

C

Consiglio Nazionale delle Ricerche

CE3: Customizable and Easily Extensible
Ensemble Tool for Motif Discovery

KK..TTiilllláánn,, MM.. LLeeoonncciinnii,, MM.. MMoonnttaannggeerroo

IIT TR-16/2012

Technical report

Ottobre 2012

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CE3: Customizable and Easily Extensible Ensemble Tool
for Motif Discovery

Karina Panucia Tillán
Dip. di Scienze e

Metodi dell’Ingegneria
Univ. di Modena e
Reggio Emilia, Italy

83672@studenti.unimore.it

Mauro Leoncini
Dip. di Ingegneria
dell’Informazione
Univ. di Modena e
Reggio Emilia, Italy

CNR, Istituto di Informatica e
Telematica, Pisa, Italy

leoncini@unimore.it

Manuela Montangero
Dip. di Ingegneria
dell’Informazione
Univ. di Modena e
Reggio Emilia, Italy

CNR, Istituto di Informatica e
Telematica, Pisa, Italy

manuela.montangero@unimore.it

ABSTRACT
Ensemble methods (or simply ensembles) for motif discov-
ery represent a relatively new approach to improve the ac-
curacy of stand-alone motif finders. The performance of an
ensemble is clearly determined by the included finders as
well as the strategy to combine the results returned by the
latter (the so called learning rule). A potential obstacle to
a widespread adoption of ensembles is that the choice of the
particular finders included is closed. Although possible in
principle, the addition to an ensemble of a new “promising”
tool requires knowledge of the internals of the ensemble and
usually non trivial programming skills.

In this research we propose a general architecture for ensem-
bles and a prototype called CE3: Customizable and Easily
Extensible Ensemble, which is meant to be extensible and
customizable at the level of the two key components mod-
ules namely external tools finding and learning rule. In this
way the user will be able to essentially “simulate” any ex-
isting ensemble, create his/her own ensemble according to
his/her preferences on finding tools and learning functions
and, finally, keep it up to date when new tools and new ideas
for learning functions are proposed in literature. These fea-
tures also make CE3 a suitable tool to perform experiments
that may lead to a proper configuration of ensembles in the
research of novel motifs.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific archi-
tectures; J.3 [Life and Medical Sciences]: Biology and
genetics

Keywords
ensemble methods, motif discovery, software architecture

1. INTRODUCTION
The discovery of Transcription Factor Binding Sites (TF-
BSs), i.e., functional DNA sequences involved in gene ex-
pression, is an important and challenging problem in molec-
ular biology. As the experimental protocols available for
TFBS discovery are typically lengthy and costly, the prob-
lem has been tackled also from a computational perspective.
Mathematical models of TFBSs have been proposed [17, 5],
often termed motifs, and many algorithms have been de-
signed and implemented in the last thirty years (see, e.g.,
[1, 18, 16, 15], and [3, 4] for many other references).

Despite such impressive efforts, the prediction accuracy re-
mains low. A relatively recent assessment of thirteen popu-
lar algorithms performed by Martin Tompa and co-authors
has made it clear that no single method (among the ones
tested) performs well on different datasets, and that it is by
no means easy to characterize the inputs for which a method
may give good performances [7].

In relatively recent times, a new approach has been pur-
sued with the aim of overcoming the limitations of existing
motif discovery algorithms (here also termed finders). This
is based on the idea that accurately combining the results
returned by different finders can lead to better TFBSs pre-
dictions than using each finder alone. The tools that follow
this paradigm are known as ensemble methods (or simply
ensembles) [2, 10, 11, 20], but sometimes also termed meta-
predictors [21].

The main supporting argument behind ensemble design is
embodied in the following observation: it is unlikely that
algorithms that use different computational strategies, and
possibly different TFBSs models, may agree on common
stretches of DNA being functional sites by chance only. Ac-
cording to this intuition, virtually all proposed ensembles
tend to rank the highest those common predictions made by
more finders. The actual procedures adopted to “combine”
the finders’ results, often referred to as the learning rules,
may vary a lot across different ensembles. Together with
the choice of the actual finders used (typically third-party,
external software tools), the learning rule is the feature that
most affects the performance of an ensemble.

In this paper, we define the structure of a general ensemble

architecture for motif discovery, called CE3, which is cus-
tomizable and extensible with respect the two key features
mentioned above. We also present a first prototype imple-
mentation of CE3. The key design goal is to make CE3 able
to simulate almost all the available ensembles, also giving
end users the possibility to create their own tool through
the choice of specific finders (and or the addition of new
ones) and of the specific learning rule to adopt.

The addition of a new finder is a semi-automatic process in
CE3, which is guided by the system. During this interac-
tion stage, CE3 gathers (through a question-answering pro-
cedure) the information needed to run the new finder and
to parse its results, storing such information in appropri-
ate XML files. Currently to be included in the ensemble, a
finder must run as a command line utility under Unix/Linux
operating systems.

Even new learning rules may be added to CE3. This, how-
ever, is a somewhat more complicated task. In fact, while
many motif finders exist as “stand-alone” software compo-
nents, learning functions of interest are usually part of larger
software modules, from which they cannot (often) be fac-
tored out as easily. To include new functionalities, though,
CE3 requires that they be coded with well-defined appli-
cation programming interfaces. When this is the case for a
learning rule, the addition process is again a semi-automatic
procedure guided by the system.

Altogether, extending CE3 with new functionalities (new
motif finders and/or new learning rules) is by far much eas-
ier than developing a new tool from scratch. In spite of our
efforts, however, we cannot really maintain that extensibil-
ity be directly exploitable by end users (say, in biomedical
environments). However, only little bioinformatic support
should suffice. To the end user, though, mature CE3 (which
actually means “when Web access will be made available”)
will appear as a customizable, highly flexible tool, giving
the possibility to perform experiments under many different
(but predefined) configurations.

CE3 includes other software components as well, which are
clearly important but that we do not regard as the ones
that mostly characterize our proposal. For this reason, CE3

currently implements the corresponding functions using al-
ready well-established solutions. In particular, for the inter-
nal motif representation and manipulation, CE3 builds on
the TAMO package [8], while for the statistical evaluations
it uses the frequency files available with the RSAT tool [19].
CE3 is written in Python and is available from the authors
upon request.

A detailed description of CE3 architecture is reported in
Section 2, together with a summary of the steps required
to add new motif finders and new learning functions. Note
that here we do not describe any experiments performed
with CE3 on biological data. From the one hand, possible
good results obtained using CE3 can not be ascribed to CE3

itself, but rather to the particular configuration with which
it is used. On the other hand, to find such good configu-
rations requires performing a great number of experiments
on a blend of different datasets, which is matter of ongoing
work.

2. ENSEMBLE ARCHITECTURE
Ensembles used for the Motif Discovery Problem (MDP)
integrate the execution of different de-novo motif finders.
Each finder returns a set of motifs that potentially describe
biologically active sites. These are analyzed by the ensemble
with the aim of increasing the accuracy of predictions. The
general structure of such systems is made of the four main
components listed below and illustrated in Figure 1.

- External algorithms integration module: ensembles in-
tegrate possibly many different (third-party) de-novo
finders.

- Internal motif representation: the motifs returned by
the finders are represented in a uniform way using ap-
propriate data structures and internal motif handling
software.

- Learning rule: one or more learning techniques are
used to discover the most promising motifs. This is
the component that mostly characterizes (and distin-
guishes) today’s available ensembles.

- Output module: the predictions made by the ensemble
is returned to the user in one of the commonly adopted
“external” motif representations (e.g., weight matrices
and text logos), possibly with the explicit list of the
sites found in the input sequences.

The crucial components are clearly the first and third ones.

The choice of the included finders may be a point of strength
to exploit, since a careful combinations of different algo-
rithms may provide substantial improvements in motif pre-
dictions. However, ensembles implemented so far are char-
acterized by a fixed set of finders. Some of them (e.g. Mo-
tifVoter [20]) allow the user to select the particular finders
s/he wishes to use in a particular run; however these are
taken from a predefined and fixed set. While extensions are
possible, they are nonetheless difficult to implement by the
end user. In fact, if one wishes to extend an existing en-
semble with a new algorithm (say one that adopts a new
powerful search strategy), s/hef has to do some non trivial
programming work (whenever source code is available). At
the very least, one has to write code to interact with the new
method, i.e., to wrap its execution and parse the returned
results. This clearly needs knowledge of the ensemble inter-
nals and some programming skills.

The choice of the learning function influences the output
quality, affecting the prediction of relevant motifs. Thus, it
has to be carefully designed to be able to discover relevant
information among all motifs returned by the selected find-
ers. Ensembles implemented so far are characterized by a
specific learning function devised by the tools authors and
hence changes are difficult to implement. Moreover, even
greater efforts are requested if one wishes to add a com-
pletely new learning method to the ensemble.

2.1 Architecture of CE3

CE3’s key features of easy customization and functionality
extension depend on a conceptually simple modification of
the generic ensemble’s structure as shown in Figure 2.

Figure 1: General architecture of an ensemble. Each external tool is interfaced through a specific wrapper
included in the ensemble. The motifs predicted by the external tools are converted to a unique internal
representation and “combined” by the learning methods. The most promising combination is reported as the
output of the ensemble.

Motif finder extensibility. There is a unique general wrapper
that specialize to the various external finders thanks to the
finder descriptions available in XML configuration files. In
order to add a new tool, only two files must be provided,
either directly or indirectly by means of a semi-automatic
process guided by the system (which does not require pro-
gramming abilities).

There are some limitations, of course. The finders that can
be included must satisfy the constraints listed below. Luck-
ily, this happens for many of the most popular finders pro-
posed so far.

1. The tool must search the motifs in a set of sequences
stored in a fasta formatted file.

2. The tool itself must run as a command line utility un-
der Unix/Linux operating systems.

3. The tool must produce the output (also) in textual
form (to a file or standard output), with well identifi-
able “blocks” describing the motifs.

4. The motifs must be described, in the output text, ei-
ther as sets of sequences (the putative binding sites)
or as Position Weight/Frequency Matrices, PWMs.

Currently, CE3 includes eight motif finders, namely: Aglam
[12], AlignAce [6], BioProspector [13], MotifSampler, [18],
MEME [1], RSAT (oligo-analysis and pattern-assembly)
[19], MDscan [14] and Weeder [15].

Learning function customization. There is a module in CE3

that handles the available learning functions of the ensem-
ble. Each learning function is stored in its own folder, that

contains a standard Python interface (easily derivable by a
template) and an XML configuration file used by the module
to recognize and include the function in the ensemble.

Currently CE3 provides a learning function (customizable
by means of a set of options), based on the idea of clustering
similar motifs, that will be later described in details.

2.2 The General Wrapper
The design of a wrapper interacting with external algorithms
must include code for the sequential execution of two key
functions: (i) Tool running. The external command line
tool must be run with the appropriate parameters using its
expected syntax. (ii) Output parsing : the tool’s output must
be intercepted and parsed in order to extract the information
required and to build the internal motif representation.

Tool Running.Each motif finder developed so far defines
its own set of parameters and command line syntax. In order
to masquerade the diversities, we prepared a template XML
configuration file, instances of which describe the “syntax”
required by specific finders. The XML files will then be
read and interpreted by a general wrapper able to synthesize
syntactically correct command lines and launch the finders’
execution via standard operating system calls.

The tags defined in the XML configuration file correspond
to the fundamental parameters that one can find in virtu-
ally all the available finders. While an accurate choice of
such parameters may greatly help in driving the finder to
discover biologically active sites, it is nonetheless true that
many users perceive the task of parameter setting as an-
noying (actually, they have been sometimes referred to as

Figure 2: CE3 architecture. Differently from other ensembles, the integration of external algorithms depends
on a general wrapper and configuration files for each external tool included. Distinct learning functions (LF)
may be included and executed in the ensemble by means of the Learning Function Module.

nuisance parameters [9]). Indeed, one of the possible advan-
tages of using ensembles consists precisely in changing the
way a better accuracy of prediction can be possibly achieved:
from the “fine-grained” tuning of parameters as a function
of the particular dataset, to a clever, but fixed learning rule
that combines the results of many finders run on an essen-
tially default set up.

The core parameters provided in our XML configuration files
are listed below.

input file, which is clearly mandatory;

motif length, given either as a single value or as a pair of
values (an interval);

topmotifs, namely the maximum number of motifs to ulti-
mately report to the user, taken among the ones with
highest score;

background information, which can be given as the name
of a supported organism, as a set of nucleotide frequen-
cies, or as a set of probe sequences;

strand to search for possible sites (positive, negative or
both).

We also included one tag for providing seeds to probabilistic
methods (to guarantee the possibility of repeating experi-
ments) and one for all the other (non mandatory) parame-
ters, which will be given as a single unstructured string to
be inserted “as is” in the command line. The template XML
configuration file is depicted in Figure 3. With the structure
of the file being predefined in CE3, the user has only to asso-
ciate the appropriate values to the right tags and attributes
as required by the system.

<tool executable_name="" change_dir="False">
<fasta param=""/>
<width param="" range="0" possible_values="1"

values="" />
<background param="" gen_file="0" exec_command=""

value="" function=""/>
<topmotifs param="" />
<seed param="" value="" />
<genome param="" value="" />
<strand param="" value="" />
<extra value="" />
<order value="" />

</tool>

Figure 3: XML configuration file template. The first
seven tags define the typical tools’ parameters. The
extra tag gives room for tool specific parameters.
The order tag is used when the tool command line
requires that the input parameters must be provided
using a specific order. The attribute change_dir in
the tool tag tells the ensemble to cd to the tool’s
directory before execution.

Output Parsing.The output produced by different motif
finder tools are clearly different from one another: infor-
mation provided, adopted format, error and log messages
reported, etc., are usually all given according to a format
which is specific for the tool under consideration. Also, some
tools write results to the standard output, while others write
to a file. In spite of these differences, it is usually easy to
detect in the output listing a block of information describing
the candidate motifs. Such blocks of text are well delimited
by easily detectable markers (since the output is for a hu-
man to read). Basing on this feature, we use patterns and
regular expression to make it possible to locate the motif

<parse>
<motif_head> </motif_head>
<binding type="" space="" letters="" order=""

start=""></binding>
<motif_end> </motif_end>
<output_file name="" extension="" dir="">

</output_file>
<score type="" key_score="None"></score>

</parse>

Figure 4: XML parse file template The motif_head

(resp., motif_end) tag stores the leading (resp., trail-
ing) signature of the text block describing one pre-
dicted motif. The binding tag captures the model
used to represent the motif in the external tool out-
put (PWMs or list of binding sites). The output_file

is used when the output is printed to file. The score

tag stores the score of a specific motif.

descriptions in the output results.

To store the information needed in the parsing phase, we
have defined an XML parse file with predefined structures
that help identifying the information of interest (Figure 4).
In order to create one such file, for a given finder, the user
must provide static information (rather than working code
in a suitable programming language). The pieces of infor-
mation required by CE3 include the ones listed below.

motif representation, that is whether the motifs reported
by the finder at hand are given as list of sites or as ma-
trices;

leading and trailing signatures to help locate the mo-
tif description, which are well defined pieces of text
“copied” by a sample output;

modifiers, namely those parts of the signatures that may
vary, and that will be described using regular expres-
sion.

The general wrapper needs one XML configuration file and
one XML parse file for each finder included in the ensemble.

2.2.1 Adding a New Algorithm
The process of adding a new finder is now a relatively easy
process, in which CE3 gathers (through question-answering)
information from the user and performs the following ac-
tions.

1. Include the path to the home directory of the new tool
in the CE3 path file.

2. Create the XML configuration file: identify the gen-
eral parameters for the specific tool and associate the
proper parameters to the keywords defined in the XML
configuration file.

3. Create the XML parse file: first produce (or otherwise
gather) a sample output of the new tool. Check the
format with which the motifs are presented to the user.
Isolate one such motif description and the “signatures”

that surround it, also detecting the variable parts. Use
these information to fill in the predefined tags of the
XML parse file and to define (through a guided proce-
dure) the regular expressions needed in it.

Figure 5 shows (part of) a typical output produced by Bio-
prospector and the corresponding XML parse file in Figure 6

2.3 Internal Motif Representation
The execution of the finders provides a set of putative motifs
which CE3 internally “rebuilds” in a way that makes it easy
to perform a number of useful operations. In the current
prototype CE3 implementation, we use a refined version of
the TAMO MotifTools package [8], that provides func-
tions for motif creation (using either sets of sequences or
matrices) as well as methods for scanning sequences using
PWMs. The TAMO framework is implemented in Python,
which makes the integration with CE3 very easy.

2.4 Learning Function Module
The learning function module handles the addition and the
execution of learning functions. This module receives as in-
put the set of motifs predicted by the motif finders executed
in the previous phase and runs one learning functions among
those included in the ensemble (at the user choice).

For each learning function the module requires a learning
function configuration XML file describing the function and
its parameters.

Each function included in the ensemble is stored in a dedi-
cated directory (named after the function) that contains:

• all files implementing the function (written in any pro-
gramming language);

• a Python interface with a predefined class and meth-
ods.

Learning Function Configuration XML File.The XML
file defined for each learning function (see Figure 7) stores a
description (using the tag description) and defines the set
of parameters (in case of) needed for the execution of the
new function. Each parameter is captured in the XML file
by the tag parameter.

Python Interface Template.The Python interface tem-
plate (see Figure 8) defines the class execLF containing three
basic parameters: the list of motifs (using the TAMO repre-
sentation), the list of sequences given as input to the ensem-
ble, and the list of parameters needed to invoke the learning
function (these parameters will be derived by the module
from the XML configuration file). The class contains a func-
tion (exec_()) used to invoke the learning function.

2.4.1 Adding a New Learning Function
The process of adding a new learning function (given its
implementation) is now a relatively easy task. The user
have to perform the following steps:

Figure 5: Sample Bioprospector output listing: the large rectangle highlights a text block describing one
motif, with all the relevant information needed to internally rebuild the motif itself.

<parse>
<motif_head> Motif #’I’: ’L’ </motif_head>
<binding type="matrix" space="4" letters="Top" order="ACGT" start="1"></binding>
<motif_end> null </motif_end>
<score type="Evalue" key_score="MotifScore">

Width (’I’, ’I’); Gap [’I’, ’I’]; MotifScore ’F’; Sites ’L’
</score>
</parse>

Figure 6: XML parse file corresponding to Bioprospector output listed in Figure 5: tags have been filled
using the proper information identified in the output listing. In particular: motif head and motif end tags
are associated to the delimiters identified (a blank line delimiter is represented by the null tag value); the
type attribute of the binding tag tells that the motif is given as a matrix, while the other attributes allow the
correct matrix scanning (space is the number of lines between the motif head and the beginning of the matrix;
letters orient the sense in which the matrix is supplied (each line represents one position of the motif); order
gives the order in which letters a, c, g, t are provided; start gives the offset of the first column of the matrix
from line beginning). Patterns ‘I’, ‘F’ and ‘L’ represent regular expressions defined in CE3 to facilitate
identification of variable values in the text block: ‘I’ is used for integer values, ‘F’ for float values and ‘L’

for alphanumeric characters.

<learning_function name="">
<description> </description>
<parameter name="" values="" id=""/>
</learning_function>

Figure 7: Learning Function XML Configuration

File. The tag parameter is used to describe param-
eters needed by the learning function. For each
parameter, one such tag should be added . The
attribute name records the identification name of
the parameter; values stores the default parameter
value; id is the parameter name that will be used by
the learning function.

class execLF:
def __init__(self):

self._motifs = []
self._seqs = []
self._params = {}

def exec_(self):
write invocation command

Figure 8: Python Interface Template.

1. Create a new folder, named after the new function, in
a specific directory;

2. Store all files corresponding to the new function in the
new folder;

3. Create an instance (and store in the new folder) of the
Python interface template: write in function exec_()

the command line that invokes the new learning func-
tion.

4. Create the XML configuration file by specifying the
name of the learning function, its description (a textual
description) and, in case, define the extra parameters
used for invocation.

2.4.2 CE3 Learning Method
At present, CE3 implements its own strategy for post pro-
cessing motifs predicted by motif finders (based on the idea
of motifs clustering), leaving the user the possibility to chose
among a certain number of options.

As for existing learning functions in other published ensem-
bles, it is not trivial to retrieve them from tools code (i.e.,
source code is not always available) and full details are not
always given in papers, making the task of re-implementing
existing functions a hard and time consuming one. In the
future we plan to re-implement the most promising existing
learning functions reported in the literature.

In its basic implementation, CE3 select the motif(s) to be
returned according to the following three step procedure in
which, at each step, a few options are available to the user:

1. Compute the similarities of each pair of motifs. Two
methods are currently available: (a) PWM similarity,
and (b) sites overlapping. The former is implemented
using RSAT’s utility compare-matrices [19]; the lat-
ter is computed as follows: given motifs M1 and M2,
and input sequence set S , let N1(S) and N2(S) denote
the sets of nucleotides in S predicted by M1 and M2,
respectively. Similarity is then defined as

IS(M1,M2) =
|N1(S) ∩N2(S)|

min{|N1(S)|, |N2(S)|}

Note that 0 ≤ IS(M1,M2) ≤ 1 and that IS(M1,M2) =
1 if M1 ⊆ M2 or M2 ⊆ M1; i.e., M1 and M2 are
highly similar when the sites of one include those of
the others.

2. Compute motif clusters using the chosen similarity mea-
sure. Here again two options (i.e., clustering meth-
ods) are available: (1) single-linkage clustering, where
at each step the closest clusters are merged, start-
ing from singletons and stopping when the maximum
among the desired number of clusters and the number
of connected components is reached; (2) single-linkage
followed by a refinement based on the detection of a
dense core within each cluster.

3. Discard the clusters that do not include motifs deter-
mined by at least two different finders, and rank the
remaining clusters according to one of the following
measures: (i) average similarity of cluster members,

(ii) number of contributing finders to motifs in cluster,
(iii) cluster cardinality.

CE3 allows the user to choose the number of top scoring
clusters to be returned.

2.5 Output Module
The ensemble output is a set of putative motifs, given as
a set of binding sites or a set of PWMs. CE3 also allows
learning functions to provide optional output information
(e.g., statistics).

2.5.1 CE3 Output and Site Prediction
In current CE3 implementation, when using its learning
method, for any cluster C in the output set, CE3 returns
the following pieces of information: (a) PWMs of all com-
ponent motifs (optionally supplemented with a text logo),
some cluster statistics (minimum, maximum, and average
similarity, number of contributing finders), and the indica-
tion of the cluster representative. The latter is simply the
motif exhibiting maximum similarity to all the other motifs
in the cluster.

The putative sites corresponding to C are computed as the
hits of its representative motif, but only retaining those sites
that are (partially) overlapped by at least one site corre-
sponding to a different motif. Note, however, that with the
PWMs of all the motifs in the cluster, a client application
using CE3 might perform different scans of the input se-
quences.

3. CONCLUSIONS AND FURTHER WORK
In this paper we have presented a first prototype implemen-
tation of CE3, an ensemble general architecture for motif
discovery. CE3’s key feature is that of being tailorable with
respect to the crucial functionalities that characterize vir-
tually all currently available ensembles: (1) the particular
selection of external, (typically) third-party motif discovery
tools, and (2) the choice of the learning rule, i.e., the strat-
egy adopted to “combine” the tools’ results in the ensemble
result to be reported.

Even more than this, CE3 is extensible, meaning that it
makes it a relatively easy task the addition of new function-
alities (new promising motif finders and/or learning rules),
which indeed can be done with only minor user intervention

Ongoing work on CE3 is following two different routes. First
of all, we plan to perform a comprehensive set of experiments
on a number of benchmark data with the goal of possibly
finding good “standard” configurations (i.e., a base set of
finders together with a specific learning rules) that guaran-
tee good results across different datasets. These standard
configurations will be those proposed to the end users as
the most effective ones.

The second line of activity is essentially technical and has
to do with the deployment of CE3 as a Web-service. This
is crucial for “real” end-user (e.g., molecular biologists) to
experiment with our software.

4. REFERENCES
[1] T. L. Bailey and C. Elkan. The value of prior

knowledge in discovering motifs with meme. In
Proceedings of the Third International Conference on
Intelligent Systems for Molecular Biology, pages
21–29, Menlo Park, CA, 1995. AAAI Press.

[2] A. Chakravarty, J. M. Carlson, R. S. Khetani, and
R. H. Gross. A novel ensemble learning method for de
novo computational identification of dna binding sites.
BMC Bioinformatics, 2007.

[3] M. K. Das and H. K. Dai. A survey of dna motif
finding algorithms. BMC Bioinformatics, 8, 2007.

[4] P. D’haeseleer. How does dna sequence motif discovery
work? Nature Biotechnology, 24:959–961, 2006.

[5] P. D’haeseleer. What are dna sequence motifs? Nature
Biotechnology, 24:423–425, 2006.

[6] J. H. et al. Computational identification of
cis-regulatory elements associated with groups of
functionally related genes in saccharomyces cerevisiae.
J. Mol. Biol., (296):1205–1214, 2000.

[7] M. T. et al. Assessing computational tools for the
discovery of transcription factor binding sites. Nature
Biotechnology, (23):137–144, 2005.

[8] D. B. Gordon, L. Nekludova, S. McCallum, and
E. Fraenkel. Tamo: a flexible, object-oriented
framework for analyzing transcriptional regulation
using dna-sequence motifs. Bioinformatics,
21(14):3164–3165, 2005.

[9] J. Hu, B. Li, and D. Kihara. Limitations and
potentials of current motif discovery algorithms.
Nucleic Acid Res., 33:4899–4913, 2005.

[10] J. Hu, Y. D. Yang, and D. Kihara. Emd: an ensemble
algorithm for discovering regulatory motifs in dna
sequences. BMC Bioinformatics, 2006.

[11] B. R. Huber and M. L. Bulyk. Meta-analysis discovery
of tissue-specific dna sequence motifs from mammalian
gene expression data. BMC Bioinformatics, 2006.

[12] N. Kim, K. Tharakaraman, L. Mario-Ramrez, , and
J. Spouge. Finding sequence motifs with bayesian
models incorporating positional information: an
application to transcription factor binding sites. BMC
Bioinformatics, 9, 2008.

[13] X. Liu, D. L. Brutlag, and J. S. Liu. Bioprospector:
discovering conserved dna motifs in upstream
regulatory regions of co-expressed genes. pages
127–138, 2001.

[14] X. S. Liu, D. L. Brutlag, and J. S. Liu. An algorithm
for finding protein-dna binding sites with applications
to chromatin-immunoprecipitation microarray
experiments. Nat. Biotechnol., 8(20), 2002.

[15] G. Pavesi, G. Mauri, and G. Pesole. An algorithm for
finding signals of unknown length in dna sequences.
Bioinformatics, (17):207–214, 2001.

[16] P. A. Pevzner and S.-H. Sze. Combinatorial
approaches to finding subtle signals in DNA
sequences. In Proceedings of 8th International
Conference on Intelligent Systems for Molecular
Biology (ISMB ’00), pages 269–278, 2000.

[17] G. D. Stormo. Dna binding sites: representation and
discovery. Bioinformatics, 16(1):16–23, 2000.

[18] G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. D.

Moor, P. Rouze, and Y. Moreau. A gibbs sampling
method to detect over-represented motifs in the
upstream regions of co-expressed genes.
Computational Biology, 2002.

[19] M. Thomas-Chollier, M. Defrance, A. Medina-Rivera,
O. Sand, C. Herrmann, D. Thieffry, and J. van
Helden. Rsat 2011: regulatory sequence analysis tools.
Nucleic Acids Research, 39(suppl 2):W86–W91, 2011.

[20] E. Wijaya, S. M. Yiu, N. T. Son, R. Kanagasabai, and
W. K. Sung. Motifvoter: a novel ensemble method for
fine-grained integration of generic motif finders.
BIOINFORMATICS, 24(20):2288–2295, 2008.

[21] F. Zambelli, G. Pesole, and G. Pavesi. Motif discovery
and transcription factor binding sites before and after
the next-generation sequencing era. 2012.

	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit

	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit

