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Cost-Effective Enforcement of Access and
Usage Control Policies Under Uncertainties

Leanid Krautsevich, Aliaksandr Lazouski, Fabio Martinelli, and Artsiom Yautsiukhin

Abstract—In usage control, access decisions rely on mutable
attributes. A reference monitor should reevaluate security policies
each time attributes change their values. Identifying all attribute
changes in a timely manner is a challenging issue, especially if the
attribute provider and the reference monitor reside in different
security domains. Some attribute changes might be missed,
corrupted, and delayed. As a result, the reference monitor may
erroneously grant access to malicious users and forbid it for
eligible ones. This paper proposes a set of policy enforcement
models that help mitigate the uncertainties associated with
mutable attributes. In our model, the reference monitor, as usual,
evaluates logical predicates over attributes and, additionally,
makes some estimates on how much observed attribute values
differ from reality. The final access decision takes into account
both factors. We assign costs for granting and revoking access
to legitimate and malicious users and compare the proposed
policy enforcement models in terms of cost efficiency.

Index Terms—Costs, freshness, Markov chains, mutable
attribute, policy enforcement, usage control.

I. Introduction

ACCESS CONTROL aims to ensure that only trusted
principals are granted access to a resource [1]. Usage

control is responsible for guaranteeing that principals also
remain trusted when the access is in progress, i.e., when these
principals use the resource. A reference monitor evaluates an
access decision on the basis of the principal’s attributes. The
attributes are issued by the attribute provider and characterize
subjects and objects participating in access and usage control
(UCON) [2], [3].

The UCON model proposed by Zhang et al. [4] includes
access and usage control scenarios and operates with mutable
attributes to specify and continuously enforce security policies.
Access decisions in UCON are based on authorizations (predi-
cates over subject and object attributes), conditions (predicates
over environmental attributes), and obligations (actions that
must be performed by a requesting subject). The reference
monitor in UCON reevaluates the access decision every time
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an attribute changes its value. However, identifying all attribute
changes in a timely manner is a challenging issue.

Some security attributes (e.g., the requester’s reputation and
location) are remote, i.e., the attributes reside outside the
control of the reference monitor, and can be only observed.
These attributes should be constantly pushed by the attribute
provider (e.g., the requester) or pulled by the reference mon-
itor. The system usually allows only the current attribute
value to be pulled, and, as a result, some attribute changes
between adjacent pull queries might be missed. Worse still,
these unnoticed changes may violate security policies. For
example, if a security policy grants access rights to users
residing in a certain location, there is no evidence that these
users did not leave the location in-between checks [5].

In addition, system failures, delays occurring during at-
tribute delivery due to a network latency, as well as mali-
cious activities (e.g., a man-in-the-middle, eavesdropping, and
impersonating of data by the attribute provider) contribute
to the problem of correct policy enforcement. The impact
of uncertainties associated with observed attributes should be
mitigated by the reference monitor [6], [7].

This paper proposes cost-effective enforcement models of
UCONAC [4] security policies. Our basic idea is to take into
account possible uncertainties when an access decision is
made. In other words, an uncertainty-aware reference monitor
should adjust its decision according to information about the
relevant uncertainty. We propose to consider cost effectiveness
as the main criterion for making such a decision. We assign
monetary outcomes for granting and revoking access to legit-
imate and malicious users and compare the proposed policy
enforcement models in terms of cost efficiency.

The main contributions of this paper are:
1) to identify uncertainties associated with attributes used

to produce access decisions;
2) to introduce models of a correct policy enforcement and

enforcement under uncertainties;
3) to introduce a cost model for policy enforcement and

compare the cost efficiency of proposed enforcement
models for access and usage control.

This paper is structured as follows. Section II provides basic
notes on UCON. Section III describes the running example
that we use throughout this paper. Section IV introduces the
model of a mutable attribute, and enlists all types of uncer-
tainties associated with mutable attributes. Section V presents
models of correct policy enforcement. Sections VI and VII
outline a cost model and estimate an average profit for policy
enforcement under uncertainties for access and usage control.
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Section VIII presents the architecture of the reference monitor
for enforcement of policies under uncertainties. Section IX
summarizes related works. Section X concludes this paper. In
the Appendix, we describe solutions for several computational
problems of the Markov chains.

II. Usage Control

Usage control [4] requires continuous control over long-
standing accesses to computational resources (e.g., an execu-
tion of a job in Grid, a run of a virtual machine in Cloud).
Continuity of control is a specific feature of UCON intended
to operate in a mutable context. The context is formed by
attributes of a requesting subject, an accessed object and an
execution environment.

An attribute is denoted as h.r, where h identifies a subject
requesting an object, the object itself, or an environment, and
r refers to the attribute name. An assignment of an attribute
maps its name to a value in its domain Vr, i.e., h.r = v, where
v ∈ Vr. Without loss of generality, we assume that there is
only one attribute in the system denoted as r and that this
attribute has a finite domain of values.

Attribute mutability is an important feature of UCON, which
means that an attribute can change its value as a result of an
access request or another uncontrollable factor. We define the
behavior of the attribute as a sequence of values assigned to
an attribute with time passage: {v0, v1, . . . , vi, . . . }, where v0

refers to the attribute value when a subject sends an access
request, and index i ∈ N refers to a time point at which
the attribute changes its value. We define a strictly increasing
function cl which assigns a real time value to any index,
cl : N→ R.

Access decisions in UCON are based on authorizations
(predicates over subject and object attributes), conditions
(predicates over environmental attributes), and obligations
(actions that must be performed by a requesting subject).
We consider security policies consisting of authorization and
condition predicates only, that is, the UCONAC model [4].
We define a predicate p to be a boolean-valued computable
function mapping an attribute value to either true or false,
p : Vr → {true, false}.

Another important feature of UCON is that it specifies
when access decisions are evaluated and enforced. There
are two phases: 1) preauthorization, or access control; and
2) continuous policy enforcement, or usage control.

Access control starts at time ttry when a user sends a request
to the reference monitor. The reference monitor acquires an
attribute value v0, evaluates authorization predicates only once
and grants the access at time tperm if p(v0) = true, and
ttry = cl(0), ttry ≤ tperm.

Usage control begins at time tperm when the attribute takes
value vi, and cl(i) ≤ tperm < cl(i + 1). The reference monitor
reevaluates authorization predicates each time the attribute
changes its value. The access should be continued by time
tnow = cl(j) only if p(vi)∧p(vi+1)∧· · ·∧p(vj) = true. Although
usage control ends as a result of the access revocation or at
the subject’s discretion, without loss of generality we consider
only the first scenario. When a new value vk violates the policy,

i.e., p(vk) = false, the reference monitor revokes the access.
Usage control is over at time trev = cl(k).

III. Running Example

We consider a reputation of a user in Grid as an example of
a mutable attribute. The attribute changes its value based on
bad, good, and neutral feedback received from other parties.
The attribute domain is Vr = {general, normal, suspicious,
malicious}. There is a reputation management system (RMS)
which measures the reputation value for all users in Grid.
Every manager of a resource has an access and usage control
system (AUCS) which allows usage of the controlled Grid
resources only if the reputation of a user is other than
malicious. Each request for resources is intercepted by the
corresponding AUCS. The AUCS (reference monitor) pulls the
reputation value from the RMS (attribute provider). If the value
is malicious the AUCS denies access, otherwise the AUCS
grants access to the user. During the usage session the AUCS
periodically pulls the reputation from the RMS.

The problem is that, at the time of the access request, a
user may be involved in several other jobs for which the RMS
has no feedback. In other words, the reputation that a user has
at the time of the access request could differ from the real
one. The AUCS, which uses only the current version of the
reputation, is opened to the following attack. A new user with a
good or neutral reputation gets involved in many jobs in a short
period of time. The user abuses his rights but, since feedback
about his behavior is provided only at the end of a job, his
reputation remains good for some time. During this time the
malicious user is still able to leverage resources of Grid. The
AUCS should take into account the uncertainty which is in the
system in order to make a right access decision.

After granting access to some resources the AUCS should
monitor the current reputation of the user. Now, during the
usage of the resource, the AUCS has another problem which
is also rooted in uncertainty. The AUCS has to define how
often the reputation of the user has to be requested from
the RMS. Checks after every change in the reputation value
imply the use of resources and are expensive to perform.
Therefore, the AUCS has to define the amount of changes
after which the check should be performed. In other words,
there is a need for a balance between security and benefits of
usage of the resource.

IV. Attribute Model

Our main concern in this paper is the enforcement of a
UCON policy based on a remote attribute with observable
mutability. Remote means that an attribute is managed by the
attribute provider which is not under the control of the refer-
ence monitor. Observable mutability means that the reference
monitor observes only how the attribute behaves in time. Thus,
for the same attribute, we distinguish real attribute values
which truly describe the attribute behavior in the system and
observed attribute values which are obtained by the reference
monitor and used to evaluate authorization predicates.
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A. Real Attribute Values

We assume that a change of the attribute’s value can be
modeled as a random event. Let ω : r = v denote this event
which happens when the attribute r takes the value v. We
define �r to represent a set of all possible events ω. Since the
attribute can take any value from its domain, there is a one-
to-one correspondence between elements of �r and Vr. Each
change of an attribute is paired with the value the attribute
takes as the result of this change.

In probability theory, it is often easier to deal with a value
associated with the random variable rather than with the event
itself. Therefore, we introduce a random variable A which
gives a numerical description of the event ω. A is a real
valued function on �r, that is A : �r → R. The event
A = a represents the fact that the attribute r takes the value
v, s.t. A(ω) = aω. Let probability of the event to happen be
Pr[A = a]. The function Pr has all properties of a probability
function, e.g., for any event E, 0 ≤ Pr[E] ≤ 1. We write
E1 ∩ E2 for occurrence of both E1 and E2 and write E1 ∪ E2

for the occurrence of either E1 or E2 (or both). Let the
event P(A) denote the fact that an attribute takes any value
which satisfies a policy, i.e., P(A) =

⋃
ω∈�G

(A = aω), and
�G = {r = v| p(v) = true, v ∈ Vr}. The event P(A) specifies
the fact that the attribute takes any value which violates
the policy. Furthermore, we use A to refer to the attribute
value.

Let the behavior of a real attribute be specified by a scheme
〈A, CLAP〉, where we obtain the following.

1) A = {Ai : i ∈ N} is a discrete-time stochastic process
modeling a behavior of a mutable attribute. We call Ai

the state of the process at i, and Ai = ai denotes that
after i changes the attribute value equals ai.

2) CLAP = {clAP(j)|j ∈ N} is an ordered set of times-
tamps assigned to each attribute change by the attribute
provider when it happens. We assume that clAP(0) = ttry
and for all j ≥ 1, clAP(j) = clAP(j − 1) + Tj, where
Tj > 0 and it specifies a time interval between adjacent
attribute changes.

Example 1: A reputation attribute may be modeled as a
random variable A with values A(r = “general”) = 1,
A(r = “normal”) = 2, A(r = “suspicious”) = 3, and
A(r = “malicious”) = 4. The mutability of the reputation
attribute could be modeled as a discrete-time Markov chain
[8], [9] uniquely defined by the one-step transition matrix.
Thus, the entry in the ith row and jth column is the transition
probability Pr(Ai = a | Ai−1 = b) giving the probability that
the attribute changes value to a if its current value is b.

Fig. 1 shows the Markov model for our running example
with the transition probabilities collected in a transition matrix.
These probabilities could be used in order to find whether
reputation has a certain value (e.g., Pr(A = 2)). The transition
probabilities are taken from the history of changes stored by
the RMS and shared with the AUCS

Prob =

⎛
⎜⎜⎝

0.6 0.4 0.0 0.0
0.5 0.3 0.2 0.0
0.0 0.2 0.3 0.5
0.0 0.0 0.1 0.9

⎞
⎟⎟⎠ . (1)

Fig. 1. Reputation attribute model.

B. Observed Attribute Values

Only the attribute provider knows how the attribute behaves
in time, but the reference monitor can also observe this
process. There are two basic models of how attribute changes
are delivered to the reference monitor: push and pull. The
push model defines a scenario where every new attribute value
is timestamped and pushed by the attribute provider to the
reference monitor. The pull model defines a scenario where
the reference monitor queries the attribute provider to give the
current attribute value. The attribute provider replies with the
value, its timestamp and some additional information.

By analogy with real attribute values, let observed attributes
be specified by a scheme 〈Ã, CLRM〉, where we obtain the
following.

1) Ã = {Ãi : i ∈ N} is a discrete-time stochastic process
modeling an observation of attribute changes over time.
Ãi = ai denotes that an attribute value after i observa-
tions equals ai.

2) CLRM = {clRM(j)|j ∈ N} is an ordered set of times-
tamps assigned by the reference monitor. A timestamp
j denotes when the jth observation of an attribute value
was processed and the appropriate access decision was
enforced by the reference monitor. We assume that
clRM(0) = tperm.

Real and observed attribute values form a bipartite directed
graph W = (A, Ã, E), where edges E connect real and
observed attributes via push/pull queries. If there exists an
edge e which connects Ac and Ãc′ , we say that Ac corresponds
to Ãc′ and denote this as Ac � Ãc′ . To evaluate authorization
predicates, the reference monitor can exploit observed attribute
values and timestamps of the corresponding real counterparts.

Example 2: Fig. 2 describes the exchange of attributes
between the RMS and the AUCS from our running example.
The left part of the figure is devoted to access control. The
attribute value A0 sent by the RMS at ttry = clAP(0) is observed
by the AUCS at tperm = clRM(0) as Ã0, i.e., A0 � Ã0.

For the right part of the figure, i.e., usage control, the RMS
sends the fourth change of the attribute A4 at clAP(4), which is
observed by the AUCS as Ã2 at time clRM(2), i.e., A4 � Ã2.

C. Intentional and Unintentional Uncertainties

Observed attributes differ from their real counterparts due
to attacks, noise, delays during delivery, and missed attributes.
We call uncertainty a property on real and observed attributes
which specifies how these values vary. The closer observed
values are to the real ones the more reliable the enforcement
of the policy. In this paper, we consider two types of uncertain-
ties: unintentional (freshness and correctness), and intentional
(trustworthiness).
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Fig. 2. Real and observed attribute values.

1) Freshness of Attributes: This is an unintentional uncer-
tainty occurring due to the mutability of attributes. Generally,
this property means that the latest observed value of an
attribute is out-of-date, while the current real value of the
attribute is unknown. We introduce three types of freshness
uncertainties.

Freshness I (noncontinuous checks) corresponds to scenar-
ios where only part of attribute changes is detected because
the checks are carried out through some time interval

∃c ≥ 0, m > 0, c, m ∈ N : Ac+m � Ãc.

In Fig. 2, the attribute provider sends A2 and A4 values,
while A3 is not sent. Thus, the reference monitor making a
decision after getting A2 value (Ã1) uses the wrong input for
the decision.

Example 3: After granting access to the user the AUCS
has to monitor the reputation value during the usage. The
RMS sends the current reputation value only once per hour in
order to save resources. If the reputation of the user became
malicious between the checks he will still use the system
because the AUCS is not aware of this change.

Freshness II (delays in processing) implies that there are
inevitable time delays in delivery of an attribute value (due
to a network latency) and decision making (the evaluation of
authorization predicates). That is

∃c′ ≥ 0, c′′ ≥ 0, c′, c′′ ∈ N : Ac′′ � Ãc′

clRM(c′) > clAP(c′′).

When the attribute provider gets a request for the attribute,
it sends value A0 to the reference monitor (see Fig. 2 again).
Since the delivery takes some time (tperm − ttry) the attribute
changes to A1 and the access control system uses the wrong
value for the analysis.

Example 4: A user asks the AUCS for an access. The
AUCS asks the RMS for the current reputation value of the
user and gets suspicious. The problem is that because of the
delay in the delivery when the AUCS makes the decision the
value becomes obsolete, since a new feedback comes to the
RMS and the reputation value changes to malicious.

Freshness III (pending updates) corresponds to scenarios
where the current attribute value is uncertain since some
update queries are pending at the time of the access re-
evaluation. In this case, the attribute provider sends two values:
1) the last certain attribute value and 2) additional information
on how the real value differs from the last certain value.

The presence of the uncertainty freshness III implies

∃c′ ≥ 0, c′′ ≥ 0, m > 0, c′, c′′, m ∈ N : Ac′′ � Ãc′

clAP(c′′ + m) ≤ clRM(c′).

In Fig. 2, the reference monitor which is going to make a
decision after getting value A4 may already know, that this
value is not certain. The attribute provider sending A4 also
sends additional information that there should be one more
change (m = 1) in the attribute between clAP(5) − clAP(4).

Example 5: The RMS updates the reputation only when
an execution is ended and the RMS receives feedback from
a resource provider. Jobs run concurrently and each single
execution may be long lived and last for days. The access
decision to use the resource (made by the AUCS) is based
on the reputation value dated by the last registered feedback
and on the number of jobs currently running on the user’s
behalf. Indeed, the ongoing jobs can be malicious but this fact
will only be discovered afterward. The only way to make the
certain decision is to block the access until all running jobs
terminate. Instead, the AUCS should be set up to make an
access decision with some uncertainty regarding the current
reputation of the user. This uncertainty is contained in the
amount of jobs still active (m value).

2) Correctness: This is affected by additive noises that
usually exist in case of nonaccurate measurements. For exam-
ple, the location attribute can be sensed only with the given
precision. Thus, observed attribute values differ from the real
ones

∃c′ ≥ 0, c′′ ≥ 0 , c′, c′′ ∈ N : Ac′′ � Ãc′

Ãc′ = Ac′′ + N

and N is a random variable that models additive noises
presented in observed attribute values. The reference monitor
may know that the attribute value measured by the attribute
provider is not precise. Thus, on getting a value (e.g., A2) the
reference monitor makes the decision taking the mistake N

into account. This case cannot be shown in Fig. 2 directly.
Example 6: It is known that the RMS reputation values

may differ from the real ones by a maximum of 1 for various
reasons (e.g., some feedback could be lost). The AUCS should
be aware of the possibility of such mistakes.

3) Trustworthiness: This is an intentional uncertainty. It
appears as a result of the attribute provider altering attributes
or as a result of attacks during attribute delivery, storage, etc.
Current approaches guarantee only the integrity of an attribute
by validating a signature of the entity signing the attribute,
but this does not guarantee trustworthiness. This uncertainty
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assumes that either an attribute value, or a time of issuance,
or both can be modified. It implies that the reference monitor
does not trust the attribute provider and assigns a confidence
value for each observed attribute. This value represents the
reliability of the attribute provider in the assertions it makes.

Approaches that consider trust as a probability of an inter-
action to succeed or to fail can be used for the analysis of a
probability of a policy to be violated when the policy attributes
can be either true or false (e.g., [10], [11]). For the computation
of trustworthiness value a feedback collection mechanism
is required, which is powerful enough to detect whether
the received value was modified. Naturally, if such check
could be performed timely for all received values there is no
intentional uncertainty in the system. However, such check
may require significant amount of resources and time (e.g.,
checking the logs of service provider) and the information
about trustworthiness of a user may be collected only from
time to time just to compute the reputation value. The problem
of trustworthiness for the attributes that have a wider domain
of possible values is an open issue which is to be investigated.
But our method only uses the probability of policy violation
and does not depend on its way of computation.

The presence of the trustworthiness uncertainty states

∃c′ ≥ 0, c′′ ≥ 0 , c′, c′′ ∈ N : Ac′′ � Ãc′

Pr[Ãc′ = Ac′′ ] = η, 0 ≤ η < 1

i.e., the probability that the observed attribute is equal to the
real counterpart is below 1 and we assume that the reference
monitor has the power to compute η. Similarly to correctness
this uncertainty also cannot be shown in Fig. 2.

Example 7: The RMS sends to the AUCS the reputation
attribute is equal to normal. The AUCS does not trust the
RMS entirely and based on its internal estimates the AUCS
considers that the observed attribute has the normal value but
with a probability of 0.8.

In the following sections, we continue to use our run-
ning example taking into consideration only the uncertainties
of Freshness III for access control (see Section VI) and
Freshness I for usage control (see Section VII).

V. Correct Policy Enforcement

The correct policy enforcement implies that with observed
attributes the reference monitor enforces the policy exactly in
the same fashion as with real attributes, and both observed and
real attributes satisfy authorization predicates.

A. Correct Enforcement of Access Control

Access control starts at time ttry = clAP(0) when the user
sends the access request and the initial attribute value. The
reference monitor evaluates a policy only once and grants an
access to a resource at time tperm = clRM(0) if the policy holds.
We say that the policy holds for access control if:

1) P(Ã0) happens, i.e., the initial observed attribute value
Ã0 satisfies the policy;

2) P(Am) happens, i.e., the real attribute value Am at the
time the decision is made also satisfies the policy and
clAP(m) ≤ tperm < clAP(m + 1) where m ≥ 0.

Note that some attribute changes may happen between ttry
and tperm, but attribute values must satisfy security policy
exactly when the request is issued and later when the access
decision is evaluated.

Let H be an event that specifies that the policy holds and
H specify the opposite. Clearly, the policy satisfaction and
violation can be defined as follows:

H = P(Ã0) ∩ P(Am) (2)

H = P(Ã0) ∪ (P(Ã0) ∩ P(Am)).

Definition 1 (Correct Enforcement of Access Control): The
reference monitor grants the access at tperm if the policy holds
and denies it otherwise.

Let G be an event specifying that the reference monitor
grants the access and G specifies the opposite (i.e., denies the
access). Thus, the correct enforcement of access control is

G = H, G = H. (3)

B. Correct Enforcement of Usage Control

We say that a policy holds for usage control on a time
interval [tb : te] if:

1) P(Ãk) ∩ P(Ãk+1) ∩ · · · ∩ P(Ãl) happens and clRM(k) ≤
tb < clRM(k + 1), clRM(l) ≤ te < clRM(l + 1);

2) P(Ai) ∩ P(Ai+1) ∩ · · · ∩ P(Aj) happens and clAP(i) ≤
tb < clAP(i + 1), clAP(j) ≤ te < clAP(j + 1).

That is, all real and observed attribute changes occurring
within this interval do satisfy authorization predicates.

If there is at least one attribute value (either real or observed)
which does not satisfy authorization predicates, we call this a
policy violation of usage control.

Definition 2 (Correct Enforcement of Usage Control): The
reference monitor correctly continues the usage session at
tnow if a policy holds on interval [tperm : tnow]. The reference
monitor revokes the access immediately when the policy
violation occurs.

VI. Enforcement of Access Control

Under Uncertainties

Correct enforcement is not feasible in the presence of
uncertainties since the reference monitor is unable to show
that real attribute values satisfy a policy. The basic idea of the
policy enforcement of access control under uncertainties is:

1) the reference monitor evaluates the policy with respect
to observed attribute values;

2) if the observed values satisfy the policy, the reference
monitor runs an experiment which estimates to what
extent the observed attributes vary from the real ones.
If this difference is negligible, the experiment succeeds
and the reference monitor allows the access.

A. Models for Access Control Enforcement

We suppose that the reference monitor is powerful enough
to get some probabilistic knowledge about a real attribute value
based on the observed attribute Ã0 = a and

PrRM = Pr[P(Am)|Ã0 = a]
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specifies a conditional probability that a value of real attribute
Am satisfies authorization predicates at time tperm if the ob-
served attribute value at time tperm is equal to a. The reference
monitor computes PrRM using the following data:

1) observed values of the attribute;
2) parameters of a stochastic process that models a real

behavior of an attribute;
3) a list of uncertainties presented in the system.

Possible combinations of the last two factors produce a
variety of techniques on how to compute PrRM. As an ex-
ample, we refer the reader to [8] and [9], where the behavior
of an attribute is modeled as a Markov chain and freshness
uncertainties exist in the system. Another example given in
[12] studies a static attribute (i.e., the attribute does not change
its value over time) in the presence of the trustworthiness
uncertainty. In our running example for access control we
compute PrRM considering only Freshness III uncertainty and
model the attribute behavior as a discrete-time Markov chain.

Let Y be a random variable such that

Y =

{
1, if uncertainties are acceptable
0, otherwise.

Let δ(x) be a function, that is

δ(x) =

{
1, if x ≥ th

0, otherwise

where th is a real-value threshold.
We propose two models of enforcement for access control

under uncertainties: a threshold enforcement and a flip coin
enforcement. The reference monitor chooses one of these
models.

Definition 3 (Threshold Enforcement of Access Control):
The reference monitor computes PrRM and grants access at
tperm if:

1) P(Ã0) happens;
2) Y = 1, where Pr[Y = 1] = δ(PrRM).

Otherwise, the access is denied.
That is, if the initial observed attribute value satisfies au-

thorization predicates, the reference monitor grants the access
if the probability that the real attribute value Am also satisfies
authorization predicates is above a specified threshold th.

Definition 4 (Flip Coin Enforcement of Access Control):
The reference monitor behaves exactly as in the threshold
enforcement but uses Pr[Y = 1] = PrRM instead.

Hence, if the initial observed attribute value satisfies au-
thorization predicates, the reference monitor runs the random
experiment that succeeds (returns grant) with probability PrRM

and fails (returns deny) with probability 1 − PrRM.
In the notation of events, we get for the enforcement of

access control under uncertainties (either threshold or flip coin)

G = P(Ã0) ∩ [Y = 1] (4)

G = P(Ã0) ∪ (P(Ã0) ∩ [Y = 0]).

Example 8: Consider the access control part of our running
example (see Fig. 2). The AUCS gets value Ã0 = 3 (suspi-
cious) at time tperm and it knows that there was one attribute
change between ttry and tperm. Now the AUCS should evaluate

whether the current reputation value is still a good one, e.g.,
PrRM = Pr[P(Am)|Ã0 = 3].

The transition matrix (see Example 1) shows that if the ini-
tial attribute value is A0 = 3, then there are three possibilities
for the value to evolve in one step: 1) (A1 = 4) with Pr34 = 0.5;
2) (A1 = 3) with Pr33 = 0.3; 3) (A1 = 2) with Pr32 = 0.2. Since
the good states are 1, 2, and 3, then PrRM = 0.3 + 0.2 = 0.5.

B. Cost Matrix

We would now like to estimate the cost effectiveness of
the proposed enforcement methods. Our goal is to find the
expected profit 〈C〉 for the enforcement of access control.

We assign monetary outcomes for granting and revoking
access. Correct enforcement is impossible in the presence
of uncertainties and mistakes in the decisions made by the
reference monitor are unavoidable. We have four scenarios
(events) of how the reference monitor acts under uncertainties.

1) G ∩ H true positive: grant access when a policy holds.
2) G ∩ H false negative: grant access when a policy is

violated.
3) G ∩ H false positive: deny access when a policy holds.
4) G ∩ H true negative: deny access when a policy is

violated.

True positive and true negative are well-chosen scenarios,
while false negative and false positive are erroneous.

Each scenario has a monetary outcome, i.e., cost the refer-
ence monitor loses/gains if a scenario happens. Let Ctp denote
the cost of the true positive scenario, when the reference
monitor grants the access and the policy really holds. Cfn, Cfp,
and Ctn are the costs of the remaining scenarios, respectively.
The semantics of costs for access control corresponds to pay-
per-access attributes, and specifies exact benefits and losses for
a given access request. Naturally, well-chosen scenarios have
positive values, i.e. Ctp ≥ 0, Ctn ≥ 0, while the erroneous ones
have negative costs, i.e., Cfp < 0, Cfn < 0. Finally, let Ca be
the cost to push/pull (observe) an attribute value.

Finding correct costs is not an easy task and usually requires
a considerable amount of statistical data. Thus, we make the
usual assumption for risk-based methods that the reference
monitor has enough historical data to compute costs.

C. Cost of Access Control Enforcement

The expected profit received by the reference monitor
processing a single access request is the sum of the costs of
all four scenarios weighted on corresponding probabilities

〈C〉 = Ctp · Pr[G ∩ H] + Cfn · Pr[G ∩ H] (5)

+ Cfp · Pr[G ∩ H] + Ctn · Pr[G ∩ H] + Ca.

1) Correct Enforcement: Since H and H are disjoint
events, i.e., Pr[H ∩ H] = 0 and Pr[H] + Pr[H] = 1, from
(2), (3), and (5), we receive

〈C〉cor = Ctp · Pr[H] + Ctn · Pr[H] + Ca (6)

Pr[H] = Pr[P(Ã0) ∩ P(Am)] (7)

= Pr[P(Ã0)] · Pr[P(Am)|P(Ã0)].
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In what follows, we use Pr[P(Ã0)] interchangeably with α,
and Pr[P(Am)|P(Ã0)] with β. Note that for the correct access
control β = 1. Finally

〈C〉cor = Ctp · α · β + Ctn · (1 − α · β) + Ca. (8)

2) Threshold Enforcement: We point out that the probabil-
ity of a policy satisfaction for real attributes is conditionally
independent of the estimates made by the reference monitor
given that observed attribute values satisfy the policy. Using
this observation and (2) and (4) we receive

Pr[G ∩ H] = α · β · Pr[Y = 1|P(Ã0)] (9)

Pr[G ∩ H] = α · (1 − β) · Pr[Y = 1|P(Ã0)]

Pr[G ∩ H] = α · β · (1 − Pr[Y = 1|P(Ã0)])

Pr[G ∩ H] = α · (1 − β) · (1 − Pr[Y = 1|P(Ã0)]).

We assume that all access requests come with the same
initial attribute value a which satisfies authorization predicates.
Such a situation is modeled with an assumption α = 1. With
this assumption, we get that Pr[Y = 1|P(Ã0)] = Pr[Y =
1|Ã0 = a] and β = Pr[P(Am)|Ã0 = a] = PrRM.

We denote Cg = β · (Ctp − Cfn) + Cfn and Cd = β · Cfp + Ctn ·
(1−β). From Definition 3 and (5) and (9), we get the average
profit for a threshold enforcement

〈C〉th = Ca +

{
Cg, if β ≥ th

Cd, otherwise.
(10)

Cost-effective enforcement implies that we should pick a
threshold which gives the maximal profit for all possible
average costs. Since the cost is a function of β which takes any
value from 0 to 1, we should maximize the sum of costs for
all β. The argument, for which this sum attains its maximum,
constitutes the optimal threshold value

arg max
th

1∫
0

〈C〉th dβ.

To obtain it, we solve the following equation in which the
derivative of the integral takes zero:⎛

⎝
th∫

0

Cd dβ +
∫ 1

th
Cg dβ

⎞
⎠

′

th

= 0.

Hence, the optimal threshold value is given by

th =
Cfn − Ctn

Cfp + Cfn − Ctn − Ctp
. (11)

3) Flip Coin Enforcement: All equations of a threshold
enforcement are also valid for a flip coin enforcement. Taking
the assumptions made in the threshold enforcement and defini-
tion 4, we obtain the average profit for a flip-coin enforcement
per access request

〈C〉flip = Ctp · β2 + (Cfp + Cfn) · β · (1 − β) + (12)

Ctn · (1 − β)2 + Ca.

Proposition 1: Threshold strategy is more cost-effective
than flip-coin, except the points β = 0, β = 1, and β = th,
where the strategies are equal: 〈C〉th ≥ 〈C〉flip.

Proof: Consider the first case when 1 > PrRM = β ≥ th.
We do not consider the case when PrRM = β = 1 since it
is easy to see that the two strategies are equal at this point.
Now let us derive the conditions where the flip-coin strategy
is better than the threshold one

Ctp · β2 + (Cfp + Cfn) · β · (1 − β) +

Ctn · (1 − β)2 + Ca > β · (Ctp − Cfn) + Cfn + Ca.

Algebraic transformations give

β <
Cfn − Ctn

Cfp + Cfn − Ctn − Ctp
= thf.

We see that the condition for the flip-coin strategy is better
than that when the threshold violates the initial preposition
β > th. Thus, if 1 > β > th the threshold strategy is more
profitable.

In the same way, we can compare the strategies with the
conditions th > β > 0. We exclude β = 0 point where the
strategies are equal. In this case, we get that β > th, which
proves once again that the threshold strategy is better, except
for the points where the strategies are equal.

Example 9: We show how different strategies cope with
Freshness III uncertainty in our running example.

The AUCS gets the attribute value Ã0 = 2 at tperm and can
compute that there were exactly m attribute changes between
ttry and tperm. The AUCS must then compute the probability β

that the policy holds at tperm and choose the model of the policy
enforcement. The probability matrix of the Markov chain was
given in Example 1 and the probability β can be found as (see
[8], [9], [13] and Appendix A1 and A2)

β = Pr[P(Am)|Ã0 = 2] =
∑

j∈{1,2,3}
(S · Probm)[j]

the vector S = [0; 1; 0; 0] specifies the initial attribute value.
The AUCS makes monetary estimations and determines the

following costs: Ctp = 10, Cfn = −15, Cfp = −1, Ctn = 0 and
to query an attribute we pay Ca = −2.

We performed a set of simulations in order to illustrate our
theory. We computed the average profit per access request for
the correct enforcement 〈C〉cor, for the threshold enforcement
〈C〉th, and for the flip-coin enforcement 〈C〉flip. We varied the
uncertainties between real and observed attributes by increas-
ing the number m of attribute changes that occur between ttry
and tperm. We start from m = 0 and go up to 30 unobserved
attribute changes.

Fig. 3 shows the obtained results. The average profit per
access request for the correct enforcement is always higher.
The decline of the correct curve occurs because, while the
delay increases the probability that the received value would
fail, the policy also increases (because of Pr[P(Am)|P(Ã0)] =
β). Since the attribute cannot get a bad value in m = 0 or m = 1
steps (starting from state 2) all three curves have the same
maximal value in these cases. The flip coin enforcement shows
the worse results with respect to the threshold enforcement
which tallies with our theoretical findings.
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Fig. 3. Cost-effective enforcement of access control.

VII. Enforcement of Usage Control

Under Uncertainties

Our model of usage control enforcement under uncertainties
imposes that the reference monitor iteratively performs three
main activities.

1) It evaluates a policy and makes the decision based on the
observed attribute values. If the access decision is deny,
the reference monitor terminates the usage session and
halts.

2) It computes when the next attribute query should be
performed.

3) It waits until the next check and when time elapses pulls
a fresh attribute value.

The reference monitor executes these actions on each check.
A check is a time interval [tb : te] between two adjacent obser-
vations of the attribute Ãk−1 and Ãk, where clRM(k − 1) = tb,
clRM(k) = te. The time of the first check is tperm when there
is the observed attribute Ã0. The usage session contains a
sequence of n checks and n ∈ N.

A. Models for Usage Control Enforcement

1) Decision Making: The basic idea of a decision making
for usage control under uncertainties is the same as for
access control (see Section VI). The only difference is that
the reference monitor should take into account all possible
changes occurred on a check. We assume that the reference
monitor has the power to compute the probability that all real
attributes satisfy a policy on the kth check

Prk
RM = Pr[P(Ai) ∩ · · · ∩ P(Aj)|Ãk−1 = ak−1 ∩ Ãk = ak]

where clAP(i) ≤ clRM(k − 1) ≤ clAP(i + 1), clAP(j − 1) ≤
clRM(k) ≤ clAP(j).

We propose two models of a decision making for usage
control under uncertainties: a threshold and a flip coin.

Definition 5 (Usage Control Based on Threshold): The re-
ference monitor continues the access after n policy checks at
tnow = clRM(Ãn) if:

1) P(Ã0) ∩ P(Ã1) ∩ · · · ∩ P(Ãn) occurs, i.e., all attribute
changes observed within n checks do satisfy the policy;

2) ∀k = 1, .., n : Yk = 1, where Pr[Yk = 1] = δ(Prk
RM),

i.e., for each check the probability that a policy holds
on this check should be above a specified threshold.

Otherwise, access is revoked.
Definition 6 (Usage Control Based on Coin Flip): The re-

ference monitor behaves as in the threshold enforcement but
uses Pr[Yk = 1] = Prk

RM.
2) Attribute Retrieval: Fresh attribute values could be

pushed or pulled. Without loss of generality we assume
that the reference monitor is responsible for pulling attribute
values. Since frequent attribute queries are not always possible,
expensive, and lead to a performance slowdown, we assume
that several attribute changes may occur on a single check.
Such scenario brings the inevitable Freshness I uncertainty
since the reference monitor will observe only a part of attribute
changes. The reference monitor should be aware that unnoticed
attribute changes may violate a policy and result in a loss.

Our main concern is to find such intervals between queries
that give the maximal profit for the enforcement of a usage
session. We propose two models of attributes retrieval. The
first one is periodic pull of attributes when the interval
between attribute quires is constant. The second model is
aperiodic pull of attributes. We assume that the reference
monitor may increase the profit if it selects the interval
between quires according to the history of observed attributes
during the current session. Thus, there is a specific value of
interval for each specific check.

B. Costs of Usage Control Enforcement

Possible combinations of decision making and attribute
retrieval launch a variety of enforcement models. Due to space
limitations, we discuss only the models relevant for usage
control and do not consider models discussed previously for
access control. We examine the cost effectiveness of models
when attributes are pulled periodically and aperiodically while
the decision making is based on a threshold. In both models,
we set the threshold value to 0 and assume that no uncertainties
exist in the system except inevitable Freshness I. Such assump-
tions allows the reference monitor to skip the execution of the
random experiment and just continue access if the observed
attribute value satisfies a policy and revoke otherwise.

1) Cost of Usage Session in Case of Periodic Checks:
We start with a cost gained from the enforcement of a
particular usage session. The semantics of costs for usage
control corresponds to pay-per-time-of-usage attributes, and
specifies the benefits and losses the system gains in a unit of
time. The system receives profit if a policy holds on a time
interval and this revenue is proportional to the duration of
the interval. Conversely, the system suffers losses during the
policy violation time. There are three costs for usage control:
1) ctp, the gain per atomic interval of time when all changes
of real attributes satisfy the policy; 2) cfn, the cost per atomic
interval of time when the policy fails; and 3) Ca, the cost
paid for the attribute retrieval and the reevaluation of access
decision.
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The usage session is associated with a sample sequence s

of a stochastic process which models the behavior of a real
attribute. That is

s : (A0 = a0) ∩ (A1 = a1) ∩ · · · ∩ (Al = al).

Let n state be a total number of checks in the session before
revocation. This means that after the last check the reference
monitor revokes the session, i.e., P(Ãn) happens and Al � Ãn.
Let q be a number of attribute changes on a check. Since
checks are periodic, q is a constant for any check and l = n ·q.
A cost Cs of a particular usage session depends on the time
τg when an attribute satisfies a policy, on the time τb when
the attribute violates the policy, and a number of checks n

Cs = ctp · τg + cfn · τb + Ca · (n + 1). (13)

Let θ(x) be a function such that

θ(x) =

{
1, if P(Ax) happens
0, otherwise, i.e., a policy violation happens.

Then, τg and τb are given by

τg =
l−1∑
j=0

(clAP(j + 1) − clAP(j)) · θ(j)

τb = clRM(n) − clRM(0) − τg.

In fact, s is a random event and let Pr[s] denote a proba-
bility that s occurs. Thus, the average cost of usage control
enforcement will be a sum over every possible cost weighted
by the probability of s

〈C〉q =
∑
s∈S

Pr[s] · Cs (14)

where S contains all possible sample sequences associated
with usage sessions enforced under uncertainties.

Cost-effective enforcement implies that the reference moni-
tor should choose such q that maximizes profit: arg maxq〈C〉q.

2) Cost of Usage Session in Case of Aperiodic Checks:
In case of aperiodic checks, a number of attribute changes
occurred on each check is different. There is a set Q =
{q1, q2, . . . , qn} and each qi tells how many attribute changes
happened on the ith check. All formulas given for periodic
checks are valid for aperiodic. Only a number of attribute
changes is different, and for aperiodic checks we have

l =
∑
q∈Q

q.

We also use 〈C〉Q to denote the average cost of the usage
control enforcement under aperiodic checks.

Cost-effective enforcement implies that the reference mon-
itor should choose such Q that gives the maximal profit, i.e.,
arg maxQ〈C〉Q. The simplex method can be used to find Q

for which 〈C〉Q attains the maximum. The application of such
methods is left behind the scope of this paper but initial ideas
can be found in [14] and [15].

Proposition 2: Aperiodic checks are at least as good as
periodic checks in terms of cost effectiveness: 〈C〉Q ≥ 〈C〉q.

Proof: The proof follows from the fact that the method
selects the set Q with the best average cost within all pos-
sible Q’s. Note that periodic checks may be considered as

a particular case of aperiodic checks when all intervals are
equal.

Example 10: We continue our running example comparing
periodic and aperiodic checks.

The AUCS selects the following costs ctp = 3, cfn = −5, and
Ca = −2 on the basis of previous behavior of the reputation
attribute. The AUCS exploits discrete-time Markov chain [see
(1)] to model the behavior of the reputation and find the best
strategy for querying this attribute.

For the periodic checks, the probability Pr[s] is

Pr[s] = Pr∗
j0

·
⎛
⎝n−1∏

y=1

Prky

jyjy+1
(q)

⎞
⎠ · Prkn

yn−1yn
(q)

where Prky

jyjy+1
(q) is a probability of the reputation change from

the value jy to the value jy+1 taking the set of values ky on
the interval between changes, Pr∗

j0
is a probability that the

attribute will have the certain good value at the first check

Prky

jyjy+1
(q) =

q−1∏
z=1

Prfzfz+1 .

Prfzfz+1 is an element of the matrix Prob of one-time transition
probabilities [see (1)]. Clearly f1 = jy, fq = jy+1, and ky

determines concrete values of {f2, . . . , fq−1}. There are mq−2

possible Prky

jyjy+1
(q) if jy and jy+1 are fixed.

For aperiodic checks, the computations are similar to ones
above. However, since the reputation is modeled as a Markov
chain, the probabilistic behavior of the reputation significantly
depends on the current state of the random process. Thus,
q now depends on the current value of the reputation and
the AUCS selects a specific interval qi on the basis of the
last observed value Ãi−1 = ai−1. The Markov process quickly
converges to a steady state. Therefore, the AUCS considers
qi < qmax, where qmax is the number of changes when
the distribution of probabilities differs from the steady-state
distribution by some small value ε. For a more detailed
description see Appendix B.

We performed several simulations to check the values
provided by our theoretical equation. To evaluate the aperiodic
checks we carried out an exhaustive search of the optimal
lengths of intervals between checks and found the values q1 =
7, q2 = 4, and q3 = 1 if the current observed value is general,
normal, and suspicious, respectively. The computations of qi

are only required ones the policy is deployed in the system.
The results of the simulations are shown in Fig. 4. Since

there is no single interval for aperiodic checks, we display
aperiodic checks as a straight line.

First, both periodic and aperiodic checks are close enough
to the theoretical curves. Second, the simulations illustrate
our proposition regarding the fact that aperiodic checks are
at least as cost-effective as periodic ones. In our example,
aperiodic checks are about 15% more cost effective then
periodic checks. Third, the analysis of the periodic checks
shows that the average cost of the session has the maximum
value when the interval between checks is 4. The smaller
interval is ineffective because we pay more for requesting
an attribute. The bigger intervals are ineffective, because the
system misses more policy violations.
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Fig. 4. Cost-effective enforcement of usage control.

Fig. 5. Architecture of reference monitor.

VIII. Architecture of Policy Enforcement

Under Uncertainties

The architecture of the reference monitor should be tuned to
capture the presence of uncertainties. Fig. 5 shows the overall
architecture consisting of the following components.

1) Policy enforcement point (PEP) is a component which
intercepts invocations of security-relevant access re-
quests, suspends them before starting, queries the policy
decision point (PDP) for access decisions, enforces
obtained decisions by resuming suspended requests, and
interrupts ongoing accesses when the policy violation
occurs.

2) PDP is a component which evaluates security policies
and produces the access decision.

3) Attribute provider (AP) is a component which manages
attributes and knows their real values.

4) Policy administrative point is a component which pro-
vides and governs security policies.

Note that in the settings of a distributed environment each
component can run on a different host.

The main novelty of the policy enforcement under uncer-
tainties is that the PDP also consists of several components:
the logic PDP, the risk PDP, and the scheduler.

The logic PDP behaves as a usual PDP [16] and evaluates
logical predicates over observed attributes. The risk PDP
computes all uncertainties associated with observed attributes
and runs the random experiment to get a value of a random
variable Y . If Y = 1, the risk PDP outputs grant and deny
otherwise. Decisions of both PDPs are combined as deny-
override, i.e., the PDP sends grant to the PEP only if both
the logical and risk PDPs grant the access.

Policies used by the logical PDP can be written in any
appropriate language to formalize the UCON model, e.g., a
POLPA language [17]. The risk PDP additionally uses risk
policies, i.e. a cost matrix, the specifications of stochastic
processes which model the behavior of attributes, and values of
thresholds. In fact, security and risk policies can be provided
by different parties (security administrators).

The scheduler is managed by the risk PDP and is responsible
to collect and process attribute observations. When a new
attribute value is pushed to the reference monitor, the scheduler
transforms it into the proper format and triggers both PDPs
to re-evaluate the access decision. During usage control, the
scheduler usually pulls new attributes from the AP and then
again processes them and forwards these observations to the
PDPs. The risk PDP is responsible for informing the scheduler
about how and when attribute queries should be initiated either
periodically or aperiodically.

IX. Related Work

This paper is an extended and revised version of our previ-
ous works. An initial description of uncertainties impacting
access and usage control is given in [8] and [9]. In addi-
tion, [8] and [9] describe algorithms for the computation of
probabilities on the basis of discrete-time [8] and continuous-
time [9] Markov chains. This material is briefly presented in
the Appendix. Our work [18] focuses on the cost-effective
enforcement of access control under uncertainties. This paper
extends the part on access control and adds the part on the cost-
effective enforcement of usage control. Moreover, we provide
an architecture of reference monitor for the enforcement of
access and usage control policies.

Data freshness is an important property of many com-
puter systems (e.g., data caching, replication systems, data
warehousing, etc.). The property was widely studied by the
computer science community during past years [19], [20].
Recently, the importance of authorization information to be
up to date during the access decisions was stated by Krishnan
et al. [6] and Niu et al. [7]. In [6] and [7], the authors formally
defined two security properties: weak stale safety and strong
stale safety. They designed enforcement and decision points
for group-based Secure Information Sharing (g-SIS) system as
state machines and use model checking to show that the points
satisfy defined properties. Instead, we empower the decision
making procedure with a probabilistic model, which takes into
account the possibility of unnoticed change of attribute. Also,
we show, that even if unnoticed changes occur, a system owner
can still obtain profit from the exploitation of the system.
Finally, we extend our approach for a more complicated case
of decision making in usage control.
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Cost effectiveness of access and usage control is frequently
analysed on the basis of a risk notion. Some authors use risk
as a static parameter which simply helps to assign correct
privileges taking into account possible losses [10], [21], [22].
For example, Skalka et al. [10] discussed an approach for risk
evaluation of authorisations. The formal approach is used to
assess and combine the risks of assertions that are used in the
authorization decision. Other authors use risk as a dynamically
changing value which depends on the current value of possible
losses and benefits as well as on the probability of abusing
granted privileges by a concrete subject [23]–[25]. Deip et al.
[23] proposed to compute the risk of granting the access to
the resource and to grant the access if the risk is less than
a threshold. Ni et al. [26] considered a risk-based access
control system which assumes that the access to a resource
can be granted to a risky subject if mitigation actions (post-
obligations) will be applied in the future.

Several authors paid more attention to incorporating risk
semantics in access policies rather than to the computation of
risk. For example, the policy language, proposed by Aziz et al.
[27], contains three types of risks: operational, combinatorial,
and conflict of interest. Dimmock et al. [28] showed how
OASIS access control system and its role-based policy lan-
guage can be extended with trust and risk analysis.

X. Conclusion and Future Work

In this paper, we investigated how access and usage control
could work in the presence of uncertainties. We identified sev-
eral types of uncertainties that could affect the access decision
made by the reference monitor, and defined threshold and flip-
coin policy enforcement models which are able to make a deci-
sion under uncertainties if the required probabilities are avail-
able. We showed that the threshold strategy is more profitable
and showed how to select the threshold to maximize the profit.

Another important contribution of this paper is that we
discussed periodic and aperiodic models for usage control. The
simulation results confirm the theory that aperiodic checks are
more cost effective than the periodic ones. On the other hand,
periodic checks is a simpler model and the complexity of the
aperiodic model may outweigh the benefits.

In our future work, we would like to consider computation
of probabilities of policy failure under intentional uncertainty
when mutable attributes are considered. The current state of
the art can be applied only to static attributes and we would
like to extend the applicability of our theory to more general
cases.

Appendix

In the appendix, we present a brief solution of several
computational problems related to the Markov chains theory.

A. Computation of Transition Probabilities

We discuss in details a method for the computation of
transition probabilities based on discrete-time (DTMC) and
continuous-time (CTMC) Markov chains. We define the fol-
lowing variables: r ∈ �attr is a value of an attribute. By xi we

denote the value of the attribute in the state i; t0 is the time
(step) when we know the exact value of the attribute; t′ is the
time (step) when we make an access decision about the usage
session.

1) Discrete-Time Markov Model: First, we consider a
random process represented as a DTMC. Our goal is to
compute the probability Prij(q) of the process to be in the
state j if the process started from the state i and exactly q

transitions occurred. There is a vector of such probabilities:
Si(q) = [Pri1(q), Pri2(q), . . . , Pri|�attr|(q)], where |�attr| is the
number of elements in the domain �attr. Si(q) can be found
using Kolmogorov-Chapman’s equation [29]. Assume that we
know the initial value xi of the process of the attribute at
t0. Thus, only Prii(0) = 1 and others are 0, i.e., Si(0) =
[0, 0, . . . , 1, . . . , 0]. The value of the vectors at t′ is

S(t′) = S(t0) · Probq (15)

where Prob is a transition matrix composed by probabilities
of transitions from a state i (row) to a state j (column), Probq

shows the matrix in power q.
2) Continuous-Time Markov Model: Now we consider a

slightly different situation when we know only the time passed
from the last check of an attribute. We assume that the average
time between changes of the attribute value is exponentially
distributed with the rate parameter ν. This assumption allows
modeling the behavior of attribute values using CTMC. We
define the rate parameter νi of an exponential distribution for
the time of jumping from the state i to another state and the
average life-time 1

νi
of the attribute in state xi. Also pij is the

one-step transition probability (the probability that the process
makes a direct jump from a state i to a state j without visiting
any intermediate state). Using νi and pij we can evaluate the
probability Prij(�t) of the attribute transition from the state i

to the state j during time interval �t.
The transitions between the states are described with the

infinitesimal transition rates (qij ∈ Q). The infinitesimal
transition rates are defined as

qij = νi · pij ∀i, j ∈ I and i �= j. (16)

The infinitesimal transition rates uniquely determine the
rates νi and one-step transition probabilities pij

νi =
∑
∀j �=i

qij , pij =
qij

νi

. (17)

We apply a uniformization method to compute transient
state probabilities Prij(�t) [29], [30]. The method replaces
a continuous-time Markov chain by a discrete-time analogue,
which is more suitable for numerical computations. The
uniformization starts with replacing the transition rates of
the Markov chain νi with a sole transition rate ν, such as
ν ≥ νi ∀i ∈ I, where I is the set of nodes of the continuous-
time Markov chain. If ν = max

∀νi∈I
νi, then the one-step transition

probabilities of the discrete-time Markov chain are defined as

pij =

⎧⎪⎨
⎪⎩

νi

ν
pij =

qij

ν
∀i �= j

1 − νi

ν
∀i = j.

(18)
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Now we have all required parameters for the computation
of Prij(�t) and we skip the mathematical proofs, which can
be found in [29, pp. 167–168]

Prob(�t) =
∞∑
n=0

e−ν·(t′−t0) · (ν · (t′ − t0))n

n!
· p

(n)
ij (19)

for ∀i, j ∈ I, t′ > t0, and p
(n)
ij can be recursively computed

starting with p
(0)
ii = 1 and p

(0)
ij = 0 for i �= j from

p
(n)
ij =

∑
xk∈I

p
(n−1)
ik · pkj , n = 1, 2, ... (20)

For fixed t′ > t0, the infinite series can be truncated because
of the negligible impact of the residue. The truncation number
U (upper limit of summation) in (19) is chosen as

U = ν · t′ + c ·
√

ν · t′ (21)

for c with 0 < c ≤ c0(ε), ε is a tolerance number [29, p. 169].
Prob(�t) is a matrix of all possible transition probabilities

probabilities after time �t passed, Prij(�t) is the element on
the crossing of the ith row and the jth column.

B. Convergence of a Markov Chain to the Steady State

If the attribute behavior follows the Markov property, the
probabilities of the attribute to be in a certain state converges
to a stationary (steady-state) distribution. We can find the
number nst of transitions when the distribution of probabilities
differs from the steady-state distribution by any small value
[31]

nst = τ(ε) ≤ � ln ε

ln(2c)
�T, τ(c) ≤ T, c < 1/2

τas
(t) = min{t : �as

(t) ≤ ε}, τ(ε) = max
as∈�attr

τas
(ε)

�as
(t) = ‖pt

as
− π‖ =

1

2

∑
as∈�attr

|pt
as

(a) − π(a)|

where �as
(t) is a distance between distribution pt

as
and steady

state distribution π, when a process starts from the initial state
as and t transitions occurred.
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