

C

Consiglio Nazionale delle Ricerche

A Multi-Criteria-Based Evaluation
of Android Applications

GG.. DDiinnii,, FF.. MMaarrttiinneellllii,, II.. MMaatttteeuuccccii,, MM.. PPeettrroocccchhii,,
AA.. SSaarraacciinnoo,, DD.. SSggaanndduurrrraa

IIT TR-13/2012

Technical report

Settembre 2012

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Multi-Criteria-based Evaluation
of Android Applications

Gianluca Dini†, Fabio Martinelli‡, Ilaria Matteucci‡, Marinella Petrocchi‡,
Andrea Saracino†‡, and Daniele Sgandurra‡

† Dipartimento di Ingegneria dell’ Informazione, Università di Pisa, Italy
name.surname@iet.unipi.it

‡ Istituto di Informatica e Telematica, CNR, Pisa, Italy
name.surname@iit.cnr.it

Abstract. Android users can face the risk of downloading and installing bad
applications on their devices. In fact, many applications may either hide malware,
or their expected behavior do not fully follow the user’s expectation. This happens
because, at install-time, even if the user is warned with the potential security
threat of the application, she often skips this alert message. On Android this is
due to the complexity of the permission system, which may be tricky to fully
understand.
We propose a multi-criteria evaluation of Android applications, to help the user
to easily understand the trustworthiness degree of an application, both from a
security and a functional side. We validate our approach by testing it on more
than 180 real applications found either on official and unofficial markets.

1 Introduction

Android is an open source Operative System (OS) designed for mobile devices, such
as smartphones and tablets, that currently has the largest share of the mobile device
market. Part of its success is due to the large number of applications (or apps) that are
available for Android devices, which can be developed using the Standard Development
Kit (SDK). Android SDK is free to download and to use: hence, virtually anyone can de-
velop applications, from expert and professional developers to programmers with lim-
ited experience. Applications are distributed through the application market, in which
any user (even malicious ones) can share their own applications. The greatest channel
for application distribution is Google Play (formerly known as Android Market), which
tries to ensure the quality of distributed apps with some simple control mechanisms.
However, it is always possible to get into low-quality applications, or malicious ones,
when surfing Android markets or the several unofficial markets found on the web, es-
pecially if we consider that in these unofficial markets applications can be distributed
without any kind of control.

Malicious applications are the greatest security threat for Android systems and,
hence, to prevent such applications to damage smartphones, Android implements two
security-control mechanisms: sandboxing and permissions [1]. Sandboxing is achieved
by means of application isolation: each application runs in its own instance of the Dalvik

2

Virtual Machine (DVM), an optimization of the Java Virtual Machine. The isolation en-
sures that malicious applications do not interfere with the activity of the good ones.
The permission system is a mechanism of access control to protect resources and criti-
cal operations. At install-time, permissions required by an application are shown to the
user, which can decide whether to grant or to deny them. However, several criticisms
have been raised against this system, which results too coarse-grained [2] and too much
reliant on user knowledge and expertise [3]. The main problem of this approach is that
the acceptance policy for an application’s requested permission is “all or nothing”, that
is, the user cannot accept only a subset of the required permissions. Then, if the user
does not agree even with a single permission, the installation is not performed. Fur-
thermore, due to the large number of existing permissions, even an expert user may not
fully understand all of them and, as a consequence, several users install applications
without caring about the required permissions and without questioning about the poten-
tial security threats [3]. Hence, a simpler mechanism to guide average users in the job
of deciding whether to install or not an application is necessary, without the burden of
reading (and understanding) all the declared permissions.

In this paper we present a multi-criteria approach that combines information re-
trieved from permissions with the reputation indexes provided by markets, to compute
the trustworthiness of an application and the security threat that it may represent. In
more detail, the contribution of the paper are the following:

– we propose a novel classification of Android permissions, in which we assign to
each permission a threat score according to the criticality of both resources and
critical operations they control;

– we compute a global threat score for each application, which is a function of the
threat score of all the required permissions;

– we propose the application of the Analytical Hierarchy Process (AHP), a well-
known methodology for multi-criteria decision, to classify applications according
to the global threat score and to reputation indexes retrievable from markets. Each
application can be considered trusted, or untrusted, or deceptive. By following the
suggested value of the classification, users can avoid the installation of potentially
infected or not-properly behaving applications;

– we validate our approach applying the methodology to 180 real applications with
different features, where 40 applications were infected by common malware. The
tested applications have been correctly classified. Hence, the user can consider the
trustworthiness level of the application by only observing the result of this classifi-
cation process, without the need of understanding all of the requested permissions.

The paper is organized as follows: in Section 2, we explain how we classify per-
missions and how we measure the threat of applications. Section 3 recalls the AHP
methodology and how it is applied in our scenario. Section 4 reports the results of our
approach and some practical examples. Section 5 points to some related work con-
cerning the Android permission system. Finally, Section 6 briefly concludes, proposing
some future extensions.

3

2 Classification of Android permissions

In this section we give some notions on the Android permission system and we ex-
plain how we assign a threat score to each permission and a global threat score to an
application.

Currently, Android defines 120 permissions1, where each permission is related to a
specific device resource or to a critical operation that can possibly be exploited to harm
the user privacy, her money, or the device itself. Permissions required by an application
are declared in the AndroidManifest.xml file that is part of the application itself
and that is bound to it by means of digital signature.

Android classifies permissions in four classes: normal, dangerous, signature, and
signature-or-system. For the scope of this paper, we focus on the first two classes. In
fact, signature and signature-or-system Android permissions cannot be required by cus-
tom applications, since only applications signed with the Google private key can use
those permissions. The Android permission classification is used to choose which per-
missions have to be shown to the user at install-time. The dangerous permissions are
automatically shown to the user, whereas the normal ones are listed in a separate sub-
list addressed as “Other Permissions”. If the user accepts all the permissions required by
an application, then this application is installed and, at run-time, it is allowed to use the
critical resources and operations granted to the permissions without asking for further
authorizations.

Several criticisms have been raised against the Android permission system. Firstly,
the system is too coarse-grained [2], since the user can only choose whether to accept
all of the permissions declared by an application or to refuse to install the application.
Furthermore, the user is usually unable to determine if an application can be trusted,
based upon this list of required permissions. In fact, there are several permissions and
some of them are really difficult to understand even to expert users. It is often the
case that average users do not care about permissions and their security hazards, thus
installing potentially malicious applications [3]. Furthermore, some developers are used
to declare more permissions in the manifest file than those effectively needed by the
application (the so called Permission Overdeclaration [4]). This happens because some
permissions have similar names and their description is not self-explicative for some
developers. Therefore, Android users, seeing a very long permission list when installing
a new application, are less encouraged to read and understand them.

To overcome the problem of permission understanding, we discuss a novel way
to compute the threat score of an application, based upon the requested permissions.
The proposed system shows to the user, in a simple way, the dangerousness of the
application. This score is a number ranging over the interval [0, 15], where 0 represents
an application that only requires unharmful permissions, whilst 15 is a strongly critical
application that requires all the Android permissions.

2.1 Threat Indexes

The goal of the proposed method is to compute a threat score of applications accord-
ing to the permissions that they declare. For this reason, we have analyzed all the 120

1 http://developer.android.com/reference/android/Manifest.permission.html

4

default Android permissions, and scored according to their threat. For each permission
we have defined three threat indexes, to represent the type of threat and the severity of
damage that can be achieved if these permissions are exploited by a malicious appli-
cation. These indexes are: privacy threat, system threat, and money threat, and they are
defined in the interval [0, 1], where 0 means no threat and 1 means the highest threat
(see Table 1). We have manually assigned to each permission these three threat values,
according to the actions, or resources, controlled by that specific permission and their
relation with well-known malware attacks. In more details, the rationale of which value

0 No Threat
0.2 Low Threat
0.4 Low-to-Moderate Threat
0.6 Moderate Threat
0.8 Moderate-to-High Threat
1 High Threat

Table 1: Threat Levels

to assign to each threat index, according to the considered permission, is discussed in
the following.

Privacy Threat Permissions with a high value of this threat are those that control
the access to sensitive data, e.g. the user’s contact list, stored files, Internet book-
marks and chronology, or SIM and device information such as the IMEI and IMSI
codes. On the other hand, a medium-low value of privacy threat is assigned to those
permissions that access sensors such as camera or microphone, since they can be
maliciously used to spy the user behavior.

System Threat A high value of system threat is assigned to applications accessing
system data, e.g. permissions that allows the application to write to the device mem-
ory, install and uninstall other applications, or access sensors whose improper use
can leak the battery energy.

Money threat High values of this index are assigned to permissions that control ser-
vices whose use directly imply a money cost, such a phone calls or outgoing SMS.
Conversely, if the cost is indirectly related to a specific permission, it receives a
medium money threat value, e.g. the CHANGE NETWORK STATE permission that
allows an application to enable or disable the data connection whose available traf-
fic amount is generally limited to a few Gigabytes per month and, afterward, the
user has to pay all the outgoing/incoming traffic byte per byte.

Example. The permission SEND SMS enables an application to send SMS messages
without requiring user confirmation. Thus, an application that declares this permission
can send SMS messages, with any text, at any rate, and at any phone number, without
the user noticing it (unless she checks her available credit). This permission has been
exploited by several malware to leak the user credit by sending messages to premium-
rate number, or to threaten her privacy by sending information, such as the IMEI and

5

IMSI codes, to a phone number controlled by the attacker [5]. Table 2 shows the threat
indexes assigned to the permission SEND SMS.

Permission Privacy Threat System Threat Money Threat
SEND SMS 0.8 0 1

Table 2: Threat Level of SEND SMS permission

The privacy threat is considered medium-high since SMS messages can be used as
a vector to steal sensitive information (some malware use them to do so). However,
this information has to be accessed before it can be sent and this requires other spe-
cific permissions. Our complete classification of Android permissions can be found in
the Appendix. It is worth noticing that we do not consider the default “signature” and
“signature-or-system” permissions, since they can only be requested by device manu-
factures or by Google applications that we assume trustworthy. Moreover, those per-
missions are not shown to the user at install-time, thus they should not be part of the
scoring process.

2.2 Global Threat Score

For each application α, we define the global threat score σ, which is a function of the
threat score of all the permissions declared by the application α, as follows:

σ =

n∑
i=1

wppti + wssti + wmmti

max {1, dlog(n)e}
(1)

where n is the number of permissions declared by the application α, pti, sti, mti are,
respectively, the privacy, system, and money threat of the i-th permission required by
α, and wp, wt, wm are used to weigh the importance of a specific threat factor. In
the current implementation, we consider wm being three times greater than wt and
wp: we consider the money threat the more relevant, since it can harm the user more
directly. The number of permissions that concern privacy threat and system threat are
three time larger than the number of permissions concerning money. The denominator
of (1) should render the idea that an application with a lot of medium threat permissions
should not be considered as dangerous as an application that comes with few extremely
dangerous permissions. We consider applications with σ lower than 4 as low-threat
applications, while ones with σ in the interval [1, 4] are moderate threat to high-threat.
Higher values of σ mean extremely critical applications.

The value σ estimates how much an application is critical from the security point
of view. Hence, the more permissions are required by an application, and the more dan-
gerous these permissions are, the more critical the application becomes. If an applica-
tion receives a low-threat score, this should increase the likelihood that this application
is downloaded and, as a consequence, this should encourage developers to accurately

6

choose the permissions required by their applications. However, several applications
actually require a large number of permissions to perform all their functions, especially
communication and social applications, and they should not be considered as suspi-
cious. This leads us to rely on a multi-criteria decision system (Section 3) in order to
classify an application with respect to a set of criteria, among which the threat score σ.

3 Multi-criteria assessment of Android applications

In this section, we show how to apply the Analytical Hierarchy Process (AHP) to assess
the security level of an Android application. Before instantiating the methodology, we
briefly recall the basic steps of AHP.

3.1 The Analytical Hierarchy Process

The Analytic Hierarchy Process (AHP) [6,7] is a multi-criteria decision making tech-
nique, which has been largely used in several fields of study. Given a decision problem,
where several different alternatives can be chosen to reach a goal, AHP returns the
most relevant alternative with respect to a set of previously established criteria. This
approach requires to subdivide a complex problem into a set of sub-problems, equal in
number to the chosen criteria, and then compute the solution (alternative) by properly
merging the various local solutions for each sub-problem.

The process can be described using an example: let the reader suppose to have as
goal “choosing a restaurant for dinner”. The possible alternatives are a Japanese sushi
bar, a French brasserie, and an Italian trattoria. The problem must be structured as a
hierarchy, as shown in Figure 1, linking goal and alternatives through a set of criteria.
In the proposed example, appropriate criteria could be: cost, food, and staff.

Goal

Criterion 1 Criterion 2 Criterion n

Alternative 1 Alternative 2 Alternative m

Alternatives

Criteria

.....

.....

Fig. 1: Generic AHP Hierarchy

Once the hierarchy is built, the relevance of each alternative with respect to each
criterion is established, comparing them in a pairwise fashion. Comparisons are done

7

Intensity Definition Explanation
1 Equal Two elements contribute equally to the objective
3 Moderate One element is slightly more relevant than another
5 Strong One element is strongly more relevant over another
7 Very strong One element is very strongly more relevant over another
9 Extreme One element is extremely more relevant over another

Table 3: Fundamental Scale for AHP

through a scale of numbers typical to AHP (see Table 3). The scale indicates how many
times an alternative is more relevant than another one, with respect to a specific crite-
rion. The relevance is established according either to subjective or objective statements;
for example, if the Italian trattoria is much more cheaper than the Japanese sushi bar, we
can state that the alternative trattoria is strongly more relevant (and then more advised)
than the sushi bar according to the cost criterion.

Pairwise Comparison Matrices. Pairwise comparisons for each criterion are expressed
in a matricial form, called pairwise comparison matrices. A pairwise comparisons ma-
trix M is a square matrix n × n (where n is the number of alternatives), which has
positive entries and it is reciprocal, i.e. for each element aij , aij = 1

aji
. For compar-

isons matrices the concept of consistence is defined. A comparison matrix of size n×n
is consistent if ai,j · aj,k = ai,k, ∀(i, j, k). If a comparison matrix is consistent, the
pairwise comparisons are well related between them. However, it is difficult to obtain
perfectly consistent matrices using empirically defined comparisons. AHP requires that
comparisons matrices are, at least, semi-consistent. To measure the consistency of a
comparison matrix, the consistency index CI = λmax−n

n−1 has been defined [8]. For a
consistent matrix CI = 0, whilst a matrix is considered semi-consistent if CI < 0.1.
If this condition does not hold, the comparisons matrix should be re-evaluated. Table 4
shows the comparison matrix for the cost criterion of the three restaurants example. The
same procedure is repeated to compare the restaurants with respect to the other criteria,
namely food and staff, obtaining two additional comparisons matrices that we do not
report for the sake of brevity.

C
O

ST

Ja
pa

ne
se

It
al

ia
n

Fr
en

ch

L
oc

.P
ri

o.

Japanese 1 1
5

1
3 0.11

Italian 5 1 2 0.58
French 3 1

2 1 0.31
Table 4: Example Comparisons Matrix: Restaurants vs Cost (CI=0.0018473)

8

How to Compute Local Priorities. Local priorities express the relevance of the alterna-
tives for a specific criterion. Given a comparison matrix, local priorities are computed
as the normalized eigenvector associated with the largest eigenvalue [9]. In Table 4, the
vector of local priorities for the cost criterion is reported on the right side of the matrix,
and it expresses that, for the cost criterion, the Italian restaurant is the most advised
among the three alternatives.

Furthermore, it is possible to express the relevance of a criterion with respect to the
goal. For example, if the dinner cost has more relevance than the kindness of the staff,
that is, we may accept that the staff kindness is not satisfactory, but is very important
that the dinner is cheap, this can be specified using the scale of Table 3. Hence, we have
an additional pairwise comparisons matrix for the criteria, which size is k × k where k
is the number of criteria.

How to Compute Global Priorities. Global priorities are computed through a weighted
sum of the local priorities computed in the previous step:

P aig =

k∑
j=1

pcjg · paicj (2)

where P aig is the global priority of the alternative ai, p
cj
g is the local priority of criterion

cj with respect to goal and paicj is the local priority of alternative ai with respect to
criterion cj . The vector of global priorities for the restaurant problem is computed as:

Pg = 0.47

0.110.58
0.31

+ 0.15

0.10.6
0.3

+ 0.38

0.310.24
0.45

 =

0.190.45
0.36


Where {0.47, 0.15, 0.38} are an example of local priorities of the criteria, and the col-
umn vectors are the local priorities of each criterion w.r.t. the three alternatives. This
result means that the Italian trattoria is the best choice2.

3.2 An AHP Instance for Evaluating Android Applications

We instantiate the AHP decision methodology to assess the quality of an Android appli-
cation as follows: given an Android application with the following parameters: a threat
score σ, a developer δ, a number of download η , a market µ , a user-rating ρ, then the
goal consists in assigning to the application one the following alternative labels:

Trusted. This alternative means that the application correctly works and should not
hide malicious functionalities.

Untrusted. This alternative means that, even if apparently working as the user ex-
pects from a functional perspective, the application could violate the security of the
mobile device.

Deceptive. This alternative means that the application is neither functional nor secure.
2 The numerical values have been assigned as an example to show a well-formed matrix. The

authors do not aim at ranking Japanese, Italian, and French restaurants.

9

The problem is parametric w.r.t. the application, thus for two different applications
the same fixed alternatives have a different relevance w.r.t. the same criterion. Hence,
the five parameters (σ, δ, η, µ, ρ), wich are the criteria of the problem, assume different
values for different applications.

In the following we explain how to build the related comparison matrices and the
possible values that each criterion may assume:

Market (µ). Applications are generally distributed through application markets. The
most popular market is Google Play, also referred as the official market. A de-
veloper that wants to publish applications on Google Play has to buy a developer
account at the price of 25$, receiving in exchange a private key that she will use
to digitally sign her application before publishing them [1]. If users report an ap-
plication as malicious, then this application is removed both from the market and
remotely from all the devices that have installed it; moreover, the developer can be
tracked and blacklisted. In addition, Google Play includes some reputation indexes
that should help the user to understand the application quality. These features make
the official market a trustworthy place where to download apps. Nevertheless, sev-
eral malware have been found in the Android Market [10][11] starting from the
second half of year 2011.
There exists also a plethora of unofficial marketplaces that do not require developer
registration and that give access to some applications that are not available on the
market. However, unofficial markets often miss reputation indexes and sometimes
there is no control on the quality of the applications, so that it is easier to acci-
dentally download malicious applications. We also consider a third value for the
market parameter: manually installed. This is the case in which the user manually
installs the application, without the need of an installer, like those that are usually
necessary to download apps from markets, both official and unofficial ones.
With reference to Table 3, we show the relevance of each alternative, for the three
possible values of µ:

– µ = official: we consider that trusted is moderately more relevant than deceptive
and strongly more relevant than untrusted.

– µ = unofficial: we consider that untrusted is moderately more relevant than
trusted and slightly more relevant thandeceptive.

– µ = manually installed: we consider that untrusted is slightly more relevant
than trusted and deceptive (that are equally relevant).

According to this information, comparison matrices are directly computed (see Ap-
pendix for all the comparison matrices).

Developer (δ). We consider three types of developers: standard, Top, and Google.
Google rewards the best developers with a Top Developer badge, reported on each
application they publish. Hence, we are considering these developers as strongly
trusted and known to produce high-quality applications. On Google Play, Google
Inc. itself is considered a Top Developer; however, we consider Google more trusted
than other developers, since it distributes apps that often are vital to the normal ac-
tivity of Android smartphones.
All the other developers are considered standard and since the Top Developer badge
is only used on Google Play, all the developers of applications from unofficial mar-
kets have been labeled standard. We make this assumption because applications

10

coming from unofficial markets can be modified versions of well-known applica-
tions on Google Play, but these modifications also change the identity of the devel-
oper, together with her trustworthiness.
Evaluating pairs of alternatives with respect to the developer means that:

– δ = Google: we consider that trusted is extremely more relevant than deceptive
and untrusted (that are equally relevant).

– δ = Top Developer: we consider that trusted is very strongly more relevant than
untrusted and deceptive (that are equally relevant).

– δ = Standard: we consider that the three alternatives are equally relevant.
Number of downloads (η). Several markets report the number of downloads for each

application. As an example, the so-called “killer applications”, i.e. extremely pop-
ular apps, have been downloaded from Google Play more than 100 millions of
times. In our opinion, these applications should be considered differently from
those downloaded much fewer time, e.g. less than 100 times. Hence, we define
7 intervals in which the value η may fall. For very high values of η, trusted is ex-
tremely relevant. As the value of η decreases, the relevance slowly passes from
trusted to untrusted.

User Rating (ρ). Users can rate applications and leave a comment, which can be shown
to other users. Rating is generally expressed as a number that ranges from 1 to 5.
We consider applications with a rate less than 2 as low-quality, for which the de-
ceptive alternative is extremely more relevant than the trusted one. A score higher
than 4 means a high-to-very-high quality apps for which the trusted alternative is
very strongly more relevant than the other two. Intermediate values mean a neutral
comparisons matrix.

Threat Score (σ). For each application the threat score is computed as explained in
Section. 2. We define the following intervals:

– σ < 4: trusted is very strongly more relevant than untrusted and moderately
more relevant than deceptive.

– 4 ≤ σ ≤ 7 : untrusted is very strongly more relevant than the other alternatives
(that are equally relevant).

– σ > 7: untrusted is extremely more relevant than trusted, and deceptive is
strongly more relevant than trusted.

For marketplaces without download counters and/or rating systems, we define two
additional comparison matrices whose elements are all equal to 1. Globally, we define
20 comparison matrices, but it is possible to increase their number to compute a finer
granularity for each criterion. Finally, it is worth noticing that the list of proposed cri-
teria is not exhaustive, and the methodology allows the insertion of other rules helpful
to evaluate the alternatives. In the current implementation we consider all the criteria as
equally relevant.

4 Implementation and Results

We have developed a framework to analyze and classify Android applications, which
fully implements the previous strategy. Since several markets do not allow the direct

11

download of apk files on a personal computer, and the applications are installed directly
on the device through an installer, we have firstly used the ADB tool to extract the apk
files from the device and, secondly, apktool decoder 3 to extract the manifest files.

To compute the application threat score σ, we have extracted the permissions from
the manifest file using an XML parser, and we have computed its σ value according to
formula (1). We have used Matlab4 to implement AHP. Our test-set is composed of 180
Android applications of different categories, which we know in advance to be:

– Good App: Application that behaves correctly both from the security and functional
point of view.

– Infected: Application infected by a malware.
– Bad App: Application whose behavior is not coherent with the declared one.

For each application, the five parameters (score σ, market µ, developer δ, rating ρ, and
download number η) have been given as input to our implementation of AHP.

In more detail, the test-set consists of:

– 90 applications that come from Google Play, and 50 that come from unofficial
markets, whilst 40 are manually installed. Two of the applications coming from
unofficial markets and 38 of those manually installed are infected by malware.

– Application categories: Augmented Reality, Books and News, Communication,
Desktop Manager, Entertainment, File Managing, Game, Social and Utility, and
Antivirus.

– The applications user rating ranges over {1, . . . , 5}.
– The number of downloads ranges over [0, 10M+].
– Applications produced by standard developers, Top Developers, or Google.

The results of the tests are shown in Figure 2. All the infected applications have
been recognized by AHP as untrusted. It is worth noticing that some good apps also
fall in this class. These applications come from unofficial markets, for which no user
rating was available and, hence, they cannot be considered trusted. All the applications
coming from Google Play have been classified either as trusted or deceptive on the base
of the user rating, threat score, and number of downloads. All the bad apps applications
have been considered deceptive.

In the following subsection we describe the application of AHP to two of these
applications and the corresponding results.

4.1 Baseball Superstars 2010

Let us suppose that we are uncertain about the nature of an application called Baseball
Superstars 2010. We can apply AHP using the values of the five parameters in Table 5.
As an example, Table 6 shows the matrix used to compare the three alternatives with
respect to the application developer criterion. Baseball Superstars 2010 has been devel-
oped by a Top Developer.

3 http://code.google.com/p/android-apktool
4 http://www.mathworks.com/products/matlab/

12

Fig. 2: Evaluation Results

Name σ ρ µ δ η
BBSS2010 1 3.8 Google Play Top Developer 10M+

Table 5: Parameters of Baseball Superstars 2010

top developer Tr
us

te
d

U
nt

ru
st

ed
D

ec
ep

tiv
e

L
oc

.P
ri

o.

Trusted 1 4 7 0.7
Untrusted 1

4 1 4 0.23
Deceptive 1

7
1
4 1 0.07

Table 6: Alternatives vs Criterion: Developer for BBSS2010

Top Developers generally produce high quality apps and they are not likely to pub-
lish malicious apps. This is supported by the priorities shown in Table 6. We notice that
trusted is very strongly favored with respect to deceptive and strongly favored with re-
spect to untrusted. Trusted obtains a higher priority with respect to the other alternatives.
Using (2), we merge these local priorities with the ones coming from the comparison
matrices for the other four parameters. Thus, we have the vector of the global priorities:
{0.7, 0.16, 0.14}, meaning that the application is considered trusted

On a repository of well-known malicious apps5, we have found an infected version
of this game trojanized by the Geinimimalware. This malware leaks information con-
cerning both the user and the device, which is sent via SMS to a number controlled by

5 http://contagiominidump.blogspot.com

13

the attacker. Moreover, it opens a backdoor6. Table 7 shows the parameters’ values for
the two versions of the app. The trojanized version of Baseball Superstars asks several
permissions; hence, its threat score σ is much higher than the genuine version. Apply-
ing AHP, we have the following global priorities for the malware: {0.23, 0.49, 0.28}.
The potential danger of the application has been recognized; in fact, AHP classifies this
application as untrusted.

Name σ ρ µ δ η
BBSS2010 1 3.8 Google Play Top Developer 10M+
BBSS2010 (Trojan) 7.3 - - Standard Developer -

Table 7: Two Versions of Baseball Superstars 2010

4.2 Skype

Skype is a popular software used for VoIP and free chat and its mobile version obtained
a large success: anyone can make phone calls via Skype with their smartphones, using
the data connection instead of the classical and expensive phone call. To work properly,
the Android version of Skype requires a large number of permissions with a high
threat. In fact, computing the threat score with the expression presented in Section 2,
Skype gets a score of 6.8. Therefore, Skype is an example of a high threat application.
In our analysis, we have considered two Skype versions, as reported in Table 8.

Name σ ρ µ δ η
Skype 6.8 3.8 Google Play Standard Developer 10M+
Skype 6.8 4 Unofficial Standard Developer -

Table 8: Two Skype Versions

Applying AHP on the version of Skype coming from the official market, we have
produced the following global priorities vector {0.47, 0.4, 0.13}, which means that the
application looks trusted; in fact, the reputation of the market, and the large number of
downloads, strongly raise the trustworthiness of this application, even if it has received a
high threat score. For the Skype version downloaded from the unofficial market, which
does not even provide a download counter, the global priorities are: {0.29, 0.52, 0.19},
and the application is considered untrusted. Even if the two versions of this app require
the same set of permissions, it is possible that their source codes are different (possibly
malicious). Since more than 10 millions of users have downloaded the version from the
official market, it is strongly unlikely that malicious behaviors have not been noticed
and reported, forcing the application removal from the market.

6 http://www.symantec.com/security response/writeup.jsp?docid=2011-010111-5403-
99&tabid=2

14

5 Related Work

Several extensions and improvements to the Android permissions system have been
recently proposed. [12] proposes a security framework that regulates the actions of An-
droid applications defining security rules concerning permissions and sequence of oper-
ations. New rules can be added using a specification language. The application code is
analyzed at deployment-time to verify whether it is compliant to the rule, otherwise it is
considered as malicious code. Our proposal does not require the code to be decompiled
and analyzed, since it only requires the permissions list that can be retrieved from the
manifest file and other generic information that can be retrieved from the website where
the application can be downloaded.

Authors of [2] present a finer grained model of the Android permission system. They
propose a framework, named TISSA, that modifies the Android system to allow the user
to choose the permissions she wants to grant to an application and those that have to
be denied. Using data mocking, they ensure that an application works correctly even
if it is not allowed to access the required information. However, their system focuses
on the analysis of privacy threatening permissions and it relies on the user expertise
and knowledge. A work similar to TISSA is presented in [13]. The authors designed
an improved application installer that allows to define three different policies for each
permission: allow, deny, or conditional allow. Conditional allow is used to define a
customized policy for a specific permission by means of a policy definition language.
However, the responsibility of choosing the right permissions still falls on the user.

In [14], applications have been classified on the base of their required permissions.
Applications have been divided in functional clusters by means of Self Organizing
Maps, proving that apps with the same set of permission have similar functionalities.
However this work does not differentiate between good and bad (trojanized) apps. Fi-
nally, another analysis of Android permissions is presented in [4], where the authors
discuss a tool, Stowaway, which discovers permission overdeclaration errors in apps.
Using this tool, it is possible to analyze the 85% of Android available functions, includ-
ing the private ones, to obtain a mapping between functions and permissions.

6 Conclusions and Future Work

We have presented a multi-criteria evaluation of Android applications, on the basis of
their meta-data, such as reputation indexes and declared permissions. We have proposed
a novel definition for the threat score of an application, according to the application
declared permissions. The proposed decision making procedure combines this threat
score with information regarding the developer, the rating, and the number of downloads
of the application. We have validated this procedure by testing it on well-known trusted
and infected applications. The results confirm the good nature, or the malicious nature,
of such applications. The proposed solution is based upon static analysis of XML files
and, hence, it does not require the code to be decompiled and then analyzed.

We are currently investigating the possible combination of the decision framework
with a per-application monitoring intrusion detection systems (IDS). Per-application
IDSes generally monitor only a subset of all the applications running on a device, e.g.

15

those that are considered suspicious. Since monitoring is a costly operation, from the
point of view of resources, we aim to combine the proposed approach with an IDS, to
monitor only the applications that received an untrusted classification.

References

1. S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.R. Sadeghi, B. Shastry: Practical and
Lightweight Domain Isolation on Android. In ACM, ed.: 1st ACM workshop on Security
and privacy in smartphones and mobile devices (SPSM11). (2011) 51 – 61

2. Y. Zhou, X. Zhang, X. Jiang, V. W. Freeh: Taming information-stealing smartphone appli-
cations (on android). In: 4th International Conference on Trust and Trustworthy Computing
(TRUST 2011). (2011)

3. A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner: Android per-
missions: User attention, comprehension, and behavior. Technical report, Electri-
cal Engineering and Computer SciencesUniversity of California at Berkeley (2012)
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-26.html.

4. A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner: Android Permissions Demystified. In
ACM, ed.: 8th ACM conference on Computer and Communications Security (CCS’11).
(2011) 627 – 638

5. Xuxian Jiang: Multiple Security Alerts: New Android Malware Found in Official and Alter-
native Android Markets (2011) http://www.csc.ncsu.edu/faculty/jiang/pubs/index.html.

6. Saaty, T.L.: Decision-making with the ahp: Why is the principal eigenvector necessary.
European Journal of Operational Research 145(1) (2003) 85–91

7. Saaty, T.L.: Decision making with the analytic hierarchy process. International Journal of
Services Sciences 1(1) (2008)

8. Saaty, T.L.: How to make a decision: The analytic hierarchy process. European Journal of
Operational Research 48(1) (1990) 9–26

9. Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of Mathemat-
ical Psychology 15(3) (1977) 234–281

10. A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner: A survey of mobile malware in the
wild. In ACM, ed.: 1st ACM workshop on Security and privacy in smartphones and mobile
devices (SPSM11). (2011) 3 – 14

11. R. Cannings: An update on Android Market security (2011)
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html.

12. W. Enck, M. Ongtang, P. McDaniel: On Lightweight Mobile Phone Application Certifi-
cation. In ACM, ed.: 16th ACM conference on Computer and Communications Security
(CCS’09). (2009) 235 – 254

13. M. Nauman, S. Khan, X. Zhang: Apex: Extending Android Permission Model and En-
forcement with User-defined Runtime Constraints. In ACM, ed.: 5th ACM Symposium on
Information Computer and Communication Security (ASIACCS’10). (2010)

14. D. Barrera, H.G. Kayacik, P.C. van Oorschot, A. Somayaji: A Methodology for Empirical
Analysis of Permission-Based Security Models and its Application to Android. In ACM,
ed.: 17th ACM Conference on Computer and Communications Security (CCS’10. (2010)

16

Appendix

Due to the requirement of blind review, we provide in this appendix data that can be
used to replicate our experiments. We report here the full list of Android permissions
with their threat-score, the comparison matrices used by AHP and the full list of tested
applications.

Permissions

PT, ST and MT, in Tab. 9 stand, respectively, for Privacy Threat, System Threat and
Money Threat.

Permission Class PT ST MT
android.permission.ACCESS CHECKIN PROPERTIES Signature 0 0 0
android.permission.ACCESS COARSE LOCATION Dangerous 0.4 0 0
android.permission.ACCESS FINE LOCATION Dangerous 0.8 0 0
android.permission.ACCESS LOCATION EXTRA COMMANDS Normal 0.2 0 0
android.permission.ACCESS MOCK LOCATION Normal 0 0.4 0
android.permission.ACCESS NETWORK STATE Normal 0.2 0 0.4
android.permission.ACCESS SURFACE FLINGER Signature 0 0 0
android.permission.ACCESS WIFI STATE Normal 0 0 0.4
android.permission.ACCOUNT MANAGER Signature 0 0 0
android.permission.AUTHENTICATE ACCOUNTS Dangerous 0.6 0 0
android.permission.BATTERY STATS Normal 0 0.2 0
android.permission.BIND APPWIDGET Signature or System 0 0 0
android.permission.BIND DEVICE ADMIN Signature 0 0 0
android.permission.BIND INPUT METHOD Signature 0 0 0
android.permission.BIND REMOTEVIEWS Signature 0 0 0
android.permission.BIND TEXT SERVICE Signature 0 0 0
android.permission.BIND VPN SERVICE Signature 0 0 0
android.permission.BIND WALLPAPER Signature or System 0 0 0
android.permission.BLUETOOTH Dangerous 0.6 0.2 0
android.permission.BLUETOOTH ADMIN Dangerous 0.8 0.6 0
android.permission.BRICK Signature 0 0 0
android.permission.BROADCAST PACKAGE REMOVED Signature 0 0 0
android.permission.BROADCAST SMS Signature 0 0 0
android.permission.BROADCAST STICKY Normal 0 0.2 0
android.permission.BROADCAST WAP PUSH Signature 0 0 0
android.permission.CALL PHONE Dangerous 0.6 0.2 1
android.permission.CALL PRIVILEGED Signature or System 0 0 0
android.permission.CAMERA Dangerous 0.8 0.6 0
android.permission.CHANGE COMPONENT ENABLED STATE Signature 0 0 0
android.permission.CHANGE CONFIGURATION Dangerous 0 0.4 0
android.permission.CHANGE NETWORK STATE Dangerous 0.2 0.6 0.6
android.permission.CHANGE WIFI MULTICAST STATE Dangerous 0 0.2 0.2
android.permission.CHANGE WIFI STATE Dangerous 0 0.6 0.6
android.permission.CLEAR APP CACHE Dangerous 0 0.2 0

17

android.permission.CLEAR APP USER DATA Signature 0 0 0
android.permission.CONTROL LOCATION UPDATES Signature or System 0 0 0
android.permission.DELETE CACHE FILES Signature 0 0 0
android.permission.DELETE PACKAGES Signature or System 0 0 0
android.permission.DEVICE POWER Signature 0 0 0
android.permission.DIAGNOSTIC Signature 0 0 0
android.permission.DISABLE KEYGUARD Normal 0 0.2 0
android.permission.DUMP Dangerous 0 0.4 0
android.permission.EXPAND STATUS BAR Normal 0 0.2 0
android.permission.FACTORY TEST Signature 0 0 0
android.permission.FLASHLIGHT Normal 0 0.2 0
android.permission.FORCE BACK Signature 0 0 0
android.permission.GET ACCOUNTS Normal 0.6 0 0
android.permission.GET PACKAGE SIZE Normal 0 0.2 0
android.permission.GET TASKS Dangerous 0.4 0.2 0
android.permission.GLOBAL SEARCH Signature or System 0 0 0
android.permission.HARDWARE TEST Signature 0 0 0
android.permission.INJECT EVENTS Signature 0 0 0
android.permission.INSTALL LOCATION PROVIDER Signature or System 0 0 0
android.permission.INSTALL PACKAGES Signature or System 0 0 0
android.permission.INTERNAL SYSTEM WINDOW Signature 0 0 0
android.permission.INTERNET Dangerous 0 0.6 0.4
android.permission.KILL BACKGROUND PROCESSES Normal 0 0.4 0
android.permission.MANAGE ACCOUNTS Dangerous 0.8 0.6 0.6
android.permission.MANAGE APP TOKENS Signature 0 0 0
android.permission.MASTER CLEAR Signature or System 0 0 0
android.permission.MODIFY AUDIO SETTINGS Dangerous 0.2 0.6 0
android.permission.MODIFY PHONE STATE Dangerous 0 0.8 0
android.permission.MOUNT FORMAT FILESYSTEMS Dangerous 0.8 1 0
android.permission.MOUNT UNMOUNT FILESYSTEMS Dangerous 0.6 0.8 0.4
android.permission.NFC Dangerous 0.6 0.2 0
android.permission.PERSISTENT ACTIVITY Unknown 0 0 0
android.permission.PROCESS OUTGOING CALLS Dangerous 0.8 0.6 0.2
android.permission.READ CALENDAR Dangerous 0.8 0 0
android.permission.READ CONTACTS Dangerous 1 0 0
android.permission.READ FRAME BUFFER Signature 0 0 0
android.permission.READ INPUT STATE Signature 0 0 0
android.permission.READ LOGS Dangerous 0.8 0.8 0
android.permission.READ PHONE STATE Dangerous 0 0.4 0
android.permission.READ PROFILE Dangerous 1 0 0.2
android.permission.READ SMS Dangerous 1 0 0
android.permission.READ SOCIAL STREAM Dangerous 1 0 0
android.permission.READ SYNC SETTINGS Normal 0 0.2 0
android.permission.READ SYNC STATS Normal 0 0.2 0
android.permission.REBOOT Signature or System 0 0 0
android.permission.RECEIVE BOOT COMPLETED Normal 0.2 0.4 0
android.permission.RECEIVE MMS Dangerous 1 0 0.8

18

android.permission.RECEIVE SMS Dangerous 1 0 0.8
android.permission.RECEIVE WAP PUSH Dangerous 0.4 0.6 0.6
android.permission.RECORD AUDIO Dangerous 0.8 0.6 0
android.permission.REORDER TASKS Dangerous 0.4 0.2 0.4
android.permission.RESTART PACKAGES Normal 0 0.2 0
android.permission.SEND SMS Dangerous 0.8 0.2 1
android.permission.SET ACTIVITY WATCHER Signature 0 0 0
android.permission.SET ALWAYS FINISH Dangerous 0 0.6 0
android.permission.SET ANIMATION SCALE Dangerous 0 0.8 0
android.permission.SET DEBUG APP Unknown 0 0 0
android.permission.SET ORIENTATION Signature 0 0 0
android.permission.SET POINTER SPEED Signature 0 0 0
android.permission.SET PREFERRED APPLICATIONS Unknown 0 0 0
android.permission.SET PROCESS LIMIT Dangerous 0 0.8 0
android.permission.SET TIME Signature or System 0 0 0
android.permission.SET TIME ZONE Dangerous 0 0.4 0
android.permission.SET WALLPAPER Normal 0 0.2 0
android.permission.SET WALLPAPER HINTS Normal 0 0.2 0
android.permission.SIGNAL PERSISTENT PROCESSES Dangerous 0 0.6 0
android.permission.STATUS BAR Signature or System 0 0 0
android.permission.SUBSCRIBED FEEDS READ Normal 0.6 0 0
android.permission.SUBSCRIBED FEEDS WRITE Dangerous 0.6 0 0
android.permission.SYSTEM ALERT WINDOW Dangerous 0 0.8 0
android.permission.UPDATE DEVICE STATS Signature 0 0 0
android.permission.USE CREDENTIALS Dangerous 0.8 0.6 0.6
android.permission.USE SIP Dangerous 0.8 0.6 0.2
android.permission.VIBRATE Normal 0 0.2 0
android.permission.WAKE LOCK Dangerous 0 0.2 0
android.permission.WRITE APN SETTINGS Dangerous 0 0.6 0.2
android.permission.WRITE CALENDAR Dangerous 0.8 0.2 0
android.permission.WRITE CONTACTS Dangerous 0.6 0.6 0
android.permission.WRITE EXTERNAL STORAGE Dangerous 0.2 0.6 0
android.permission.WRITE GSERVICES Signature or System 0 0 0
android.permission.WRITE PROFILE Dangerous 0.6 0.8 0
android.permission.WRITE SECURE SETTINGS Signature or System 0 0 0
android.permission.WRITE SETTINGS Dangerous 0 0.6 0
android.permission.WRITE SMS Dangerous 0.4 0.2 0
android.permission.WRITE SOCIAL STREAM Dangerous 0.6 0 0
android.permission.WRITE SYNC SETTINGS Dangerous 0 0.4 0

Table 9: Full List of Android Permissions

19

Tested Applications

Table 10 shows the list of tested applications along with the value of each parameter and
the final decision of AHP. In case of the Market parameter, “MI” stands for Manually
Installed.

Application Developer Market Score Rating Downloads Category Decision
SifirFacebook Standard Unoff. 2,8 5 1500 Social Trusted
Skype Standard Unoff. 6,8 1 1000 Social Untrusted
Kakao Standard Unoff. 4,6 0 200 Communication Untrusted
K9 Mail Standard Unoff. 1,9 4 200 Communication Trusted
Bluetooth FT Standard Unoff. 3 5 1000 Communication Trusted
OkeyOnline Standard Unoff. 2,6 4 5000 Game Trusted
Zombie City Standard Unoff. 2,1 0 500 Game Untrusted
Facebook Standard Unoff. 4 3,5 10K+ Social Untrusted
Angry Birds Standard Unoff. 2,7 4,5 2500+ Game Trusted
Batak Standard Unoff. 2,8 5 2500 Game Trusted
Crackle Standard Unoff. 2,6 4 - Entertainment Trusted
ConnectBot SSHClient Standard Unoff. 1 5 - Utility Trusted
Amazon Mobile Standard Unoff. 1,8 5 - Web Service Trusted
Tap Puzzle Standard Unoff. 2,4 1 - Game Deceptive
MSNTalk (jmsn) Standard Unoff. 2,5 4 - Communication Trusted
Tv.com Standard Unoff. 2,3 4 - Web Service Trusted
Bluetooth FT Standard Unoff. 2,9 0 - Communication Untrusted
iShaver Standard Unoff. 1,5 0 - Utility Untrusted
Barcode Scanner Standard Unoff. 3,8 0 - Utility Untrusted
Smart Phone Mate Standard Unoff. 4 4 - Utility Trusted
101games Standard Unoff. 1,7 5 - Game Trusted
Rock Player Standard Unoff. 1,5 2 - Entertainment Deceptive
Balance the Bomb Standard Unoff. 1,9 5 - Game Trusted
Wells Fargo Mobile Standard Unoff. 2,4 2 - Utility Deceptive
Skype Standard Unoff. 6,8 4 - Communication Untrusted
MSNBC Standard Unoff. 0 3 - Utility Trusted
Paddle Bounce Standard Unoff. 2,4 5 - Game Trusted
Adrive Standard Off. 1,9 2 2500 Cloud Storage Trusted
Paper Toss Top. Dev. Off. 2,8 4,3 10M+ Game Trusted
Calcolo IMU 2012 Standard Off. 1,6 4,4 10K+ Utility Trusted
DragRacing Top. Dev. Off. 1,8 4,3 1M+ Game Trusted
Defender 2 Top. Dev. Off. 2,3 4,6 1M+ Game Trusted
Dropbox Top. Dev. Off. 3,17 5 10M+ Cloud Storage Trusted
iSlash Standard Off. 1,8 4,4 500k+ Game Trusted
OneTouchDrawing Standard Off. 1,9 4,4 1M+ Game Trusted
Avoid The Ghosts Standard Off. 1,6 1 100+ Game Deceptive
Facebook Top. Dev. Off. 4 3,6 100M+ Social Trusted
Facebook Messenger Top. Dev. Off. 3,3 4,3 10M+ Communication Trusted
Car Logo Quiz Standard Off. 1 1,6 10K+ Game Trusted
Sharkfree Standard Off. 1,8 4,3 1M+ Game Trusted

20

BMX Boy Standard Off. 1,8 4,6 1M+ Game Trusted
Jewels Star Standard Off. 1,8 4,7 10M+ Game Trusted
Diamonds Blaze Top. Dev. Off. 2,8 4,5 100K+ Game Trusted
Dungeon Hunter 3 Top. Dev. Off. 3,8 3,8 1M+ Game Trusted
Ice Ace Village Top. Dev. Off. 3,7 4,6 1M+ Game Trusted
Six Guns Top. Dev. Off. 3,7 4,6 1M+ Game Trusted
Piano Perferct Standard Off. 2,5 4,3 10M+ Game Trusted
Deer Hunter Reloaded Top. Dev. Off. 2 4,5 1M+ Game Trusted
Google Translate Google Off. 2,1 4,6 10M+ Utility Trusted
Stickman Assassin Standard Off. 1,8 2,5 10K+ Game Trusted
Fruit Ninja Top. Dev. Off. 1,9 4,5 10M+ Game Trusted
Farm Invasion Top. Dev. Off. 2,6 4,7 100K+ Game Trusted
ilMeteo Standard Off. 2,2 4,3 1M+ Utility Trusted
Temple Run Standard Off. 1,8 4,6 10M+ Game Trusted
Instagram Standard Off. 3,2 4,6 10M+ Social Trusted
Puzzle Bobble Standard Off. 2 2,5 1k+ Game Trusted
LinkedIn Top. Dev. Off. 4 3,7 1M+ Social Trusted
Ocean Aquarium Standard Off. 1,5 2,5 1k+ Wallpaper Trusted
Sound Hound Top. Dev. Off. 2,9 4,4 10M+ Utility Trusted
Astro Standard Off. 2,1 4,6 10M+ File Manager Trusted
Flash Player Top. Dev. Off. 0,6 4,4 100M+ Utility Trusted
Rage of Bahamut Standard Off. 4,5 4,2 500K+ Game Trusted
Voxer Standard Off. 7,3 4,3 10M+ Communication Trusted
SMS Backup Restore Standard Off. 2,5 4,7 1M+ Utility Trusted
Angry Birds Top. Dev. Off. 2,7 4,6 10M+ Game Trusted
Angry Birds Space Top. Dev. Off. 2,7 4,6 10M+ Game Trusted
Temple Runner Standard Off. 2,8 2,9 1M+ Game Trusted
Ultimate Star Wars Lightsaber Standard Off. 2,4 4,6 1M+ Entertainment Trusted
Skype Standard Off. 6,8 3,8 10M+ Communication Trusted
Color Note Standard Off. 1,7 4,5 10M+ Utility Trusted
AlarmDroid Standard Off. 3,5 4,5 1M+ Utility Trusted
Adobe Reader Top. Dev. Off. 1 4,4 10M+ Utility Trusted
Trip Advisor Top. Dev. Off. 2 4,5 1M+ Utility Trusted
Twitter Top. Dev. Off. 4,5 3,9 10M+ Social Trusted
Just Dance 3 Standard Off. 2,1 2,5 1M+ Social Trusted
Viber Standard Off. 8,8 4,2 10M+ Communication Trusted
Waze Top. Dev. Off. 3,1 4,5 1M+ Social Trusted
Whatsapp Top. Dev. Off. 7,4 4,6 10M+ Communication Trusted
Kid Mode Top. Dev. Off. 3,1 4,4 1M+ Utility Trusted
Love Calculator Standard Off. 2,8 2,8 10K+ Entertainment Trusted
Table Tennis Standard Off. 1,6 2,9 100K+ Game Trusted
MADAM Standard MI 4,7 - - IDS Untrusted
TGCom24 Standard Off. 2 4,1 100K+ News Trusted
Area Clienti 3 Standard Off. 3 2,6 10K+ Utility Trusted
ConadApp Standard Off. 3 2,2 500+ Communication Trusted
Android Terminal Emulator Standard Off. 1,3 4,6 1M+ Utility Trusted
Desktop Visualizer Standard Off. 1,9 4,5 1M+ Desktop Changer Trusted

21

QR Droid Standard Off. 3,1 4,5 10M+ Utility Trusted
Dolphin Browser Standard Off. 3,3 4,7 10M+ Web Browser Trusted
System Panel Lite Standard Off. 2,1 4,6 100K+ Utility Trusted
Compass Top. Dev. Off. 2,5 4,3 10M+ Utility Trusted
Simple mp3 Downloader Standard Off. 2,2 4,5 100K+ Utility Trusted
Wikipedia Standard Off. 2,4 4,5 1M+ Books Trusted
Smart System Info Standard Off. 2,7 4,6 10K+ Utility Trusted
Tune In Radio Top. Dev. Off. 1,9 4,5 10M+ Utility Trusted
Shake That Booty Standard Off. 1,3 2,5 100K+ Entertainment Trusted
Ant Smasher Standard Off. 2,3 4,6 10M+ Game Trusted
Go Go Goat Standard Off. 2,3 4,8 1M+ Game Trusted
Maps Google Off. 6 4,4 10M+ Utility Trusted
Search Google Off. 4 4,3 10M+ Utility Trusted
Gmail Google Off. 5,3 4,3 10M+ Utility Trusted
Voice Search Google Off. 8,2 4,1 10M+ Utility Trusted
You Tube Google Off. 4,9 4,1 10M+ Utility Trusted
Google Voice Google Off. 1,7 4,3 1M+ Utility Trusted
Earth Google Off. 1,9 4,4 1M+ Utility Trusted
Drive Google Off. 5,1 4,1 1M+ Cloud Storage Trusted
Currents Google Off. 3,6 3,9 1M+ Utility Trusted
Chrome Google Off. 2,1 4,4 1M+ Web Browser Trusted
Plus Google Off. 6,2 4,2 10M+ Social Trusted
Book Google Off. 4 3 10M+ Entertainment Trusted
Finance Google Off. 1 3,6 1M+ Utility Trusted
Movies Google Off. 4,1 2,4 10M+ Entertainment Trusted
Goggles Google Off. 5,7 4,2 10M+ Augmented Reality Trusted
Shopper Google Off. 4,6 4,2 1M+ Utility Trusted
Listen Google Off. 5,2 3,8 1M+ Entertainment Trusted
adult sex videos Standard Unoff. 1,6 - 100K+ Entertainment Trusted
avg Standard Unoff. 7,75 - 1000+ IDS Untrusted
sex positions Standard Unoff. 2,4 - 10K+ Entertainment Untrusted
duck hunter Standard Unoff. 1,9 - 1000+ Game Untrusted
Fox Fi Standard Unoff. 4,3 - 500+ Utility Untrusted
Android Lightsaber Standard Unoff. 2,1 - 2500+ Entertainment Untrusted
Caveman Standard Unoff. 2,4 - 1000+ Game Untrusted
Candy Zuma Standard Unoff. 2,4 - 1000+ Game Untrusted
chinese horoscope Standard Unoff. 2,9 - 100 Utility Untrusted
anime girls Standard Unoff. 1,3 - 10K+ Entertainment Untrusted
black whip Standard Unoff. 2,8 - 100 Entertainment Untrusted
basketball shots 3d Standard Unoff. 2,2 - 10K+ Game Untrusted
chat on Standard Unoff. 7,5 - 100 Communication Untrusted
beads Standard Unoff. 1,6 - 1000+ Game Untrusted
DogFight Standard Unoff. 2,1 - 1000+ Game Untrusted
3d pong Standard Unoff. 1,8 - 1000+ Game Untrusted
Asia Girl Standard Unoff. 1,8 - 2500+ Entertainment Untrusted
Km Launcher (KMIN) Standard MI 8,3 - - Desktop Manager Untrusted
Km Home (KMIN) Standard MI 6,1 - - Desktop Manager Untrusted

22

Km Installer (KMIN) Standard MI 6,3 - - Desktop Manager Untrusted
Km Launcher (KMIN) Standard Unoff. 8,3 - - Desktop Manager Untrusted
Km Home (KMIN) Standard Unoff. 6,1 - - Desktop Manager Untrusted
Km Installer (KMIN) Standard Unoff. 6,3 - - Desktop Manager Untrusted
Net Traffic (PJApps) Standard MI 6,7 - - Utility Untrusted
Girl Majong (PJApps) Standard MI 4,65 - - Game Untrusted
Zilch (PJApps) Standard MI 4,65 - - Game Untrusted
Media Player (PJApps) Standard MI 6,3 - - Entertainment Untrusted
FTP Client (PJ Apps) Standard MI 4,4 - - Utility Untrusted
Whack a Mole (PJApps) Standard MI 4,65 - - Game Untrusted
Bluetooth File Transfer (PJApps) Standard MI 4,2 - - Utility Untrusted
Vignette (PJApps) Standard MI 5,2 - - Utility Untrusted
Jewels (PJApps) Standard MI 5,3 - - Game Untrusted
Crazy Hamster(Geinimi) Standard MI 5,8 - - Game Untrusted
Gold Miner (Geinimi) Standard MI 5,5 - - Game Untrusted
Jewels (Geinimi) Standard MI 5,6 - - Game Untrusted
Metro Map (Geinimi) Standard MI 6,5 - - Utility Untrusted
JewelsMania (Geinimi) Standard MI 5,5 - - Game Untrusted
ArmoredStrike (Geinimi) Standard MI 6,3 - - Game Untrusted
Shotgun (Geinimi) Standard MI 5,6 - - Game Untrusted
MiniArmy(Geinimi) Standard MI 5,9 - - Game Untrusted
Tower Defense (Geinimi) Standard MI 5,2 - - Game Untrusted
Drakula (Geinimi) Standard MI 5,5 - - Game Untrusted
MiniPlayer (Geinimi) Standard MI 6 - - Entertainment Untrusted
CacheMate (Geinimi) Standard MI 5,6 - - Utility Untrusted
Malaup (Geinimi) Standard MI 7,7 - - Game Untrusted
Instant Hearth Rate (Geinimi) Standard MI 6 - - Utility Untrusted
SMS Backup Utility (Geinimi) Standard MI 5,5 - - Utility Untrusted
MouthOff (Geinimi) Standard MI 6,1 - - Entertainment Untrusted
Net Sentry (Geinimi) Standard MI 5,4 - - Utility Untrusted
Baseball Superstars 2010 (Geinimi) Standard MI 7,3 - - Game Untrusted
Magic Shop (Geinimi) Standard MI 5,8 - - Utility Untrusted
LotSynergy (Geinimi) Standard MI 5,5 - - Utility Untrusted
MonsterHunter (Geinimi) Standard MI 5,9 - - Utility Untrusted
Kosenkov Protector (Geinimi) Standard MI 7,4 - - Utility Untrusted
MonsterHunter (Geinimi) Standard MI 5,9 - - Utility Untrusted
Kosenkov Protector (Geinimi) Standard MI 7,4 - - Utility Untrusted
Hamster Super (YZHC) Standard MI 5,6 - - Game Untrusted
Alsalah(ArSpam) Standard MI 13,56 - - Utility Untrusted
Outlaw Racing (deathrace) Standard Unoff. 4,35 3 - Game Untrusted
Brain Buster Standard Unoff. 6,2 4 - Game Untrusted
Baseball Superstars 2010 Top. Dev. Off. 1 4,1 100K+ Game Trusted

Table 10: Full List of Tested Applications

23

Comparison Matrices

In the following, we report the list of comparison matrices used during the tests.

Score < 4 Trusted Untrusted Deceptive
Trusted 1 8 2

Untrusted 1/8 1 1/6
Deceptive 1/2 6 1

4 < Score < 7 Trusted Untrusted Deceptive
Trusted 1 1/7 2

Untrusted 7 1 7
Deceptive 1/2 1/7 1

Score > 7 Trusted Untrusted Deceptive
Trusted 1 1/8 1/6

Untrusted 8 1 4
Deceptive 6 1/4 1

Std. Dev. Trusted Untrusted Deceptive
Trusted 1 1/2 1

Untrusted 2 1 2
Deceptive 1 2 1

Top. Dev. Trusted Untrusted Deceptive
Trusted 1 4 7

Untrusted 1/4 1 4
Deceptive 1/7 1/4 1

24

Google Trusted Untrusted Deceptive
Trusted 1 8 9

Untrusted 1/8 1 1
Deceptive 1/9 1 1

Official Trusted Untrusted Deceptive
Trusted 1 6 4

Untrusted 1/6 1 2
Deceptive 1/4 1/2 1

Unofficial Trusted Untrusted Deceptive
Trusted 1 1/4 2

Untrusted 4 1 3
Deceptive 1/2 1/3 1

Manually Inst. Trusted Untrusted Deceptive
Trusted 1 1/3 1/2

Untrusted 3 1 3
Deceptive 2 1/3 1

Rating 4-5 Trusted Untrusted Deceptive
Trusted 1 5 8

Untrusted 1/5 1 2
Deceptive 1/8 1/2 1

Rating 2-4 Trusted Untrusted Deceptive
Trusted 1 2 3

Untrusted 1/2 1 4
Deceptive 1/3 1/4 1

Rating 0-2 Trusted Untrusted Deceptive
Trusted 1 1/2 1/9

Untrusted 2 1 1/4
Deceptive 9 4 1

Unrated Trusted Untrusted Deceptive
Trusted 1 1 1

Untrusted 1 1 1
Deceptive 1 1 1

Download 1M+ Trusted Untrusted Deceptive
Trusted 1 6 9

Untrusted 1/6 1 4
Deceptive 1/9 1/4 1

25

Download 100K-1M Trusted Untrusted Deceptive
Trusted 1 4 7

Untrusted 1/4 1 5
Deceptive 1/7 1/5 1

Download 10K-100K Trusted Untrusted Deceptive
Trusted 1 1/2 1

Untrusted 2 1 2
Deceptive 1 1/2 1

Download 2.5K-10K+ Trusted Untrusted Deceptive
Trusted 1 1/3 1

Untrusted 3 1 3
Deceptive 1 1/3 1

Download 500-2.5K Trusted Untrusted Deceptive
Trusted 1 1/2 1/3

Untrusted 2 1 2
Deceptive 3 1/2 1

Download 1-500 Trusted Untrusted Deceptive
Trusted 1 1/4 1/6

Untrusted 4 1 1/3
Deceptive 6 3 1

Download Unknown Trusted Untrusted Deceptive
Trusted 1 1 1

Untrusted 1 1 1
Deceptive 1 1 1

	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit

