CALCULATION OF THE a

k

VALUES

In order to set a
k

constants properly, we leverage on the real

growth trend of Facebook over time. Hence, we approximate

the Facebook network’s evolution reported in [19] with the

piecewise function g(t) defined as:

g(t) =

8

<

:

8; 876; 376� 720; 099 � t if t < 10

3; 348; 056� 167; 267 � t if 10 � t < 18

580; 070� 13; 490 � t if t � 18

(8)

where t is the time in months before the time of the crawl.

The first elbow point of the function is placed 18 months

before the time of the crawl (October 2006), when Facebook

opened to everyone. Before that time, the membership was

restricted to university and high-school students only. The

second elbow point is placed 10 months before the time of

the crawl (February 2007), when Facebook starts to become

popular and its growth trend shows a significant acceleration.
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For each class of relationship C

k

, let �
k

be the mean value

of g(t) with t 2 (w

k

; w

k�1

) and let �

d

k

be the point in time

where g(t) is equal to �

k

. Resulting values for �

d

k

= g

�1

(�

k

)

are: �

d

1

= 0:5, �

d

2

= 3:5, �

d

3

= 8:74 and �

d

4

= 20:88. The

placement of these values over the Facebook growth function

g(t) is depicted in Fig. 8.

Reasonably assuming that the growth trend of the links is

proportional to the growth trend of the nodes, we can consider
�

d

k

as the average duration of the relationships belonging

to the class C

k

. In order to force the means of estimated

links duration to be equal to the means obtained by the

Facebook growth function, we set the constants a
k

to satisfy

the following equation:

1

jC

k

j

X

r2C

k

^

d(r) =

�

d

k

(9)

We obtain the following values of a
k

: a
1

= 1, a
2

= 3:18,

a

3

= 3:69 and a

4

= 3:79.
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