

C

Consiglio Nazionale delle Ricerche

Cost-aware Runtime Enforcement
of Security Policies

PP.. DDrráábbiikk,, FF.. MMaarrttiinneellllii,, CC.. MMoorriisssseett

IIT TR-11/2012

Technical report

Luglio 2012

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cost-aware Runtime Enforcement
of Security Policies�

Peter Drábik, Fabio Martinelli, and Charles Morisset

IIT-CNR, Security Group
Via Giuseppe Moruzzi 1, 56124 Pisa, Italy

Abstract. In runtime enforcement of security policies, the classic re-
quirements on monitors in order to enforce a security policy are sound-
ness and transparency. However, there are many monitors that success-
fully pass this specification but they differ in complexity of both their
implementation and the output they produce. In order to distinguish and
compare these monitors we propose to associate cost with enforcement.
We present a framework where the cost of enforcement of a trace is de-
termined by the cost of operations the monitor uses to edit the trace.
We explore cost-based order relations on sound monitors. We investi-
gate cost-optimality of monitors which allows considering the most cost-
efficient monitors that soundly enforce a property.

Keywords: runtime enforcement, cost, constructible monitors

1 Introduction

An enforcement mechanism is a program in charge of controlling the actions of a
target over a system, such that the sequences of actions submitted to the system
satisfy a security policy. For instance, a security policy can state that the user
of a database cannot execute a request to remove a table she does not own, or
that an application downloaded onto a mobile operating system cannot modify
the core functionality of the system. An enforcement mechanism can therefore
be seen as a monitor between a target, seen as a black-box, and a system, such
that only correct sequences of actions are executed by the system.

In the context of runtime enforcement, the classic requirements on monitors
in order to enforce a security policy are soundness, i.e. producing only correct
output, and transparency, i.e. acting invisibly on correct input [9]. However,
there are many monitors that successfully pass this specification but differ in
complexity of both their implementation and the output they produce for incor-
rect input [4]. In order to distinguish and compare these monitors we propose
to associate cost with enforcement.

For a motivating example consider a museum which has a policy that no
child should be inside without the presence of a guard. A monitor processing

� This research was supported by the EU FP7-ICT project NESSoS under the grant
agreement n. 256980.

the queue of visitors is requested a decision upon seeing a child in the case that
no guard is inside the museum. Such an input trace is considered incorrect and
the responsibility of the monitor is to turn it to a correct one. There are many
ways to do it, for example to refuse the entrance to any further visitor, or a less
drastic one to refuse the entrance to that child. The current theory of runtime
enforcement does not offer any way to compare these two solutions and say which
one is better. In this paper we argue that cost can be a convenient tool for doing
so. For example, cost could be associated with the lost gain from the tickets not
sold, which would favour the second solution.

In this work we present a framework for considering the editing cost of en-
forcement. First we adopt a high level view on enforcement, where we see runtime
monitors as functions. In real life, we can construct only monitors that upon pro-
cessing an action have to decide only based on the current action and the past
trace. Following this intuition, we introduce a class of constructible monitors,
which are monitors that at each step choose performing one of the specified op-
erations on the input action: either to accept it, suppress it or to substitute or
insert a sequence of actions. Moreover, such a monitor in each step outputs a
non-empty sequence of symbols. We argue that this concept of monitor is close
to the nature of runtime enforcement.

For a constructible monitor, the cost of enforcement of a trace is determined
by the cost of operations the monitor uses to edit the trace. The cost enables
to compare monitors and we introduce two cost-based order relations on sound
constructible monitors, one based on pointwise comparison for each trace and
another one on the expected cost for a set of traces. The minimality in this
order relations allows us to reason about cost-optimal monitors. Moreover, we
prove that (under some reasonable assumptions) each cost-optimal monitor is
transparent, which justifies the classic concept of transparency [9].

We believe that our approach can be useful to a security designer in three
ways. Firstly, it allows her to calculate the actual cost of enforcing a given policy
with a given monitor. Secondly, it provides a way of comparing two correct
monitors to choose the more cost-efficient one. Finally, the “optimal” monitor(s)
can be defined, together with the minimal expected cost for enforcing a policy.

The article is structured as follows. In Section 2 we recast the topic of runtime
enforcement in the framework of functions, after which in Section 3 we introduce
the class of constructible monitors. For these we develop the notion of cost of
enforcement in Section 4 and investigate cost-optimal monitors in Section 5.
Finally we relate our work with the literature and discuss possible extensions of
our work in Section 6.

2 Runtime enforcement

As we said in the introduction, a monitor is responsible for enforcing a policy
over a system. We consider the three following entities: the target is an active
entity sending actions to the system; the system is a passive entity waiting for
actions from the target, and executing them; the monitor is an entity between

2

the target and the system, receiving actions from the target and sending actions
to the system. We now introduce the notion of traces, together with some usual
notations, and then we express the notion of policy and monitor.

Actions, traces. The monitor observes the actions of the target, we denote A
the set of security-relevant ones. Let A� denote the set of all finite sequences
over A. A trace is a finite sequence of actions, that is the set of traces T � A�.
For the purposes of runtime monitoring, which acts on all prefixes of the traces
we assume that T is prefix-closed. In this work we consider only security policies
over finite traces. This is a choice made by many approaches in the field of
enforcement, e.g. [9, 11, 3, 4]. The treatment of infinite traces is left for future
work. By σ we refer to a trace and by ε we refer to the empty trace. We write
σ; τ to denote the concatenation of two traces. By σ k we denote the prefix of
σ constituted of the first k � 1 actions, while σk means the k-th action of the
trace, where the initial action is σ0. Lastly, by ¨ we denote the relation of being
a prefix of a trace.

Properties. Following most existing approaches in the context of run-time en-
forcement, we consider security policies defined in terms of individual executions
of the program. A security property is a computable predicate P � T and a trace
σ that satisfies the property P is called correct (denoted as P pσq), and a trace
that does not satisfy the property is called incorrect (denoted as P pσq). In this
paper we focus on reasonable properties, those which always hold for the empty
trace: P pεq. Note that this is a classic restriction made in the field of runtime
enforcement [9]. Among reasonable properties, the category of safety properties
has been particularly studied. Intuitively, with a safety property, an incorrect
trace cannot be extended into a correct one. Formally a reasonable property
P � T is a safety property iff @σ1, σ2 P T P pσ1q ^ σ1 ¨ σ2 ñ P pσ2q [1, 8].

Monitors. We choose in this work to model the runtime monitor as a function
on sequences of actions. While this is a view directly adopted by later works on
runtime monitoring, such as by Bielova and Massacci [4], it is present indirectly
in the original approach by Ligatti et al. [9], since the operational semantics of
the security automaton takes the full trace as an input and, after possibly many
multi-steps transitions, outputs another trace. So, a monitor processes the input
trace action by action and produces the output trace: M : T Ñ T .

Enforcement – soundness and transparency. We recall the classic notions of
soundness and transparency of enforcement. Soundness implies that all outputs
of the monitor must obey the security property. Transparency requires that
monitors operate invisibly on executions that satisfy the property already.

Definition 1. A monitor M : T Ñ T soundly enforces property P iff @σ P T :
P pMpσqq. M transparently enforces P iff @σ P T : pP pσq ñMpσq � σq.

If the property P is understood from the context, we might omit it and say that
monitor M is sound and transparent, respectively.

3

mon. description sound transp.

M0 insert no guard, suppress all X �
M1 insert no guard, suppress all children X �
M2 insert no guard, suppress children when no guard is in X X
M3 insert a guard before the whole trace X �
M4 insert a guard upon seeing the first child when no guard is in X X
M5 insert a guard upon seeing the first child X �
M6 insert a guard before each child X �
M7 insert no guard, let everybody in � X

Table 1. Monitors

Running example. The security policy in a museum distinguishes between
two types of visitors: adults and children. While adults can enter on their own,
children can be inside only in a presence of a guard. In this setting, the (abstract)
target “produces” sequences of visitors and guards as a trace of actions from A,
where the possible action can be the entering of an adult a, a child c or a guard
g.

In particular, we consider the set of traces T � A� which consists of all
traces of finite length over A. For instance the trace acc means that the first
to enter is an adult and then two children and agcc says that the children are
preceded by a guard.

The security policy is expressed as a property PM on traces, where PM pσq ô
pσk � c ñ Di k s.t. σi � gq. We can see that PM paccq but PM pagccq.
Note that PM is a safety property, as an incorrect trace cannot be extended to a
correct one.

In Table 1, we list some approaches to enforcement and monitors that im-
plement them. For example consider the monitor M2, that implements the en-
forcement mechanism which lets enter all adults, but lets in children only when
there are guards inside. We have that M2paccq � a but agcc is left unaltered by
M2. It is easy to see that M2 soundly and transparently enforces PM . Another
approach could be not to let in anyone, i.e. a monitor M0 such that M0pσq � ε
for all σ P T , which is sound for PM but clearly not transparent.

3 Constructible monitors

Traditionally, a monitor can be any function from traces to traces. However, as
we can see in the example, in real life we can construct only monitors that upon
processing an action have to decide only based on the current action and the
past trace. Following this intuition, in this section we define a class of monitors
that we consider constructible. We believe that such a view accurately reflects
the nature of runtime monitoring.

4

3.1 General definition

Intuitively, a constructible monitor is a monitor which for each input action,
based on the seen past trace, takes a decision and outputs a non-empty sequence
of actions.

That is, since a monitor is a function from traces to traces, the output of
the monitor needs to be defined for each prefix of a trace. Moreover, with each
subsequent action, the output of the monitor is strictly incremental.

Definition 2. A monitor M : T Ñ T is considered to be constructible, if for
each σ P T and for all 0 ¤ i |σ| we have Mpσ iq Mpσ i�1q.

We can see that the definition corresponds to the intuitive specification above.
Indeed, for each seen action the output of the monitor is only based on that action
and the preceding ones. At the time of the decision the monitor is in possession
of no information about the future of the trace. Moreover, the requirement of a
non-empty output at all times excludes postponing the decision by outputting
an empty trace.

Class of constructible monitors. We define the class of constructible monitors
CM � tM : T Ñ T |M is constructibleu.

We observe, that not all monitors are constructible. We illustrate this fact on
our running example. Consider a monitor M defined so that if there is at most
one child in the whole trace it must be suppressed, and in all other cases a guard
is inserted at the beginning of the trace. Therefore, we have for example Mpcaq �
_a and Mpccq � gcc where the action _ signalises an action suppression. We can
see that monitor M does not satisfy the definition of constructibility, because
Mpcq cannot be a non-empty prefix of both _a and gcc since there is none.
Intuitively, the reason for M not being constructible because at seeing the first
child, the monitor needs to decide whether to suppress it or send a guard before,
but at the point of the decision there is no way of knowing if more children will
come.

Dealing with suppression. As we can see, the output at each step of the enforce-
ment can be arbitrary, but not empty. Therefore, suppressing an action in the
sense of removing it completely from the trace is not possible by a constructible
monitor. The reason is that it is necessary to signalise the suppression to the
system. We assume that a system understands such a signal and even requires it.
This function can be for example performed by a special wait action (_), which
in the set of actions. Otherwise _ is considered a normal action, which means
that there is no restriction on its use or its presence in the output of the target.

In the example above, the interaction of the target (the queue of visitors)
and the monitor is synchronous. Therefore the suppression of a child occupies
a visitor’s turn, and that is why we must signalise such an event in the output
trace by a _ action. It corresponds to the fact that in that particular turn no
one will enter the museum. The system (the museum) must be able to handle
the wait action. Similarly the target could produce such an action to model a

5

situation where at some turn there is no one at the entrance. Such a scenario
is a valid one and the monitor should be able to deal with it. Such a case is
represented by the _ in the input trace.

Power of constructible monitors. Under the assumptions of soundness and trans-
parency, the power of constructible monitors is equal to the one of Schneider’s
security automata [12] and to precise enforcement of edit automata of Ligatti et
al. [9].

Lemma 1. Given any property P , there exists a monitor M in CM such that
M enforces soundly and transparently P iff P is a safety property.

The proof of this lemma is analogous to the case of precise enforcement in
edit automata in Ligatti et al. [9].

3.2 Specifying constructible monitors

In each step of runtime monitoring, a constructible monitor produces an incre-
ment of the output trace.

A convenient way to build constructible monitors is by specifying how to
obtain this piece of output based on the past trace and the current action.

We abstract the decision process into a selector function f : T �A Ñ Ops,
where Ops is a set of atomic operations. Given a trace σ and an action a, fpσ, aq
stands for the decision taken for a considering that the previous trace is σ1.

In a second step, we define the semantics of each atomic operation over
traces. This decomposition allows us to make explicit the power of editing of the
monitor.

For instance, if we were to consider the set Ops � taccu, where acc stands
for the acceptance of an action, then any monitor would be bound to accept
every trace, since no other operation is available. In the following, we consider
the Ops � tacc, subpτq, sup, inspτqu, where subpτq stands for the substitution of
an action by a non-empty sequence τ P A�, sup for the suppression of an action
and inspτq for the insertion of a non-empty sequence τ P A�.

The semantics of the atomic operations is given with the function opsem :
Ops �AÑ A�. In the following, we consider the semantics given by:

opsempop, aq �

$'''&
'''%
a if op � acc

τ if op � subpτq

_ if op � sup

τ ; a if op � inspτq

1 To some extent, a selector can be seen as an analogue to the functions δ, γ and ω
used for edit-automata [9] with the exception that the action cannot be suppressed
“silently”.

6

Note that the semantics function opsem respects the requirement from the
definition of constructible monitors and always returns a non-empty trace incre-
ment.

Finally, given a selector f , we define the monitor Mf : T Ñ T as the con-
catenation of opsempfpσ i, σiq, σiq, for any 0 ¤ i |σ|.

The class of monitors that are constructible according to Definition 2 and the
class of monitors definable through selectors coincide. It can be easily checked
that each monitor with a selector is constructible. For the other direction, note
that for any constructible monitor M : T Ñ T , there exists at least one selector
f such that Mf pσq � Mpσq for all σ P T . We denote the following selector for
M as fM .

Let us denote for a τ P A� and a P A as tracedif pτ, aq the difference between
what M outputs for traces τ and τ ; a, i.e. Mpτq; tracedif pτ, aq �Mpτ ; aq. Then

fM pτ, aq �

$'''&
'''%

acc if tracedif pτ, aq � a and a � _

sup if tracedif pτ, aq � _

inspτ 1q if tracedif pτ, aq � τ 1; a for some τ 1 P A�

subptracedif pτ, aqq otherwise

Note that fM is only one of the selectors f for M such that Mf pσq �Mpσq for
all σ P T and there exist others, for example f 1M � subptracedif pτ, aqq. Even if
the semantics of these two monitors is the same, we will show in the next section
that their cost of enforcement might differ. More importantly, the fact that any
constructible monitor can be defined through a selector function enables us to
concentrate in the rest of the paper only on constructible monitors with a given
selector.

Running example. Actually, all the monitors M0 through M7 described in the
previous section are constructible, provided that in the case of suppression they
produce the _ action included in A. This also illustrates that when one wants to
specify a runtime-monitor, intuitively always reasons in terms of constructible
monitors.

For example monitor M2 can be specified by using the selector f2 as follows:

f2pτ, aq �

#
sup if a � c and g R τ

acc otherwise

4 Cost of enforcement

In the previous section, we have introduced a simple and intuitive way to build
a monitor, using a selector. A monitor can therefore be seen as a function that
to a trace output by the target associates a sequence of atomic operations. In
this section we introduce the idea that enforcing a property, and in particular
modifying the trace input by the target, should come with a cost. In other words,
we want to make explicit the cost for the monitor to transform the input trace
into the output trace.

7

Hence, we first introduce a basic cost-model, based on cost of atomic op-
erations, which we extend to the cost of enforcing a single trace, and a set of
traces. The cost enables to compare monitors and we introduce a cost-based
order relation on sound monitors for a property.

4.1 Cost

Cost domain. The cost of transformation is expressed by a value – the smaller
the value, the better. We consider values from the cost domain pC,¤,K,J,�q
such that ¤ is a well-founded total order, K is the minimal element of ¤, J the
maximal element and � is a cost aggregation function, such that that c ¤ c� c1

and c1 ¤ c�c1. Moreover, K and J are the neutral and absorbing elements for �,
respectively. In general, we use K to denote the absence of cost, and J to denote
an unreachable cost. For instance, a possible cost domain is pR�,¤, 0,8,�q.

Operation costs. In the same way that we define the semantics of each atomic
operation in Ops for each action in A with the function opsem in Section 3, we
associate cost with each operation and each action with the function opcost :
Ops �AÑ C.

Running example. We want to express the fact that denying the entrance to
the museum to an adult or to a guard costs 4, to a child costs 3 and inserting
a guard costs 5. Given an atomic operation op and an action a, we therefore
define the function opcost as:

opcostpop, aq �

$''''''&
''''''%

0 if op � acc or pop � sup and a � _q

4 if op � sup and a P ta, gu

3 if op � sup and a � c

5 if op � inspgq

8 otherwise

To some extent, associating an atomic operation with an infinite cost could
be used to denote that some operations are not possible. For instance, the idea
of observable actions introduced in [2], on which a monitor cannot stop, can
be modelled as associating an infinite cost with their suppression. We leave the
characterisation of enforceable policies based on the cost of their enforcement
for future work.

Cost of editing a trace. Given a monitor built using a selector, the total cost of
enforcement of this monitor for a given trace can be calculated as the sum of
the cost of each atomic operation.

Definition 3. Given a selector f , a monitor Mf built using this selector and a
trace σ in T , we define the cost function costMf

: T Ñ C as:

costMf
pσq �

¸
0¤i |σ|

opcostpfpσ i, σiq, σiq

8

σ M0 M1 M2 M3 M4 M5 M6 M7

ε ε 0 ε 0 ε 0 ε 0 ε 0 ε 0 ε 0 ε 0
_a __ 4 _a 0 _a 0 g_a 5 _a 0 _a 0 _a 0 _a 0

aa __ 8 aa 0 aa 0 gaa 5 aa 0 aa 0 aa 0 aa 0
cc __ 6 __ 6 __ 6 gcc 5 gcc 5 gcc 5 gcgc 10 cc 0
ca __ 7 _a 3 _a 3 gca 5 gca 5 gca 5 gca 5 ca 0
ga __ 8 ga 0 ga 0 gga 5 ga 0 ga 0 ga 0 ga 0
gc __ 7 g_ 3 gc 0 ggc 5 gc 0 ggc 5 ggc 5 gc 0

aaaa ____ 16 aaaa 0 aaaa 0 gaaaa 5 aaaa 0 aaaa 0 aaaa 0 aaaa 0
cccc ____ 12 ____ 12 ____ 12 gcccc 5 gcccc 5 gcccc 5 gcgcgcgc 20 cccc 0
caaa ____ 15 _aaa 3 _aaa 3 gcaaa 5 gcaaa 5 gcaaa 5 gcaaa 5 caaa 0
gaaa ____ 16 gaaa 0 gaaa 0 ggaaa 5 gaaa 0 gaaa 0 gaaa 0 gaaa 0
gccc ____ 13 g___ 9 gccc 0 ggccc 5 gccc 0 ggccc 5 ggcgcgc 15 gccc 0

Table 2. Enforcement

We remark that different sequences of operations might cost differently even
if they produce the same output. For example for general actions a and b and c,
the transformation from ac to abc can be done either by accepting a and inserting
b upon seeing c, or by substituting a by ab and accepting c. In general these two
sequences can have different cost. Therefore, what is important for assigning the
cost is the intent of the modeller when creating the selector function for the
monitor.

Running example. In Table 2 we can see the result of enforcement of monitors
M0 through M7 on several traces, together with the cost.

Expected cost of editing a set of traces. Sometimes a particular subset of the set
of all traces produced by the target is of interest. For such a set, the expected
cost of enforcement can be defined. We define a function expcostM : PpT q Ñ C,
that for a set of traces T computes the expected cost of editing of traces in T .

Definition 4. Let T be a set of traces, f be a selector function and opcost :
Ops Ñ C a function assigning cost to operations. The function expcostMf

:
PpT q Ñ C is defined as follows

expcostMf
pT q �

°
σPT costMf

pσq

|T |
.

Running example. Suppose that the maximum number of visitors that can
come in one day is 30, that is T � T 30. Then expcostM2

pT q � 2.99.

Intuitively, if T were associated with a probability distribution, we could
extend expcostM be weighting the cost of each trace by its probability. We leave
this extension for future work and we consider that all traces are equiprobable.

9

M2

M1

M0 M6

M5

M3

M4

Fig. 1. Pointwise order between monitors

4.2 Cost-based comparison of monitors

The interest of comparing monitors is to provide the security designer with a way
of choosing a more efficient monitor which guarantees the correct functionality.
That is why in this section we concentrate only on monitors that produce correct
output at all times, i.e. on sound monitors. Note that transparency is intrinsically
related to cost, so we drop it at this point of the paper to establish its relation
to cost in the following section.

Pointwise comparison. We start with a natural way of comparing monitors –
the pointwise comparison. Clearly, if for each trace a monitor spends less for
enforcement than another one, it can be considered more cost-efficient.

Definition 5. Let M and M 1 be monitors from CM. We define the relation
more cost-efficient for monitors as follows:

M �M 1 iff @σ P T : costM pσq ¤ costM 1pσq.

Running example. The monitor M2, which lets enter all adults but lets in chil-
dren only when there are guards inside is assigned cost as follows: costM2

pσq �
opcostpsup, cq � nk, where nk is the number of cs not preceded by any g in σ.

As for monitor M0, which prevents anyone from entering the museum, the
cost is costM0pσq � opcostpsup, cq�#cpσq�opcostpsup, aq�#apσq�opcostpsup, gq�
#gpσq.

Intuitively, monitor M2 should be more cost-efficient than the monitor M0.
In fact, none of these two monitors introduces any guards, and each child that
is prevented from entering by M2 is prevented also by M0. Since this is true for
each trace in T , we have that M2 � M0. The order between all sound monitors
M0 through M6 according to � can be seen on Figure 1. For instance, we can
see that in order to soundly enforce PM there is no point in choosing M0 since
it is less cost-efficient than M2 on each trace. Note that both M2 and M4 are
more cost-efficient than the others, but they are incomparable.

Comparison by expected cost. In practice, it is quite difficult to obtain a monitor
that is pointwise more cost-efficient than another monitor. The reason is, that
frequently one monitor can be more cost-efficient on a set of traces, but less cost-
efficient on another. In such a case the two monitors are incomparable according
to �. That is why we introduce another order relation, a comparison based on
the expected cost which can serve as a distinguishing criterion.

10

Definition 6. We define the relation globally more cost-efficient for monitors
M and M 1 on the set of traces T as follows: M ET M 1 iff expcostM pT q ¤
expcostM 1pT q.

If we take as T the set T n of all fixed-length traces of length n from T , we
write ET n

as En.
It is easy to see that the order relation ET is total, that is each two con-

structible monitors are comparable.

Running example. We are interested in comparing monitors M2 and M4,
which are incomparable according to �.

It is easy to see2 , that for short traces, i.e. small n monitor M2, is more
efficient. For long traces instead, M4 becomes more convenient. This is due to
the fact that when the trace to come is long enough, then inserting a guard is
more efficient, because on average enough children will arrive to justify the cost
for the guard. If the trace is not long enough, it is convenient to suppress all
children.

It is possible to derive the n� where this shift occurs. Note, that it is pos-
sible to combine these two strategies and obtain a monitor that subsumes both
these monitors. More details on this matter, along with a table containing actual
expected costs (Table 3), are included in the following section.

Relationship between pointwise and global order relations. It is clear that the
pointwise order between two monitors implies the global order between them.
That is if M � M 1 then M ET M 1 for any T . The reason is that if the cost is
smaller for each trace in a set, then for sure also the expected cost, which is the
average of the cost on that set, is better. In general, the converse implication
does not hold, in particular there can be two monitors, and one monitor is better
on one trace in T , the other monitor is better on another trace in T , but the
first maintains a better expected (average) cost on T .

5 Cost-optimal constructible monitors

There are many sound and transparent constructible monitors for any safety
property. The security designer might want to choose the one that minimises
the cost of enforcement, that is in a way the best out of the monitors that
perform their task well. In this section we consider sound cost-optimal monitors.
Transparency is not required, in fact it is derived as cost-optimality in one of
the special cases.

We associate the notion of cost-optimality with the minimality in the cost-
based order relation. We call cost-optimal monitors the elements for which no
element is smaller.

Definition 7. We say that monitor M is �-optimal (ET -optimal) iff there is
no M 1 P CM such that M 1

�M (M 1 CT M).

2 Formulas for computing the expected cost of monitors M2 and M4 can be found in
the Appendix.

11

5.1 Cost-optimality for �

Consider, for a property P , the set of monitors that soundly enforce P . Now
since � is a preorder on CM, on this set there exist minimal elements. That
means that for each property P there always exists at least one cost-optimal
sound constructible monitor.

We call a monitor absolutely �-optimal, if it the smallest element in CM
w.r.t. �, i.e. it is more cost-efficient than any other constructible monitor. It is
worth noting, that in general there is no absolutely �-optimal monitor, since
there can be more than one incomparable minimal elements.

Running example. As can be seen on Figure 1, both monitors M2 and M4

are more cost-efficient that the rest of monitors in our example. It can be shown
that for a general set of traces T , there is no monitor that is strictly better than
M2 or M4. Therefore both of them are �-optimal. However, M2 and M4 are
incomparable as we showed in the previous section. It follows that there is no
absolutely cost-optimal monitor to enforce the museum security policy.

Transparency as cost-optimality. In the beginning of this section we decided to
relax the classic requirements of enforcement by dropping transparency. Now we
will motivate this choice by showing, that under assumptions very reasonable in
practice, transparency is implied by �-optimality. In other words, it is enough
to concentrate on cost-optimal monitors in order to obtain transparent ones.
In particular, let us assume that acc is the single cheapest operation. Then for
safety properties by assuming soundness, cost-optimality implies transparency.
Note that we only consider safety properties P , as constructible monitors only
can soundly and transparently enforce these properties.

Lemma 2. Let P be a safety property. Let opcost be such that opcostpacc, xq is
strictly less than opcostpop, xq for all other operations op. If Mf is sound for P ,
then if it is �-optimal then it is transparent for P .3

We remark, that the converse implication does not hold, i.e. transparency
does not imply cost-optimality. The reason is that transparency does not talk
about incorrect traces. It can be the case that even a sound and transparent
monitor can be subsumed by another sound and transparent monitor with lower
cost on incorrect traces.

Running example. We can see, that monitors M2 and M4 are transparent.
On the other hand, all other monitors modify the trace gc, which is correct, and
therefore are not transparent.

It is worth noting, that if suppression was the cheapest operation, a triv-
ial monitor that suppresses everything is the absolutely �-optimal one for any
property P (even beyond safety). This suggests that having suppression as the
cheapest operation is a degenerate case since it favours security by blocking in
the sense “what is shut off is secure”.

3 The proof can be found in the Appendix.

12

5.2 Cost-optimality for ET

As we have seen, the pointwise order does not allow for determining the cost-
optimal monitor that is more cost-efficient than all others. However, the criterion
of expected cost can be of help in establishing cost-based relationship between
pointwise incomparable monitors. Now we show how it can be useful for finding
the best monitor.

Since ET is a total order on CM, there is always a minimal element. Fur-
thermore the minimal element corresponds to the smallest element, i.e. the ET -
optimality coincides with the absolute ET -optimality.

Note that each ET -optimal monitor must be also �-optimal which can be
readily seen by reasoning by contradiction.

A natural question is how to find or construct a cost-optimal monitor for a
set of traces T n. In the general case of an arbitrary cost setting, the cost-optimal
monitor exists, since the cost-induced order is a preorder on CM, but it might
not be trivial to find it. A very non-efficient way of finding En-optimal monitor
would be to enumerate all the monitors (there is a finite number of them for a
T n) and choose the one with the lowest expected cost. We leave the investigation
of cases in which there are more efficient ways to find such monitors for future
work.

Nevertheless, in some cases the En-optimal monitors can be specified directly,
as is in the case of our running example.

Running example. Note that out of M0 through M7 the only candidates for
En-optimality are M2 and M4. Following the reasoning from the previous section,
there are lengths n for which M2 is more cost-efficient than M4 on T n and others
on which it is the other way round. Actually, none of these two monitors is En-
optimal. A cost-optimal monitor combines the strategies of these two monitors.

Let us define a monitor M� such that knowing that traces have a fixed length
n, upon seeing the first child it inserts a g unless it is no longer convenient
for the expected cost because on average not enough children can enter any
more. Recall that n� is the borderline length between “short” and “long” traces
from the previous section. We can compute n� as the smallest n that satisfies
expcostM2

pT nq ¡ expcostM4
pT nq. Thus if there remains a trace of m ¥ n� to

be seen (including the current action), it is still convenient to insert a guard,
but if m n�, then instead it is convenient to suppress all children. In our case
n� � 6.

So the monitor M� is defined through the selector function f� as follows

f�pτ, xq �

$'&
'%

inspgq if x � c and g R τ and n� |τ | ¥ 6

sup if x � c and g R τ and n� |τ | 6

acc otherwise

We show that M� has the optimal expected cost on traces of length n, i.e.
@M P CM : expcostM�pT nq ¤ expcostM pT nq. Proof: consider a trace σ of length
n. On each prefix of σ that does not contain c, it can be easily seen that an
optimal monitor M 1 should accept all actions. When a prefix of σ ends with a

13

T T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8

expcostM2
pT q 0.75 1.31 1.73 2.05 2.25 2.47 2.60 2.70

expcostM4
pT q 1.25 1.88 2.19 2.34 2.42 2.46 2.48 2.49

expcostM�pT q 0.75 1.31 1.73 2.05 2.25 2.39 2.45 2.47

Table 3. Expected costs of M2, M4 and M�.

c, an optimal monitor should accept if a g is already in the prefix. Any other
action would lead to a bigger expected cost. If there is no g in the prefix, then
the optimal monitor should, based on the average number of cs in all the possible
extensions of length n of the current prefix, insert g iff it costs less than the
expected cost of suppression of all the cs. This is exactly the way in which M�

works, and thus it is cost-optimal with respect to En.
The expected cost of monitor M� can be seen in Table 3. On traces shorter

that 6, it has expected cost exactly as M2, and it is less than that of M4. Starting
from traces of length 6, M� outperforms both M2 and M4. The difference between
the three monitors is illustrated on several traces from T 8 as follows: if a child
comes at the first turn, i.e. σ � caaaaaaa, then M2pσq � _aaaaaaa, M4pσq �
gcaaaaaaa and M� acts as M4 because it is convenient to put a guard since
on average enough children will come to pay off for the cost of the guard. If the
first child comes at the last turn instead, , i.e. σ � aaaaaaac, it is no longer
convenient to send in a guard and M� acts as M2 on σ thus M�pσq � aaaaaaa_.

It is also worth noting that since the trace length n is a part of the definition
of M�, a monitor for n � n1 and n � n1 � 1 behave differently. In particular,
if a monitor M� is En

1

-optimal, it will not necessarily be En
1�1-optimal. We

also remark, that since the constructibility of M� depends vitally on the prior
knowledge of the trace length by the monitor, if the security expert defining the
monitor is not in possession of the information about the length of traces on
which the monitor will be applied, such a monitor cannot be constructed. This
issue is worth further investigation and is left as future work.

6 Conclusions

Discussion and related work. Since Schneider’s seminal work [12], runtime en-
forcement of policy using security automata has been a well-studied subject in
the literature, such as [9–11, 5]. We do not detail here all these approaches, and
we refer to [7] for an extensive survey. However, to the best of our knowledge,
our approach is the first one to deal with the problem of cost of enforcement.

Recent research has argued that the original definition of effective enforce-
ment [9] is inadequate because it does not sufficiently constrain the behaviour of
the monitor when it is faced with a possible violation of the security policy [7].
Researchers have revisited the notion of enforcement by a monitor have proposed
alternative ones.

14

Bielova and Massacci [4] propose to apply a distance metrics known from
string analysis in order to capture the similarity between traces. With help of this
distance metrics they propose a new requirement on the enforcement mechanism,
called predictability, which is based on the following principle “for each illegal
trace – if it is close enough to a legal one, it should be projected close enough to
that trace”. They leave the problem of characterising the class of properties that
can be enforced by a predictable enforcement mechanism as open. Our proposal,
using cost-optimal monitors, restated using similar vocabulary would be “for
each illegal trace – (at all times) it should be projected onto the closest legal
trace” where the distance is given by the cost of operations used for editing the
trace. We prove, that for each safety property there is a cost-optimal monitor
that soundly enforces this property.

Another attempt at a more restrictive concept of enforcement is the corrective
enforcement of Khoury et al. [6]. Their approach is to group together related
sequences into equivalence classes, and then limit the monitor so that it can
only return an output sequence equivalent to the input. Moreover they use a
partial order on sequences to obtain better results than with equivalence. The
drawback of their approach is that restrictions on the treatment of incorrect
sequences must be defined explicitly by the user for each property.

Edit automata [9] have also been identified as being too powerful, because
they can use buffering and make the enforcement decisions with information
about entire trace at its disposal. Bielova and Massacci [3] investigate subclasses
of automata as delayed automata, all-or-nothing automata and Ligatti automata.
We believe that our paradigm of constructive monitors is close to the practical
nature of runtime enforcement, as we oblige the monitor to decide at each step
only based on the information it can obtain from the current action and the past
trace. To certain point this is similar to the concept of precise enforcement of
Ligatti et al. [9] and therefore it comes as no surprise that this class of monitors
enforces soundly and transparently only safety properties.

Our model of constructible monitor bears similarities to the MRA model of
Ligatti and Reddy [11], which obliges the monitor to returns a result to the
target application before seeing the next action it wishes to execute. Our model,
instead, requires that the monitor outputs a non-empty trace before seeing the
next action, but does not provide any feedback to the target.

Future work. As regards future work, our cost model associates cost to simple
operations such as acceptance, suppression, substitution and insertion. However,
being parametric it allows for defining more complicated atomic operations. It
would be interesting to consider more practical operations inspired by real sce-
narios. A desired extension would be for example a complex treatment of buffer-
ing in our cost framework. In addition, a general approach for constructing the
optimal monitor for a cost model would be worth investigating.

Furthermore, our framework paves the way for investigations about quan-
titative aspects of runtime enforcement. The present is only a first attempt to
consider cost in the context of monitoring. A straightforward extension could be
done when in possession of probabilistic information about traces. In fact, having

15

a probabilistic distribution of the traces would scale the expected cost on a set
of the traces by the trace probability. In some scenarios such information would
enable defining much more cost-efficient monitor than what we can do now. The
present case can be seen as considering all the traces to be equiprobable.

Other dimensions to be treated in a quantitative manner include considering
impact/benefit of traces and penalty for not respecting the policy.

Conclusion. In this paper we have presented a framework where the cost of
enforcement is determined by the cost of operations used by monitor. The classic
requirements on enforcement of security policies, soundness and transparency,
leave a margin for specifying the behaviour of the monitor on incorrect inputs.
We argue that the cost of enforcement can serve as a distinguishing criterion for
sound monitors for safety policies. We investigate cost-optimality of monitors and
show that under reasonable assumptions it justifies the concept of transparency.
We demonstrate the approach on a case study of a museum security policy and
show how to find the cost-optimal monitor to enforce the policy.

References

1. B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2(3):117–126, 1987.

2. D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu. Enforceable security policies
revisited. In Proceedings of POST 2012, volume 7215 of Lecture Notes in Computer
Science, pages 309–328. Springer-Verlag, 2012.

3. N. Bielova and F. Massacci. Do you really mean what you actually enforced? IJIS,
pages 1–16, 2011.

4. N. Bielova and F. Massacci. Predictability of enforcement. In Proceedings of
the International Symposium on Engineering Secure Software and Systems 2011,
volume 6542, pages 73–86. Springer, 2011.

5. Fong Philip W. L. Access control by tracking shallow execution history. Security
and Privacy, 2004. Proceedings. 2004, pages 1–13, 2004.

6. R. Khoury and N. Tawbi. Using equivalence relations for corrective enforcement
of security policies. Computer Network Security, pages 139–154, 2010.

7. R. Khoury and N. Tawbi. Which security policies are enforceable by runtime
monitors? a survey. Computer Science Review, 6(1):27–45, 2012.

8. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

9. J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security, 4(1–
2):2–16, Feb. 2005.

10. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.
ACM Transactions on Information and System Security, 12(3):1–41, Jan. 2009.

11. J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In Com-
puter Security - ESORICS 2010, volume 6345 of Lecture Notes in Computer Sci-
ence, pages 87–100. Springer, 2010.

12. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3:30–50, February 2000.

16

A Expected cost of monitors M2 and M4

In order to compute the expected cost for all traces of a fixed length n for these
monitors, we need several auxiliary definitions. Let us denote sumOccpd, kq the
sum of numbers of occurrences of one specific symbol from the alphabet of size
d in all strings of length k. We can compute sumOccpd, kq as

sumOccpd, kq �
ķ

j�0

�
k

j

pd� 1qk�jj.

Then

CM2
pnq �

sumOccp3, nq �
°n
i�1 sumOccp3, i� 1q4n�i

4n

expresses the average number of cs in a trace of length n not preceded by a g.
Similarly occpd, kq denotes the number of strings of length k that contain at

least one occurrence of a specific symbol from the alphabet of size d, i.e.

occpd, kq � dk � pd� 1qk.

Then

CM4
pnq �

occp3, nq �
°n
i�1 occp3, i� 1q4n�i

4n

expresses the average number of traces in which there is at least one c not
preceded by a g.

Therefore, expcostM2
pT kq � CM2

pnq � opcostpsup, cq and expcostM4
pT kq �

CM4
pnq � opcostpinspgq, cq.

B Proof of lemma

Lemma 3. Let P be a safety property. Let opcost be such that @op P Opsztaccu
@x P A : opcostpop, xq ¡ opcostpacc, xq. If Mf is sound for P , then if it is
�-optimal then it is transparent for P .

Proof. By contradiction assume that Mf is sound for P and it is �-optimal but
Mf is not transparent for P . Therefore there exists a trace σ� such that P pσ�q
and Mf pσ

�q � τ� and σ� � τ�.
We will construct a monitor Mf 1 such that is belongs to CM, is sound for P

and is strictly more cost-efficient than Mf . We define its selector as

f 1pτ, aq �

#
acc if P pτ ; aq

fpτ, aq otherwise

It is easy to see that Mf 1 is sound for P . Now we show that Mf 1 �Mf . By the
definition of � we have to show that @σ P T : costMf 1

pσq ¤ costMf
pσq. That is

to show that costMf 1
pσq �

°
0¤i¤|σ| opcostpf 1pσ i, σiq, σiq ¤

17

¤
°

0¤i¤|σ| opcostpfpσ i, σiq, σiq � costMf
pσq. This is true, since for all i holds

opcostpf 1pσ i, σiq, σiq ¤ opcostpfpσ i, σiq, σiq from the definition of f 1 and the
assumption of the theorem that acc is the cheapest operation.

To finish we need to show that Mf 1 is strictly more cost-efficient than Mf ,
which can be seen from the fact that on correct trace σ� they act differently, but
f 1 only accepts and therefore makes the cost strictly smaller than f . Therefore
we get a contradiction, which means that Mf is transparent.

18

	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit

