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The widespread use of online social networks, such as Facebook and Twitter, is generating a growing
amount of accessible data concerning social relationships. The aim of this work is twofold. First, we pres-
ent a detailed analysis of a real Facebook data set aimed at characterising the properties of human social
relationships in online environments. We find that certain properties of online social networks appear to
be similar to those found ‘‘offline’’ (i.e., on human social networks maintained without the use of social
networking sites). Our experimental results indicate that on Facebook there is a limited number of social
relationships an individual can actively maintain and this number is close to the well-known Dunbar’s
number (150) found in offline social networks. Second, we also present a number of linear models that
predict tie strength (the key figure to quantitatively represent the importance of social relationships)
from a reduced set of observable Facebook variables. Specifically, we are able to predict with good accu-
racy (i.e., higher than 80%) the strength of social ties by exploiting only four variables describing different
aspects of users interaction on Facebook. We find that the recency of contact between individuals – used
in other studies as the unique estimator of tie strength – has the highest relevance in the prediction of tie
strength. Nevertheless, using it in combination with other observable quantities, such as indices about
the social similarity between people, can lead to more accurate predictions

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A particularly hot research trend over the last few years has
been trying to envision novel directions for the long-term evolu-
tion of the Internet, usually named Future Internet [1]. Several re-
search visions and approaches have been proposed, ranging from
novel, disruptive architectural solutions [2,3], to new paradigms
incorporating mobile networks as key elements [4], to approaches
where the cyber and the physical world blur in a so-called cyber-
physical confluence [5]. From this perspective, online social net-
works (henceforth OSN) rightly deserve particular attention. Be-
sides being a huge success in terms of concrete products (e.g.,
Facebook, Twitter, . . .), they can be seen as a notable example of cy-
ber-physical confluence. The growing number of new communica-
tion paradigms introduced by these services is changing the way
individuals interact and link to each other, which is an example
of a cyber system that can have an impact on social relationships
occurring in the physical world. Moreover, OSN are fostering the
availability of a huge amount of data concerning social relation-
ships between people, that can contribute to the analysis of the so-
cial behaviour of the users.

Sociologists, anthropologists and psychologists have largely
studied social relationships in humans from two different points
of view. On the one hand, the analysis of personal networks starts
with an individual – called ego – and studies the relationships this
individual has with other people – called alters. Many researchers
refer to the networks formed from the ensemble of this relation-
ships as personal networks or ego networks [6–8]. On the other
hand, social network analysis studies the relationships existing be-
tween people inside a bounded population or community (e.g.,
researchers community, movie directors community, . . .) [9–11].
Whilst social network analysis puts more emphasis on the key fea-
tures of the whole network (e.g., topology, centrality, . . .), personal
network analysis focuses on the relevant features of ego’s social
relationships. With respect to social network analysis, the analysis
of ego networks does not capture relationships between alters, and
is thus not able to provide a complete analysis of the social net-
work of the users. However, ego network analysis typically studies
in greater detail the properties of the individual links between ego
and alters. Results from ego network analysis already highlight a
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number of key properties characterising the social behaviour of the
users [7]. Offline ego networks1 have been deeply investigated and
some of the key features of these networks have been identified [12–
14]. In particular, ‘‘tie strength’’ - the importance of the social rela-
tionship between two individuals – is found to be one of the most
important features of ego networks and it is what makes social net-
works really ‘‘social’’ [6,15].

Studies on the properties of OSN are becoming increasingly
popular, as there is still lack of understanding of their key features,
and of their impact on social relationships between individuals. Be-
sides being an interesting topic of research per se, a clear under-
standing of the properties of social relationships between users
in OSN can be the basis for the design of novel OSN services, such
as, for example, novel data dissemination and management
schemes exploiting social relationships to optimise data replica-
tion or information diffusion more in general. Data centric solu-
tions in the framework of the future Internet is another very hot
research topic [16–19], which however, up to now, has not fully
exploited the possibility of taking advantage of information con-
cerning social relationships between users.

Although the work done so far evinced many important aspects
of OSN, the relation between users’ social behaviour and tie
strength in virtual environments has not been fully discovered
yet, and represents one of the main focuses of this paper. Specifi-
cally, we aim to make a detailed comparison between the funda-
mental properties of ego networks in OSN and the characteristics
found in offline environments. This comparison is essential to bet-
ter understand human behaviour in OSN and to effectively study
social and psychological aspects of OSN. The core of our analysis
is represented by the creation of a model to estimate tie strength
from OSN variables. Estimating the strength of social ties is clearly
important for a number of social aware services, such as data dis-
semination, community detection, etc. Unfortunately, direct mea-
sures of social tie strength – i.e., quantitative measures taken
without explicitly asking individuals – are not possible neither in
offline social network nor in OSN, as tie strength depends also on
emotional factors that are not directly measurable. Nevertheless,
using interaction variables – such as the frequency of contacts –
has proven to be effective in estimating tie strength in offline social
networks [14]. This approach has still to be fully explored in OSN.

In this work we present a detailed analysis on a real Facebook
data set – that we have collected – to examine if the interaction
variables that can be measured in Facebook can be used to esti-
mate the strength of social ties between individuals. Specifically,
in our data set we gathered interaction variables between a set
of egos and their Facebook friends. For each friendship relation-
ship, the ego was also asked to explicitly provide a numerical value
to represent the strength of that relationship. Exploiting this infor-
mation, we aim to identify the smallest possible number of vari-
ables that can be used to reliably estimate tie strength. This is a
much more advanced analysis compared to other studies [20,21],
that present models for tie strength prediction fed with a large
number of variables to obtain the best possible fit of the data set,
without focusing on prediction, and eventually leading to overfit-
ted models.

As a preliminary step to identify the variables to be used in the
model of tie strength, we perform a detailed analysis of a number
of candidate variables that we collected in our data set (results are
presented in Section 4). This allows us to perform an initial charac-
terisation of ego networks, for example in terms of their size, and
compare these results with similar analyses regarding offline social
networks. The question whether ego network in OSN are similar to
1 By the term ‘‘offline ego network’’ we mean an ego network containing social
relationships formed ‘‘outside’’ the OSN world.
those in offline networks or not is a challenging one. On the one
hand, one could note that OSN may only represent a new tool to
maintain our social relationship with others and the cognitive
mechanisms behind our social behaviour should remain unaltered
by the adoption of this tool. On the other hand, one could also ar-
gue that OSN provide a totally new environment for social interac-
tions, which might result in completely different structures. The
results we obtain in the first part of this paper (Section 4) support
the former hypothesis. Specifically, the average number of social
relationships a person actively maintains in our Facebook sample
(105:14) is of the same order of that found in offline ego networks
(124 in [14] and 132:5 in [12]). As we show in detail in the follow-
ing, also other measurable variables in our data set are compatible
with analogous variables measured in offline social networks.
These findings suggest that also in OSN an individual is usually
tightly connected to a small set of friends and loosely connected
to a larger number of people [6,14,7].

Starting from this analysis, in the second part of the paper (Sec-
tion 5) we focus on how to predict tie strength through interaction
variables. First, we perform a correlation analysis to find the Face-
book variables strongly related to tie strength. Then we build two
different families of models. The first type is based on the set of
uncorrelated interaction variables that show the strongest correla-
tion with tie strength. The second type is based on a reduced set of
orthogonal factors extracted from the data set using Principal Com-
ponent Analysis (PCA). Comparing both types, we show that in
both cases it is possible to accurately predict tie strength with an
accuracy higher than 80%. Moreover, we use PCA results to find
the key factors in the set of the Facebook measurable we have col-
lected. This analysis shows that the factors in our variables repre-
sent all the relevant dimensions of tie strength, as identified in the
social networking literature, from the seminal work of Granovetter
[6] to more recent analyses [22]. Specifically, to the best of our
knowledge, ours is the first work that identifies a set of observable
variables in Facebook that cover all the tie strength dimensions
identified in [6]. This also suggests that, even if they need to be val-
idated on a larger data set, our models remain valid in general, and
their validity is not limited to our particular data set.

Our analysis, although carried out over a limited number of
users, already provides interesting results. First of all, we show that
it is indeed possible to predict Facebook tie strength using observa-
ble variables about users interactions. Moreover, our models show
that only a small number of variables is sufficient to achieve accu-
rate predictions. This means that our models are suitable to be
used online, as they require to collect limited information about
users interactions. They can be efficiently used as elements of no-
vel social networking applications and services, that exploit predic-
tions of the quality of social relationships between users to tune
the application/service behaviour.

In addition to the results of our analysis (Sections 4 and 5) in the
remainder of the paper we provide background information
describing some of the key features of offline ego networks and
of OSN, from the sociology and anthropology literature (Section 2).
Then, in Section 3 we describe the collected data set and the data
acquisition campaign we performed to gather this information. Fi-
nally, in Section 6 we discuss about how we plan to extend our
analysis to a larger scale, and we draw the main conclusions of
the paper.
2. Related Work

2.1. Analysis of ego networks in offline social networks

The aim of personal network analysis is to describe the proper-
ties of ego networks from the users’ standpoint. It studies how the



Fig. 1. Concentric hierarchical structure in offline ego networks. Each number
represents the average size of the respective circle.
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characteristics of ego (e.g., age, gender, personality) affect the
properties of her network (e.g., network size, composition, dura-
tion and strength of the relationships, . . .).

One of the most important bodies of work in this field has been
provided by Dunbar, whose findings have also been confirmed by
several other research groups. One of the key findings is that main-
taining social relationships is costly in terms of cognitive capabili-
ties [23]. There are constraints limiting the number of ties a person
can have in an offline ego network [14,7]. This is also in line with
well-known models for bounded rationality [24]. Authors of
[25,14] demonstrate that these cognitive constraints impose an
upper limit on the maximum number of relationships an ego can
actively maintain. This limit is about 150 and is often called the
Dunbar’s number. All the relationships exceeding this number are
considered inactive and represent mere acquaintances.

Active networks in offline personal networks are characterised
by the presence of a series of subgroupings arranged in a hierarchi-
cally inclusive sequence, depicted in Fig. 1 [26,14,8]. People so-
cially tied to ego form a series of concentric circles around him,
with a scaling factor between any two adjacent circles close to
three [12]. The strength of social ties between ego and alters fades
as the distance from ego increases. The first circle represents the
core network, also called support clique. In this group reside all
the individuals from whom ego seeks advice in case of severe emo-
tional distress or financial disaster [27]. It is, on average, limited to
five members. The other circles are called sympathy group (�15
members), affinity group (�50 members) and active network
(�150 members). The frequency of contact (often replaced by the
recency of contact, that is the number of days since the last con-
tact) is used as a predictor of social tie strength to define these cir-
cles [14]. The groups are identified as the set of alters ego contacts
weekly (support clique), monthly (sympathy group), and yearly
(active network) [28,23]. The properties of the affinity group, both
in terms of typical contact frequency and size, are not yet com-
pletely understood (see [23] for an ethnographic definition of the
affinity group and of the other layers).

Ego networks are not a complete representation of social net-
works, as information about how ego networks are connected to
each other is missing [29,30]. Nevertheless, information provided
by ego network models is already sufficient to characterise many
properties of social relationships (basically, all properties that de-
pend on pairwise relationships only), such as willingness of collab-
oration and sharing resources. Therefore, the results presented
before are a reference point for the analysis of ego networks in on-
line environments such as OSN. In this paper we are not in the po-
sition to highlight, based on our data set, the presence of similar
concentric structures in online environments. However we do find
similarities between offline and online ego networks. For example,
the average number of active relationships in our data set is
105:14, which is of the same order of magnitude of the active net-
work size in offline social networks (124 in [14] and 132:5 in [12]).
Moreover, interaction variables do highlight the existence of strong
and weak ties also in our OSN data set. Specifically, the average
number of relationships of the latter kind is of the same order of
the relationships belonging to the most external circle in the offline
ego network model.

2.2. Tie strength and online social networks

As mentioned in Section 1, research on OSNs is particularly ac-
tive. Several specific topics are being addressed, including,
amongst others, information propagation [31], scalability issues
[32], social interaction patterns [33], security and privacy [34,35],
and design of innovative services based on social relationships
[36,37].

The area of research most closely related to this paper is about
the characterisation of the strength of social ties in social networks
in general, and Online Social Networks in particular. In [6] Grano-
vetter proposes a definition of tie strength based on the combina-
tion of the amount of time, the emotional intensity, the intimacy
and the reciprocal services which characterise the relationship.
The author also identifies a first distinction between the different
properties of strong and weak ties, with the former being useful
for emotional and financial support and the latter for the acquisi-
tion of new ideas coming from groups of people socially far from
ego. This distinction has been confirmed by many experiments per-
formed on different types of social networks. In particular, weak
ties appear to be crucial to maintain networks structural integrity
and strong ties play an important role in the maintenance of local
communities [38]. The analysis of network structure alone is not
enough to fully understand the properties of social networks in
terms of information diffusion, trust and so on [9]. Moreover, ties
of intermediate strength seem to be the most efficient channel to
spread information in the network, even if the diffusion of informa-
tion also depends on many other factors [9,38]. All these results
indicate the central role of tie strength in understanding social net-
works dynamics. Even the ego network structures described in Sec-
tion 2.1 can be described through the different strength of the ties
between the ego and the alters in the different circles. Thus, the
study of local sources of influence on tie strength should be consid-
ered as one of the most important aspects in OSN analysis. A first
detailed characterisation of tie strength in offline environment is
given in [22], where tie strength is derived using an analytic model.
The results of this work evinced the presence of two main dimen-
sions of tie strength, having to do with the time spent in a relation-
ship and the ‘‘depth’’ of the relationship. Moreover, the results
indicate that ‘‘emotional closeness’’ or ‘‘intensity’’ of a relationship
are the best indicators of tie strength and the frequency of contact
only partially explains this concepts.

Although understanding tie strength is essential to study the
global dynamics of a social network, many analyses conducted so
far on OSN are primarily focused on general aspects of networks
seen from a ‘‘planetary’’ perspective [11,39] and they often omit
a sufficiently detailed tie strength modelling. For example, in [40]
the authors analyse the entire unweighted Facebook graph trying
to discover some of its intrinsic properties, such as how informa-
tion could spread in it. The results presented in [40] indicate that
the average distance between any two people in Facebook is 4:74
links. This means that information circulating in Facebook could
reach any arbitrary users in, on average, less than five jumps. From
this perspective, it seems that Facebook is reducing even further
the famous six degrees of separation, empirically confirmed in off-
line social networks by the Milgram’s experiment [41]. However,



Table 1
Facebook variables chosen as possible descriptors of ego networks characteristics.

Socio-demographic variables
Gender
Number of friends
Total number of status updates
Sum of each relational variable – all alters
Mean value of each relational variable – all alters
Mean value of each relational variable – active alters

Relational variables
Number of likesa

Number of postsa

Number of commentsa

Number of private messagesa
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as these studies do not take tie strength into consideration, the ac-
tual behaviour of social aware services might be different. Tie
strength is likely to play a very significant role in determining
the trust level of a social relationship, and thus the likelihood of
that relationship to be used to disseminate information (at least
for some class of sensible data). This means that the real number
of hops separating two individuals may be higher than what pre-
dicted by the analysis of [40]. This is an open point, that the models
presented in this paper can contribute to explore. Recently, an
analysis of ego network structures in larger Facebook and Twitter
data sets (with respect to the one used in this paper) were pre-
sented in [42,43], respectively. This analysis is complementary.
The data sets used in [42,43] do not include detailed information
about all types of interaction between users, which are available
in the data set we use here, and the analysis is based on the fre-
quency of interactions only. In this paper we show that, while fre-
quency of interaction is a necessary component for predicting tie
strength, additional information related to social interactions is
helpful to achieve more accurate predictions.

The possibility to deduce social tie strength from OSN data was
previously noted in [20]. Specifically, also [20] uses a Facebook
data set and explicit evaluation of tie strength done by the users.
Interaction variables are used to fit the explicit evaluation.
Although a regression model of tie strength is used also in [20],
the main result of that paper is fitting the explicit evaluations of
tie strength, rather than predicting them (indeed, the model is
not tested on a test set different from the training set, as we do
in this paper). A shortcoming of the model in [20] is thus that
the model can easily over fit the data, thus reducing its prediction
performance. Furthermore, authors of [20] use all possible mea-
sured variables as regressors of the model, while in this paper we
highlight that a small set of such variables can be used to achieve
reliable predictions. This has very important implications in terms
of practically applicability of the regression models. Finally, in this
paper we also provide a PCA analysis on the Facebook interaction
variables, in order to identify the key factors of the data set and
how they can be used in the prediction models. This is not done
in [20].

The authors of [44] present a study aimed at predicting tie
strength from online interactions. They asked a set of participants
to indicate the name of their close friends. Hence, they used the
collected evaluations to train a classifier to distinguish between
strong and weak ties. The classifier gives a membership probability
calculated from a set of online interaction variables. This probabil-
ity represents a prediction of tie strength. Since the proposed is
based on evaluations of close friendships only, it is less accurate
in the prediction of weak ties. This represents a strong limitation,
since weak ties form about 60��80% of an ego network [45].

This paper extends our initial work on this topic, presented in
[46,47]. The present work introduces a more refined initial filtering
of raw data to exclude biased data. In addition, in this work we also
study the key factors emerging from the measured variables that
explain tie strength, comparing them with tie strength dimensions
found in offline ego networks. We also present a set of regression
models able to predict tie strength from Facebook data and we
present more statistics concerning Facebook ego networks
properties.
Number of tags on the same pictures
Number of days since first communicationb

Number of days since last communicationb

Number of events attended together
Number of groups in common
Number of likes on the same fan pages
Frequency of contacta

a From ego to each alter and vice versa.
b From ego to each alter and vice versa divided for Each type of communication

(likes, posts, comments, messages).
3. Data set description

Before presenting our analysis, trying to clearly set the basis
from which we obtained our results (as also recently advocated
in [48]) we provide a description of the data set we have used.

We consider a large number of variables obtained through the
use of a Facebook web application (completely described in [46]),
created for this particular task. We select all the variables related
to users’ profiles and social relationships between individuals in
Facebook. The rationale was to select a rather broad set of variables
describing overall properties of ego networks and the interactions
between egos and their alters, intuitively related with the proper-
ties of the tie strength, and then use statistical analysis to identify
the variables that better describe and predict it. These variables are
listed in Table 1. For the sake of clarity, we divide the collected
variables into two distinct groups, treating them separately in
the next steps of the analysis. The first category contains variables
related to user’s properties (e.g., age, gender, . . .) usually defined as
socio-demographic variables. The second group contains variables
related to the interactions between ego and alters (e.g., number
of exchanged messages, number of Facebook groups in common,
number of likes made, . . .), labelled as relational variables. In addi-
tion to the quantities concerning ego’s characteristics, the first
group contains also the total amount and the mean values of each
relational variable (e.g., total and mean number of messages, posts
and other quantities received or sent by ego). These variables
should contribute to describe the behaviour of a user in Facebook.
For example, the mean number of comments sent per alter can be
seen as a descriptor of how much a person uses Facebook.

We exclude from the analysis all the user-filled fields available
on Facebook profiles (e.g., political view, religion, hometown, edu-
cation, . . .). This choice was mainly driven by the fact that many of
these fields are intentionally left blank by the users. Moreover, we
think that the information contained within these variables is dif-
ficult to correctly interpret through automatic tools because people
are prone to use sarcastic phrases or provoking words that cannot
be easily interpreted. We argue that neither using a simple good/
bad words [20] count (for socio-demographic variables) nor an in-
dex denoting the number of overlapping words between pairs of
individuals (for relational variables) are enough to fully interpret
people’s social attitudes in OSN. Extracting information that can
help to assess the type of social relationships from this fields also
require to take care of cultural aspects and differences between
the users, discern humorous and paradoxical expressions, and so
on. While this is an exciting subject to explore, we prefer not to in-
clude it in our current analysis, and leave it for future improve-
ments. Focusing exclusively on quantitative measurable
variables, which do not require particularly refined interpretation,
allows us to reduce the complexity of the analysis, and understand
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to what extent those variables alone can be used to predict tie
strength, without having to deal with possible inaccuracies and er-
rors in interpreting the real semantic of user-filled fields. For sure,
we can anticipate that including also this information – after a cor-
rect processing – will further increase the prediction accuracy of
our models.

The application we used to gather the variables listed in Table 1,
in addition to download Facebook data, has been augmented with
an electronic survey, aimed at collecting the values of tie strength
perceived by the user towards all her Facebook friends. The survey
asks the user to evaluate the strength of her Facebook friendships
with the following question: ‘‘How do you rate, with a value be-
tween 0 and 100, the social relationship between you and this per-
son in Facebook?’’. The question is also supported by additional
context information to make the users effectively express their
perception of tie strength. Given the limited number of users in-
volved in the study, it was possible to explain to them in detail
the background of our study, and the purpose of the application.
They were been made aware of the concept of tie strength, of dif-
ferent types of social relationship and the typical way used in the
anthropology literature to quantify it. We used typical questions
used in Dunbar’s studies as examples of how they should evaluate
social relationships. The qualifier ‘‘in Facebook’’ was also clearly
explained to them. Specifically, we asked them to evaluate social
relationships considering only their activity and interactions in
Facebook, thus disregarding any other interactions occurring with
their friends ‘‘offline’’. Finally, we selected a numerical range be-
tween 0 and 100. This proved to be a natural evaluation scale, once
the context of the evaluation was made clear to the users. We are
currently working on more automatic ways to provide similar
information to the users without direct interaction, in order to col-
lect data on a larger scale.

We use the collected evaluations of tie strength as ‘‘ground
truth’’ to compare and calibrate our prediction models. Note that
the ultimate goal of our prediction models is to avoid to ask expli-
cit tie strength values to the users. We had to include the survey in
the current data set collection, in order to calibrate the models.

We performed a data acquisition campaign over a period of
three weeks, during which we selected a sample of 30 people ran-
domly chosen within our research department. We collected all the
Facebook data coming from the 30 participants, along with all the
data concerning their friends, for a total of 7665 Facebook social
relationships. For every participant we downloaded their Facebook
data within a temporal window of three years.

From the data set of 30 participants, which is the same used in
[46], we discarded two participants, because they provided only a
partial evaluation of the tie strength related to their friendships
(i.e., they have not completed the survey). Hence, the data set we
analyse in this work is composed of 28 participants and 7103 rela-
tionships. For the figures previously analysed in [46], the refine-
ment introduced discarding the data from the other two
participants allowed us to obtain more significant and reliable
results.

Although this data set needs to be enlarged in terms of number
of users, it already contains a significant number of samples of so-
cial relationships to start deriving interesting results, both for ego
network analysis and for tie strength prediction. In particular, this
data set allows us to carry out a sensible analysis about the factors
that characterise the virtual relationships, and a well grounded
regression analysis to estimate the social tie strength.

For the purpose of the analysis of tie strength prediction pre-
sented in Section 5, it is worth noting that the participants with
more friends could possibly have a higher impact on the determi-
nation of the coefficients of the models. To avoid this limitation, we
sub-sampled 100 times our data set randomly extracting the same
number of friends (100) for each participant. As far as the partici-
pants with less than 100 friends, we took all their social relation-
ships. Hence, we come up with a set of 100 data sets that will be
used in the analysis described in Section 5, where we also explain
how results coming from each of the 100 data sets have been com-
bined. Note that we did not do any sub sampling for the analysis
presented in Section 4. This analysis looks, among other, to overall
properties of ego networks, such as their size, and thus sub sam-
pling would have significantly biased our results.
4. Properties of ego networks

To assess the properties of Facebook ego networks in our sam-
ple and to compare them with the characteristics found in offline
ego networks, we analyse the descriptive statistics of our data.
We divide this analysis in two different parts, the first related to so-
cio-demographic variables and the second concerning relational
variables.
4.1. Socio-demographic variables

As far as socio-demographic variables, the 28 participants within
our sample are researchers, Ph.D students or master students from
24 to 48 years old (M ¼ 32:86, SD ¼ 6:77), 14 males and 13 fe-
males. The number of friends of each participants ranges between
86 and 1099 (M ¼ 253:68, SD ¼ 204:14). The distribution of this
variable is shown in Fig. 2. In the figure an outlier can be clearly
identified. We do not discard this outlier from the analysis, since
from now on we are going to consider only the active part of the
networks, and in such part the mentioned ego is not an outlier.
According to [14,26,8,23,49] each person can maintain only a lim-
ited number of ‘‘active’’ social relationships, i.e., relationships for
which the person invests resources (e.g., time dedicated to com-
municate with the alter). Other relationships, for which a person
does not invest resources, are only acquaintances, and are consid-
ered ‘‘inactive’’. To distinguish between active and inactive social
relationships in our analysis we define as ‘‘active network’’ the
set of friends for whom the value of tie strength indicated by the
user is greater than 0. This definition differs from that given by
Dunbar [26], which is based on the frequency of contact (formally
the set of people contacted at least once a year). We choose this
definition as in our data set we consider many more variables other
than frequency of contacts. Using the explicit evaluation of the
users to discriminate active from inactive relationships is a way
to compactly consider all variables altogether, without giving high-
er importance to any of them a priori. Note that this methodology
was explained to the users, so that they knew that giving a score of
0 to a relationship would mean marking it as inactive.
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Active network sizes in our sample range between 29 and 368
(M ¼ 105:14; SD ¼ 85:42). We found that people have, on average,
45:88% of their Facebook friends that can be considered active,
with a 95% confidence interval equal to ð38:99%;54:77%Þ. The dis-
tribution of active network size of our sample, depicted in Fig. 3, is
qualitatively similar to those found in other work about offline so-
cial networks [8,14]. Moreover, the mean active network size is
also comparable to the same measure in offline social networks
(e.g., 124 in [14] and 132.5 in [12]). This suggests that a maximum
number of active relationships in the order of the Dunbar’s number
could hold also in OSN.

In Fig. 4 we depict the distribution of tie strength of our sample,
considering active networks only (i.e., tie strength greater than
zero). In the figure we show the tie strength density for each ego
network divided in ten different bins of ten units of tie strength
each, then averaged for all the ego networks. The shape of tie
strength distribution indicates the presence of a small set of alters
tightly connected to ego and a larger number of people loosely cou-
pled with her. This is in accordance with the findings about offline
ego networks [25,7,6].

4.2. Relational variables

In this section we present the descriptive statistics of the rela-
tional variables listed in Table 1. We also consider – for each user
– the total amount and the mean values of these variables, that de-
scribe the behaviour of egos in terms of the amount of information
they exchange or they have in common with others. We calculate
these quantities both for all Facebook friends of a user and also for
active friends only. Whilst all the other variables are self-explana-
tory, the concept of ‘‘like’’ needs to be discussed before continuing
with variables description. Like-based communication relies on the
‘‘like’’ mechanism. Likes are a special kind of marks left on Face-
book objects (e.g., pictures, comments, status updates, . . .), used
to give a favourable feedback towards these objects.

As indicated by the statistics reported in Table 2, people in our
sample make, on average, broadly the same number of comments
and likes in Facebook. This is in accordance with the results in [50]
and highlights the growing importance of new kind of communica-
tions in OSN. The average number of posts sent by egos is higher
than the number of likes and comments. The number of days since
first outgoing/incoming communication give us an estimation of the
mean duration of the social relationships we have considered. This
duration is, on average, between 3 years and 284 days and 3 years
and 175 days. This result tells us that we considered a sufficiently
large temporal window. The time since last outgoing/incoming com-
munication tells us how recently, on average, people have been
contacted on Facebook by their friends and we will call this mea-
sure the recency of communication. This measure has been used
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Fig. 3. Active network size distribution.
in literature as an estimator of tie strength and we will see in Sec-
tion 5 that this variable proves to be a good predictor of the fre-
quency of contact between people and plays a central role in the
prediction of tie strength.

The statistics presented in Table 2 indicate that all the variables
representing the incoming communication received by ego from
alters (i.e., the number of likes, comments, posts, . . .) take values
considerably higher than the variables concerning the outgoing
communication made by ego to alters. This is in accordance with
the findings in [49], where the authors indicate that, in Facebook,
a person has a limited number of friends with whom she directly
communicates and a much larger portion of people from whom
she only passively receive and consume information, without
reciprocating their interactions. The incoming and the outgoing
communication could thus have different roles in the prediction
of tie strength. We will verify this result in Section 5.

As expected, the statistics concerning the active network are al-
ways greater than the values calculated on the entire ego network
(apart from the time since last contact). This confirms that between
the ego and her active friends – defined by the tie strength – there
is much more activity on Facebook than between the ego and the
entire set of her friendships.

To extract additional information from the relational variables,
we also analysed their complementary cumulative distribution
functions (hereinafter CCDF). The typical pattern we found is that
of a long tail shape. We provide one example, in Fig. 5, related to
the frequency of contact. The plots for the other variables are sim-
ilar, and provided for completeness in B. We have obtained the per-
centiles indicated in the distribution for each user, and averaged
them over all users. The frequency of contact shows a distribution
similar to that found in offline ego networks [14] and the shapes of
these variables (see also B) is similar to the one of the tie strength
in Fig. 4. This is an initial indication that this set of variables should
be suitable to predict tie strength. This is validated in detail in
Section 5.

Facebook variables’ long tail shape indicates the presence of a
large set of friends with whom egos have little communication or
with whom they have little things in common (i.e., groups, pic-
tures, . . .), and a small set of alters with whom egos have a strong
interaction. The ‘‘elbow’’ that can be noticed in the curve depicted
in Fig. 5 indicates a clear distinction between these groups of
‘‘weak’’ and ‘‘strong’’ ties. Analysing the sizes of these groups, cal-
culated for each distribution of the variables in the data set, we
find that the percentage of strong ties in the ego networks of our
sample is, on average, 23:53% of the total number of social rela-
tionships (i.e., 59:69 over 253:68) considering all the interactions,
and 40:09% of the total number of active relationships (i.e., 42:15
over 105:14). Under the hypothesis (yet to be verified) that
structures similar to those found in offline social networks are also
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Table 2
Descriptive statistics of the relational variables. The first column contains variables’ names. The second and the third columns contain the minimum and maximum values of the
variables, considering all the possible relationships of all the users. The columns labelled ‘‘Average – All friends’’ show the statistics of the variables normalised dividing them by
the total number of friends for each user and than averaged for all the users. The columns ‘‘Average – Active friends’’ present the statistics of the variables calculated on each user,
then normalised dividing by the number of active friends (of the considered user) and then averaged for all the users. The last columns show the statistics related to the sum of the
variables over all the relationships of each user, then averaged for all the users.

Variable min max Average values – all friends Average values – active friends Sum – all friends

min max mean 95% c.i. min max mean 95% c.i. min max mean 95% c.i.

# of likes sent 0 96 :006 2:95 :82 (:52;1:12) :017 5:8 1:59 (1:04;2:15) 2 968 171:25 (87:47;255:03)
# of likes received 0 97 :015 2:86 1:03 (:71;1:35) :018 7:29 2:17 (1:48;2:86) 3 2486 304:64 (119:16;49:13)
# of posts sent 0 144 0:20 7:23 1:67 (:98;2:35) :28 9:87 2:73 (1:83;3:64) 12 1626 386:86 (217:09;556:62)
# of posts received 0 540 0 9:68 3:12 (2:08;4:54) 0 24:3 6:75 (4:12;9:34) 0 3795 889:46 (481:20;1297:73)
# of comments sent 0 124 :032 2:57 :82 (:54;1:11) :12 6:09 1:67 (1:15;2:19) 8 590 16:07 (102:34;217:80)
# of received comments 0 124 :061 3:88 1:09 (:70;1:50) :20 12 2:37 (1:39;3:35) 12 2168 304:86 (132:56;477:16)
# of ego’s pictures
in which alters appear 0 63 0 :61 :12 (:06; :18) 0 1:86 :28 (:13; :44) 0 177 32:68 (13:28;52:08)
# of friend’s pictures
in which ego appear 0 195 0 1:81 :32 (:15; :48) 0 4:86 :84 (:35;1:33) 0 246 71:32 (42:68;99:96)
# of pictures in which
ego and alters appear
together 0 87 0 1:63 :44 (:28; :61) 0 4:49 :99 (:53;1:45) 0 564 112:68 (63:90;161:46)
# of days since first
outgoing communication 6 1761 567 1381 169 (1265;1497) 253 1601 120 (1077;1324) 7342 483 265 122 964 (83 676;162 252)
# of days since first
incoming communication 8 1555 888 1555 1281 (1214;1348) 636 1555 1095 (997;1195) 76 445 1508 461 32 433 (21 999;43 166)
# of days since last
outgoing communication 0 1241 3 365 121 (83;158) 4 489 191 (148;234) 159 123 163 27 864 (17 443;38 285)
# of days since last
incoming communication 0 1154 0 277 109 (80;139) 0 464 165 (139;242) 0 110 732 29 176 (17 642;40 710)
# of events attended
together 0 12 :015 :69 :22 (:15; :28) 0 1:15 :32 (:20; :43) 0 177 34:82 (19:77;49:88)
# of groups in common 0 62 :07 7:87 1:70 (1:04;2:35) :05 12:58 2:29 (1:34;3:23) 4 8648 692:39 (59:75;1325:04)
# of pages in common 0 158 :32 14:67 2:32 (1:18;3:45) :36 14:03 2:91 (1:68;4:14) 26 7578 706:86 (156:47;1257:24)

2 Using correlation to select the regressors in the models allows to obtain results
that can be easily interpreted and reduces as much as possible the number of
regressors of the models. Nevertheless, we also used stepwise regression to select the
best combination of regressors in the models and the accuracy of the obtained models
is of the same order of that found using correlation.
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present in online social networks, this result indicates that rela-
tional variables would discriminate relationships in the external
part of the active network from the stronger ones, in the more
internal layers of ego networks (the first three layers).

5. Models for the prediction of tie strength

In this section we present the models we use to predict tie
strength, and we assess their accuracy. We first present a prelimin-
ary correlation analysis between the relational variables and the tie
strength explicit values, then we present our regression models
using uncorrelated variables and PCA factors, respectively. The
rationale of each modelling approach is presented at the beginning
of the corresponding sections. We decided to adopt a linear ap-
proach since we want to maintain our models as simple as possi-
ble. In addition, our choice was motivated by the background
work in sociology, where tie strength is considered to be a mostly
linear combination of social factors.

All the steps we are going to take later require all the variables
to be normally distributed and standardised. Thus, we log-trans-
form the variables having absolute value of skewness and kurtosis
greater than 1 [51] and we standardise all of them.

As already pointed out in Section 3, we have divided our data
set into 100 different sets, sub-sampling 100 relationships from
each of the 28 egos in our data set (and including all relationships
for egos with less than 100 friendships). This is to avoid that people
with more Facebook friends affect the results of our analysis.
Therefore, to obtain average results from the different data sets,
we apply the techniques described in the following to each sub-
sampled data set and then we average the obtained results. This al-
lows us to study the average correlation of each Facebook variable
with respect to tie strength and also to obtain statistically solid
regression models, that can then be used to predict tie strength.

To train and validate the accuracy of the models we define a
training and test set out of our data as follows. We split each of
the 100 sub-sampled data sets into a training set containing 23
randomly selected ego networks and a test set with the remaining
5 ego networks. To prevent the results to be influenced by a partic-
ular combination of these sets we create five different pairs of
training and test sets for each of the 100 sub-sampled data sets.
Then we fit a regression model for each of the resulting 500 train-
ing sets (formed of 100 sub-sampled data set for each of the 5 dif-
ferent combinations of training sets) and we derive an overall
model by averaging the coefficient of all the obtained 500 linear
regression models. Hence, we evaluate the accuracy of the ob-
tained model applying it on the test sets, making a comparison
of the output of the model and the explicit evaluations of tie
strength contained in the test sets. The accuracy results presented
in the following are averaged over the 500 test sets (100 sub-sam-
ples for each of the 5 combinations of test sets).

Since our data set contains some variables that could be highly
correlated between each other (e.g., the number of posts sent by
ego and the number of comments received from alters and many
others), linear regression could be affected by multicollinearity.
Multicollinearity represents a near exact relationship between
two or more variables [52], which can impact on the accuracy
and correctness of the regression model. Specifically, linear regres-
sion could force the sign of the regression coefficients to be differ-
ent from the sign of the correlation between the respective
variables and tie strength, invalidating the correctness of the re-
sults. To avoid this problem we follow two different ways. On
the one hand we calculate the correlation between all the combi-
nations of pairs of variables and we create a regression model using
uncorrelated variables only (thus excluding the sources of multi-
collinearity)2. On the other hand we use Principal Component Anal-
ysis (PCA) to extract a set of uncorrelated factors from the data set
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Table 3
Correlation between Facebook variables and tie strength.

# Variable r

1 Number of days since last comm. �:56
2 Bidirectional frequency of contact :55
3 Number of days since first comm. :51
4 Frequency of incoming comm. :50
5 Number of received comments :47
6 Frequency of outgoing comm. :44
7 Number of comments sent :43
8 Number of received posts :41
9 Number of received private msg :34
10 Number of posts sent :33
11 Number of likes sent :32
12 Number of received likes :29
13 Number of alters’ pictures in which ego appears :24
14 Number of fan pages in common :20
15 Number of tags on the same objects :20
16 Number of groups in common :20
17 Number of ego’s pictures in which alters appear :17
18 Number of events in common :14
19 Number of private msg sent :11
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and we use them to create a tie strength predictive model. We pres-
ent the results obtained in the two cases in Sections 5.2 and 5.3
respectively, after presenting the initial correlation analysis in
Section 5.1.

5.1. Correlation between facebook variables and tie strength

We study the correlation between each variable in the data set
and the evaluations of tie strength provided by the users. We use
the Pearson product-moment correlation coefficient, described in
greater details in A.

For socio-demographic variables, the correlation analysis indi-
cates that the average tie strength of each ego network is signifi-
cantly correlated with the mean bidirectional frequency of
contact ðr ¼ :474; p < :01Þ, the mean number of comments made
by ego to her alters ðr ¼ :418; p < :05Þ, the mean number of days
since last communication from ego to alters ðr ¼ �:485; p < :01Þ,
the mean number of days since first communication from ego to
her alters ðr ¼ :376; p < :05Þ, the mean number of days since last
communication received by ego ðr ¼ �:473; p < :05Þ, the mean
number of likes made by ego to her alters ðr ¼ :476; p < :05Þ and
the mean number of groups in common between ego and alters
ðr ¼ :379; p < :05Þ. In our sample, age does not influence tie
strength. This result, in contrast with [13], could be explained by
the fact that we considered a quite homogeneous sample, with a
narrow age difference, which could not be enough to catch the
influence of age on social relationships.

As far as the relational variables, we calculate their correlation
with tie strength for the 100 different sub-sampled data sets, aver-
aging the obtained values for all the different data sets. The corre-
lation values, ordered from the highest to the lowest, are reported
in Table 3. In the table we omit the p-values related to the correla-
tion, since they all satisfy p < .01. The variables showing the stron-
gest correlation with tie strength are the number of days since last
communication, the frequency of contact (bidirectional and related
to incoming interactions) and the number of days since first commu-
nication. The first of these variables, representing the recency of
communication, has been used in previous work as an estimator
of the frequency of contact between individuals and as a tie
strength estimate [14]. The correlation between Facebook variables
and tie strength provides a first indication of the feasibility of the
creation of a tie strength predictive model.

5.2. Model with uncorrelated variables

The first family of models we create to predict tie strength and
describe its composition is based on a set of uncorrelated regres-
sors. To build these model we firstly calculate the correlation be-
tween all the possible combinations of pairs of variables and we
create a set of regressors following an iterative procedure. We start
with an empty set of regressors, called Rt , where t indicates the
maximum value of correlation any two variables within Rt can
have. Hence, we take one variable at a time from those listed in Ta-
ble 3, according to a descending order – from the most correlated
to tie strength to the less correlated – and we add it to Rt if all the
correlation values it has with the other regressors already present
in Rt are lower than t. Note that when t is equal to 1 all variables
are in Rt irrespective of their mutual correlation, while t equal to
0 would result in having in Rt only the variable with the highest
correlation with tie strength (i.e., only the variable that is first
introduced in Rt). We iterate the procedure until all the variables
are processed. Thus, Rt represents a set of uncorrelated regressors
at a certain level of pairwise correlation t. For high values of t, vari-
ables in Rt are more likely to present multicollinearity, whilst this
probability decreases with t. On the other hand, very low t values
lead to the exclusion of most of the variables from Rt and thus to
less accurate models. To find a good trade-off, we repeat the entire
process described so far changing the value of the threshold t from
1 downwards, until the signs of the regressors of the models are all
consistent with their value of correlation with tie strength, that
indicates that multicollinearity does not exist between the vari-
ables in Rt . The corresponding Rt contains the largest possible set
of variables that do not present multicollinearity. The described
procedure converged at t equal to :4. Then, for each of the 500
sub-sampled training sets, we build a regression model using only
the variables in Rt . The statistics of the regressors of the predictive
model obtained averaging the 500 models are reported in Table 4
(this model is referred to as ‘‘model without pairwise products’’
in the table), using the same enumeration of Table 3. For each
regressor we report the estimate of its weight, the standard error
and its p-value.

In addition to the model using this set of regressors, we also
considered other benchmark models. The first one is a very simple
model used as baseline to assess the validity of the other models. It
is a constant model which returns the average score of the evalu-
ations used during the training phase for each possible input. The
second model uses the set of uncorrelated regressors identified
using the procedure described above and, in addition, it includes
all the pairwise products between the regressors. Using pairwise
products is a standard technique in regression analysis to improve
the fitting introducing a set of simple non-linear terms. Moreover,
we create a model using the recency of communication as the sole
regressor, as this is the variable that correlates most with tie



Table 4
Coefficients of the regression models based on uncorrelated variables.

Variable Estim. Std err. p Value

Model with one regressor
Intercept 13:168 :376 < :01
1 �10:957 :375 < :01

Model without pairwise products
Intercept 13:120 :357 < :01
1 �9:004 :379 < :01
11 3:798 :373 < :01
13 3:394 :384 < :01
15 :784 :388 < :01

Model with pairwise products
Intercept 13:192 :376 < :01
1 �8:900 :380 < :01
11 4:317 :506 < :01
13 3:904 :567 < :01
15 :254 :419 < :05
1 � 13 �:621 :381 < :05
1 � 15 �:326 :226 < :05
11 � 13 :197 :229 < :05
11 � 15 :161 :136 < :01
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strength (see Table 3). Lastly, we report, for completeness, the
model with all the variables as regressors. This model, although
suffers from multicollinearity and could be heavily overfitted, rep-
resents a reference for the other models. The coefficient estimates
of the models and the respective standard errors and p-values are
reported in Table 4. The constant model is omitted from the table
since it does not have any coefficients. To not compromise read-
ability we also omit the model with all the variables from the table.
The regressors with a p-value greater than :05 were excluded from
the models since they are not statistically significant. The standard
errors indicate that the coefficient estimates are sufficiently reli-
able and the small p-values indicate their statistical significance.

For each model we compute the standard indices R2 and the
estimated standard error. Then we use each model on the test sets,
computing the rmse. These indices allow us to understand how
well the models fit the data set and their prediction accuracy on
the test set. Specifically, The R2 index indicates how much variance
of the tie strength in the training set the models are able to explain.
The more this measure is close to 1, the more the model is able to
correctly approximate all the different values of tie strength. On
the contrary, a low value of R2 indicates that the predictions made
by the model could be centred on an average value and the model
is not able to capture the entire variability of the tie strength. The
estimated standard error is the average value of the error made by
the model while fitting the training set. The rmse measures the
mean error made by the model during the prediction phase and
is calculated comparing the output of the model and the reference
values in the test set (i.e., the tie strength explicitly evaluated by
the users). For a precise definition of these indices see Appendix A.

The results of the models are reported in Table 5. The first mod-
el, by definition, has a R2 equal to 0, since it is centred on the aver-
Table 5
Statistics of the regression models based on uncorrelated variables.

Statistics of the models

Model R2 stderr rmse

Average value 0 :211 :219
One regressor :272 :180 :184
Uncorrelated w/o pairwise prod. :345 :171 :177
Uncorrelated with pairwise prod. :350 :170 :177
All regressors :454 :156 :165
age value of the scores in the training set. The estimated standard
error and the rmse of the model are about 21% and should be con-
sidered as worst cases to test the effectiveness of the other models.
Even though these values seem adequate for a model aimed at pre-
dicting tie strength between people, the model is not able to fit all
the different values of tie strength (because of the null R2) and fails
to reproduce the typical tie strength distribution of social ego net-
works [45]. The model with only one regressor is able to explain
27:2% of the variance of the tie strength in the data set, according
to its R2. This represents a rather good result, considering that we
are using only one variable to estimate the tie strength, that is
influenced by many different sociological and psychological fac-
tors. Note that R2 values around :3 are generally considered rather
good results (e.g., [14]). Nevertheless, the remaining part of vari-
ance of the tie strength not explained by this first model is still
large and this could limit the ability of the model to effectively pre-
dict all the different values of tie strength. The estimated standard
error of the model is equal to 18%. This means that the model, on
average, is able to fit the training set with a good accuracy. The
rmse of the model is really close to the estimated standard error.
This is a good result, since indicates that the average error made
on the test set has the same magnitude of the error made on the
training set. Hence, the model seems not to be affected by overfit-
ting and remains valid also when applied to data other than that
used to train it. The model with the addition of the other uncorre-
lated variables to the recency of communication shows an improve-
ment in terms of all the presented indices. Even if the
improvements in terms of estimated standard error and rmse are
only :9% and :7% respectively, the R2 is 7:3% higher than that of
the model with one regressor. This improvement in terms of R2

makes us prefer this model to the previous one, since it is more
accurate in the fitting of all the different values of tie strength.
The model with the introduction of the pairwise products of the
variables does not bring a noticeable increment in terms of R2

and rmse to justify its higher complexity – represented by the high-
er number of regressors. Lastly, the model with all the variables as
regressors shows the best performances, but, as stated before, it
suffers from multicollinearity.

Fig. 6 compares more in detail the predictions made by the
models with respect to the explicit evaluations of tie strength in
the training sets. Specifically, each curve in the plot shows the
probability with which a given value of tie strength is predicted
by the corresponding model, or appears in the explicit evaluations
of tie strength. In other words, the curves show the empirical dis-
tributions of tie strength in the data set, and produced by the mod-
els. This provides a more detailed comparison with respect to the
rmse index, which is essentially an average accuracy index.

We do not give a graphical representation of the results of the
model with the addition of pairwise products of the variables since
the curve is really close to that related to the model without pair-
wise interactions. We also omit the constant model from the figure,
since its density function is a Dirac delta function centred in the
average of the evaluations (i.e., 13:216). From the graphical repre-
sentation in Fig. 6 we can notice that the predictions made by the
models using Facebook variables as predictors have similar distri-
butions. Both models tend to overestimate tie strength when it is
close to zero, since the density of the predictions is lower than
the reference at zero and higher between 5 and 30. We find that
the data set is noisy in this particular region and this is likely to
be the main reason for this inaccuracy. On the other hand, the
models tend to overestimate tie strength for high values of tie
strength. This prediction inaccuracy is likely to be due to the pres-
ence of few samples with a high value of tie strength. The both
types of inaccuracy are likely to be mitigated using a larger data
set. Nevertheless, Fig. 6 qualitatively confirms that the estimations
made by the models are in line with the explicit values.



Table 6
PCA Factor Loadings. For each factor, loadings greater than :3 are in bold, to mark the
variables that have a significant impact on the factor.

Var Factor

I II III IV V

1 �:77 �:29 �:07 �:17 �:12
2 :88 :28 :09 :17 :11
3 :82 :18 :10 :08 :03
4 :90 :08 :09 :16 :14
5 :44 :28 :22 :29 :30
6 :32 :70 :07 :22 :13
7 :21 :61 :12 :31 :28
8 :78 :02 :18 :08 :07
9 :54 :10 �:14 :24 :26

10 :35 :51 :10 :12 :06
11 :04 :56 :14 :29 :24
12 :22 :23 :24 :29 :30
13 :16 :05 :22 :30 :34
14 :06 :26 :15 :35 :49
15 :10 :05 :77 :07 :05
16 :10 :09 :79 :05 :03
17 :08 :19 �:03 :29 :45
18 :06 :05 :46 :13 :12
19 :01 :37 �:09 :20 :21
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The results described so far indicate that the models we have
obtained effectively predict tie strength using only a small set of
Facebook variables (i.e., 4 in the model with all the selected uncor-
related variables). The first model, with only the number of days
since last communication as regressor, already provides good pre-
diction accuracy, confirming that this variable is a good predictor
of tie strength. Nevertheless, using additional variables (i.e., the
other regressors in the second model) provides even more accurate
predictions.

5.3. Model with PCA factors

As a second approach to build a model to predict tie strength,
avoiding multicollinearity at the same time, we apply PCA on the
100 sub-sampled data sets to obtain a set of orthogonal variables
to be used as regressors. PCA is a standard technique that trans-
forms a set of possibly correlated variables into a set of uncorre-
lated factors, obtained as linear combinations of the original
variables. The results of PCA are presented here in terms of factor
loadings, that is to say the weights to be given to each original var-
iable to obtain the factors themselves. Further details on PCA tech-
nique and a detailed description of the meaning of factor loadings
and of other properties of the factors are given in A. We use the ob-
tained factors to build a regression model for each of the 500 train-
ing sets (100 sub-samples for each of the 5 combinations of
training sets). Hence, we average the 500 obtained models obtain-
ing a unique average model. Afterwards, we test the predictive
power of this average model on the different test sets.

The results obtained using PCA, expressed in terms of factor
loadings, are reported in Table 6. The numbering of the variables
presented in the table is the same used in Table 3. We analyse only
the first 5 factors since they are the only ones with eigenvalue
greater than 1, as suggested in [53]. In essence, we drop all the fac-
tors with eigenvalue lower than one since they extract less than
the equivalent of one original variable. Nevertheless, before putt-
ing aside the less important factors (in terms of explained vari-
ance) we study the correlation between all the factors extracted
and the tie strength. We find that the first five factors, in addition
to be the factors that explain the largest portion of variance of the
data set (individually), are also the most correlated with tie
strength. All the other factors show low values of correlation (i.e.,
below :1) or their p-value stays above :05. This means that they
have a meaningless relation with tie strength.

Before continuing with the analysis and with the creation of a
predictive model using the obtained factors, we characterise the
physical meaning of each factor, based on the variables that deter-
mine it and their factor loadings (see Table 6). Doing so we can
have a first broad idea on which is the nature of the principal
dimensions contained in our data set and we can also sketch a pre-
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liminary comparison on the differences between these dimensions
and those hypothesised by Granovetter in [6], as the most impor-
tant tie strength dimensions.

The first two factors contain all the variables related to the com-
munication between people, like the frequency of contact, the time
since last/first communication, the number of likes/posts/msg/. . . sent
or received by egos. These factors are related to the time dedicated
by two individuals to the social relationship that ties them to-
gether. Moreover, the factors embody the intensity of the commu-
nication related to the relationship. We can call these factors
‘‘communication factors’’. The first factor embodies the incoming
communication and the overlap between the incoming and the
outgoing communication (i.e., the incoming communication recip-
rocated by ego). The second factor contains the portion of outgoing
communication not already contained in the first factor, that is to
say the outgoing communication not reciprocated by alters.
Although this requires better investigation, the fact that outgoing
communication is split between the first two factors is likely to
be the reason why they are uncorrelated. In general, incoming
and outgoing communications are correlated, although less than
expected. The correlation between the two types of communica-
tions in our data set is :33 (p: < :01Þ. This fact is induced by the nat-
ure of Facebook, that allows people to consume information
received by other users, but does not require that these people di-
rectly communicate with those specific users, as previously de-
scribed by the authors of [49].

The third factor is a combination of the number of groups and
events in common and the number of tags on the same objects. This
factor represents how similar two Facebook profiles are and we call
it ‘‘social similarity factor’’. The last two factors share broadly the
same variables and we hypothesise that they could be related to
the intimacy and the emotional intensity of a relationship, since
they also contain the number of pictures in which two users appear
together, which we hypothesise as an indicator of the emotional
affinity of individuals.

Although it is necessary to extend this analysis to a larger num-
ber of users, these results suggest that our data set contains
broadly the same dimensions hypothesised by Granovetter, even
though the presence of variables indicating the intimacy and the
reciprocal services in our data still remain as an hypothesis.

Using the factor scores obtained using the PCA we create three
different regression models for tie strength prediction. The first
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model uses only the first PCA factor as regressor (the factor with
the strongest correlation with tie strength). Then we create a sec-
ond model using all the five PCA factors and a third model with all
the factors and their pairwise products. We report in Table 7 the
coefficient estimates of the models along with their respective
standard error and their p-values. The regressors with a p-value
higher than :05 have been excluded from the models. These statis-
tics indicate that all the regressors reported in the table are signif-
icant and their estimates are sufficiently accurate.

The R2, the estimated standard error and the rmse of the models
are reported in Table 8. The first model has a noticeably lower va-
lue of R2 compared to the other models and the error it makes dur-
ing prediction is higher (almost 20%). The second model, instead,
shows a good R2, with a sensible improvement compared to the
previous one. Also the rmse and the average standard error indicate
better performances, not far from the reference model built using
all the possible regressors reported in Table 5. The third model
introduces an additional improvement in terms of R2, but its aug-
mented complexity is not supported by a noticeable increment in
terms of prediction accuracy. In fact the rmse is equal to that of
the model without pairwise interactions and the presence of addi-
tional regressors could introduce overfitting. Hence, the second
model turns out to be the best one, since it is simpler than the third
one - maintaining a similar R2 at the same time - and has a far bet-
ter R2 compared to the first model.

Fig. 7 shows a graphical comparison between the distributions
of the tie strength explicit evaluations in the test sets and the dis-
tributions of the tie strength predicted by the first and the second
models, built using the PCA factors as regressors. The predictions
made by the first model – with only the first factor as regressor
– are not enough accurate, especially between 0 and 30. The model
with the five PCA factors shows a good accuracy in the prediction,
since the distribution of its output indicatively follows the distri-
Table 7
Statistics of the regression models with PCA factors.

Regressor estim. std err. p value

Model without pairwise products
Intercept 13:342 :361 < :01
Factor I 10:565 :374 < :01

Model without pairwise products
Intercept 13:143 :341 < :01
Factor I 9:224 :340 < :01
Factor II 5:444 :338 < :01
Factor III 4:418 :338 < :01
Factor IV 4:669 :339 < :05
Factor V 4:080 :339 < :05

Model with pairwise products
Intercept 13:143 :336 < :01
Factor I 9:028 :367 < :01
Factor II 6:086 :453 < :01
Factor III 4:201 :355 < :01
Factor IV 5:167 :516 < :05
Factor V 4:718 :492 < :05
I⁄III :913 :335 < :05
II⁄III :530 :254 < :05
II⁄IV �:372 :231 < :01
II⁄V �:471 :204 < :05
IV⁄V �:242 :208 < :05

Table 8
Statistics of the regression models with PCA factors.

Model R2 residual std err rmse

First PCA factor :193 :189 :198
PCA factors I-V :404 :163 :171
PCA factors I-V + pairwise prod. :423 :161 :171
bution of the tie strength in the test set, even if the major part of
the error is still concentrated between 0 and 25. The same hypoth-
esis on the nature of the error made by the models, already high-
lighted for the models with uncorrelated variables in Section 5.2,
holds also for Fig. 7.

5.4. Comparison between the different models

The models described so far have approximately the same pre-
dictive power in terms of rmse (M ¼ :180; SD ¼ :010). This repre-
sents a good result, since all the models we have built are able to
predict tie strength with an accuracy greater than 80%. The little
difference in terms of rmse between the different models seems
to indicate the model with only the recency of contact as regressor
as the best choice, since it is the simplest one. Nevertheless, the
noticeable difference in terms of R2 makes us prefer the models
built using all the five PCA factors. In fact, the higher value of R2

(not far from the R2 of the reference model built with all the vari-
ables) makes this model able to better approximate all the possible
values of tie strength and assure that the model does not produce
always the same average score, but it effectively follows real tie
strength distribution. For this reason the model with the five PCA
factors is also the most general, and its validity is not limited to
our particular data set. A drawback of this model is that it needs
all relational variables. In cases where this is not feasible, the mod-
el using the four uncorrelated variables is a very good trade off. It is
not much more complex than the one using only one regressor (re-
cency of contact), and is able to provide higher R2 and lower rmse,
although it does not reach the performance of the model with all
PCA factors.

It is noteworthy that the most important variable for tie
strength prediction remains the time since last contact in all the
models. Our results also confirm that this variable is a good estima-
tor of the frequency of contact, since it has a very high correlation
with the bidirectional frequency of contact ðr ¼ �:86; p < :01Þ. More-
over, it also represents a large portion of the first PCA factor. The
time since last contact is also really simple to be obtained from
Facebook and the model that uses only this variable as predictor
requires only a small amount of information. In fact, it is sufficient
to download only the last communication record and not the
whole history of interactions between the users to obtain the time
at which the last contact between two online users occurred.

6. Conclusions and future work

In this paper we have presented a detailed analysis of Facebook
ego networks. This analysis has a double aim. On the one hand it
provides a fine-grained characterisation of OSN ego networks
properties and it studies the relation between these properties
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and the tie strength. On the other hand, the analysis is aimed at
building a set of models able to predict tie strength from OSN data.
To perform this analysis, we downloaded a set of observations of
Facebook variables concerning social relationships through a data
acquisition campaign. Then we collected the tie strength estima-
tion related to the involved relationships, asking the participants
of our experiment to explicitly evaluate their Facebook friendships
through an electronic survey. From this data, we find that the prop-
erties of Facebook ego networks are compatible with the findings
regarding offline ego networks. In particular, the number of active
relationships an individual can maintain – found in offline social
networks (the well-known ‘‘Dunbar number’’) is comparable with
the one we have found in Facebook. Facebook users in our sample
have, on average, a maximum number of active friends equal to
105:14. This value falls inside the boundaries hypothesised for off-
line ego networks [25] and is similar to other active network mean
sizes found in human social networks [12,14]. Moreover, the distri-
bution of active network sizes of our data set is similar to those
found in offline ego networks [8,14].

To study the composition of tie strength and to predict it
using a set of Facebook variables we create a series of regression
models dividing the analysis in a first phase dedicated to the
training of these models and a second phase in which we test
them on another portion of the data set, different from that used
for training. To build the predictive models we take two different
approaches. On the one hand we select a group of variables not
correlated between each other – discarding variables that can
lead to multicollinearity – but having a sufficiently high correla-
tion with tie strength, and we create a first regression model. On
the other hand we use PCA to extract the principal factors of the
data set – that are orthogonal and thus uncorrelated by defini-
tion – and we use them to create a second type of predictive
model. The PCA also allows us to compare the dimensions of
tie strength hypothesised in the seminal work by Granovetter
[6] and in [28] with the factors derived from the data set. The
results of this analysis suggest that the variables we have col-
lected represent all the dimensions of tie strength as hypothe-
sised in [6].

The regression models perform quite well. They show R2 indices
comparable to other models in literature, namely to that presented
in [14], regarding ‘‘offline’’ social networks, and that in [20], as far
as online environments. Moreover, the validity of our models is
also tested on a test set containing data different from that used
to train them. They show good results in terms of prediction accu-
racy. On average, they achieve accuracy greater than 80%. The best
one among them is the one using all the PCA factors as regressors.
The main drawback of this model is that it needs to collect all the
variables present in our data set, which may pose concerns in
terms of practical applicability.

It is noteworthy that the most important regressors of the mod-
el, in terms of prediction power, are those implying the recency of
communication and the frequency of contact between people in-
volved in a social relationship, already used as tie strength predic-
tors in other studies regarding ‘‘offline’’ social networks analysis
[14]. Models using only this variable as predictor (which is similar
to what has been typically done in the anthropology literature
[14]) perform quite well, although do not match models based
on the PCA factors. They are appealing, as they can be implemented
by monitoring only one variable, which is a very low cost. An inter-
esting trade off between one-regressor models and full-PCA mod-
els is achieved by a model that uses only four uncorrelated
variables, and provides better fitting and prediction performance
with respect to the model with one regressor. The 4-variable model
keeps the complexity at a reasonable level, providing good
(although sub-optimal) performance in terms of fitting and predic-
tion accuracy.
In conclusion, our findings indicate that the characteristics of
OSN ego networks are not so different from those found in offline
ego networks, both in terms of their structure and tie strength
composition. This means that, even if OSN like Facebook and Twit-
ter give us many new and different ways to communicate, our so-
cial behaviour and our capacity to maintain social relationships
with others seem to remain unaltered. These results clearly need
further investigation on a much larger data set, more representa-
tive of the entire Facebook population, but they still represent a
first interesting indication of the similarity existing between offline
and online social networks. The tie strength models presented in
this paper clearly indicate that a lot of work still need to be done
in OSN analysis to fully understand the global ‘‘social’’ properties
of the networks. Our models are still preliminary and their perfor-
mance must be improved, especially in terms of predictive power.
Although this, our work demonstrates the feasibility of the creation
of a general model for tie strength prediction that could represent
the basis for more advanced studies in OSN analysis.
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Appendix A. Methodology to create and evaluate tie strength
prediction models

A.1. Correlation analysis

To perform the correlation analysis, we used the sample corre-
lation coefficient r that, given two random variables X and Y, is de-
fined as:

rxy ¼
Pn

i¼1ðxi � xÞðyi � yÞ
ðn� 1ÞSxSy

; ðA:1Þ

where x and y are the sample mean, and Sx and Sy are the sample
standard deviations, of X and Y, respectively. r is an estimator of
the Pearson product-moment correlation coefficient (also known
as Pearson’s r), defined as:

qX;Y ¼
COVðX;YÞ

rXrY
; ðA:2Þ

where COVðX;YÞ is the covariance and rX and rY are the standard
deviations. r-values are typically presented together with a corre-
sponding value of a parameter p, which describe the significance
of the r-value. Small p-values indicate that r is reliable (see [54]
for a precise definition of p).

A.2. Multiple linear regression

Regression analysis implies that the relation between a depen-
dent variable Y and one or more independent variables X – also
called regressors – can be described with the following linear
model:

Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn þ �; ðA:3Þ

that is, for a given vector ðx1; x2; . . . ; xnÞ, a corresponding observation
y consists of the value calculated as a linear combination of the dif-
ferent xi (where i is between 1 and n) plus an error term �. We say
that a model is linear if it is linear in its parameters [55]. The values
of the b coefficients are unknown, but they can be estimated from
the observed data using, for example, the method of least squares.
On the contrary, � changes for each observation and it cannot be
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estimated. Thus the model that predicts Y from the regressors Xi is
the following:

bY ¼ b̂0 þ b̂1X1 þ b̂2X2 þ � � � þ b̂nXn: ðA:4Þ

The ‘‘hats’’ above the b signify that those parameters are being esti-
mated. The hat above Y means that the dependent variable is being
predicted [52].

We feed the models with the records of our training sets, where
each record is formed of a pair ðX̂ij;YijÞ, where bX is a vector of Face-
book variables related to the social relationship between two sub-
jects i (ego) and j (alter) and Yij is a variable representing the
evaluation of tie strength given by i with respect to j.

We fit a model for each of the 5 training sets of the 100 boot-
strapped data sets, obtaining a total of 500 different models. Hence,
we assess how well the models fit the training sets, calculating the
R2 index for each of them. The R2 index is a standard measure of the
worth of a regression equation and is defined as follows:

R2 ¼
P
ðbY � YÞ2P
ðY � YÞ2

; ðA:5Þ

where bY is the output of the model, Y is the observed variable used
to estimate the parameters and Y is the mean of the latter. R2 rep-
resents the total amount of variance explained by the model.

To show the predictive power of the models, fitted on the train-
ing sets, we apply them on the records contained in the test sets
(represented by tuples of the form ðx1; x2; . . . ; xnÞ where each x is
an occurrence of a Facebook variable X. Hence we calculate how
accurate is the result of each model compared to the expected va-
lue in the data set (i.e., the tie strength evaluations in the test sets).
To do so, we calculate the root mean squared error (henceforth
rmse) of each model on its relative test set. The rmse indicates
the magnitude of the error made by a model while predicting tie
strength and is defined as follows:

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðbY � YÞ2

n

s
; ðA:6Þ

where bY is the tie strength predicted by the models, Y is the tie
strength in the test set – which we want to predict – and n is the
number of relationships in the test set.

A.3. Principal component analysis

PCA is a technique aimed reducing the dimensionality of a data
set without eliminating relevant information. Intuitively, PCA
groups the original variables in a – typically small – set of groups.
Inside each group, variables are strongly correlated with each
other. Each group is represented by a unique variable (called prin-
cipal component), computed as a linear combination of the vari-
ables of the group. Principal components of different groups are
uncorrelated. The operational details of PCA can be found in
[56,51]. The key idea of PCA is therefore to identify a – possibly
small – number of orthogonal dimensions (the principal compo-
nents) of the data set, replacing groups of correlated variables with
a unique variable, which is representative of the dimension. PCA is
able, given a data set, to highlight the key dimensions represented
in the data set. In addition, components of a PCA are automatically
ordered. The first component is the one that is most relevant in
explaining the overall variance of the data set.

The results of PCA are usually discussed in terms of component
loadings and component scores. The former are the weights by
which each original variable is multiplied in the linear combination
to determine the principal factors. The latter are the values of the
original variables multiplied by their respective weight in the lin-
ear combination. PCA is useful to identify the principal factors of
the data set and therefore we use it to check whether our data
set includes all the dimensions of tie strength described by Grano-
vetter in [20]. However, it could be inappropriate to use these fac-
tors for prediction, since the factors which explain only few
variance might have high predictive relevance. Thus, we calculate
the correlation between the PCA factors and the tie strength and
we select the factors showing a high correlation index before cre-
ating the predictive model.
Appendix B. Additional statistics of the data set

In this Appendix we present the additional descriptive statistics
of the relational variables of the data set. Specifically, Figs. B.8, B.9,
B.10, B.11, B.12, B.13, B.14, B.15, B.16, B.17 depict the CCDF of all
the relational variables not already shown in Section 4. The figures
related to the communication between ego and alters report both
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the interactions made by ego to alters and the communication
made by alters to ego.
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