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Average-Instantaneous, Unimodal and Multimodal
Scattering Responses in Spatial Gaussian Channels

Konstantinos Mammasis, Member, IEEE, and Paolo Santi, Member, IEEE

Abstract—The long-standing problem of identifying the scat-
tering mechanism that triggers the observance of a heavy-
tailed power azimuth spectrum is undertaken using a geometry-
based stochastic approach. More specifically, the unimodal power
azimuth spectrum (PAS) and joint power angular scattering
response (PASR) are derived under the 2-D Gaussian scattering
model. At first, it is formally shown that, under free-space
propagation, a Gaussian scatter distribution in 2-D space gives
rise to an angular power spectrum that may be well modeled by
the Gaussian function. Numerical results are presented for higher
path-loss exponents, where it is shown that heavy-tailed functions
such as the Lorentzian and Laplacian functions provide good fits
to the derived spectrum. To complement earlier research works in
this area, a recently introduced geometry-based stochastic model
is extended in order to express the instantaneous multimodal
PASR, which significantly contributes to the estimated correlation
statistics as shown in the paper. The 2-D spatial channel model
developed herein, allows the distance from the observation point
to vary, which enhances the validity of the derived PAS and
PASR. Statistical results are provided for various distances from
the observation point in order to facilitate any potential practical
use of the derived 2-D model. Finally, an analytical expression
for the correlation experienced between two antenna patterns is
derived under the proposed model.

Index Terms—Angular power scatttering response, power
azimuth spectrum, wireless spatial channel modeling, antenna
arrays.

I. INTRODUCTION

COMMUNICATION architectures that employ multi-
element antennas have gained considerable attention in

the academic community in recent years. In particular, the
considerable throughput capacity benefits potentially offered
by these systems have increased interest in spatial channel
modeling. In fact, spatial channel modeling is fundamental in
estimating one of the key performance indicators in multi-
element antennas, i.e., the correlation experienced between
adjacent links which, in turn, depends on the response of
each antennae in the array. Therefore, a full understanding
of the physical mechanisms governing spatial correlation may
help us to resolve some of today’s intriguing tasks in antenna
design and pattern diversity. Correlation is largely affected
by the so-called angular power spectrum (APS), also known
as power azimuth spectrum (PAS) in the two-dimensional
(2-D) plane. The PAS has been extensively used for the
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estimation of channel statistics in various standardized spatial
channel models, e.g., [1], [2]. In the 2-D case, the authors
of [3] observed through experimental investigations that a
Gaussian distribution in angle of arrival (AoA) gives rise
to a Laplacian-like PAS. The Laplacian function was also
considered in [4]. In general, many different shapes of AoA
and APS have been proposed in the literature, considering
different scatterer distributions such as Gaussian, von Mises
and uniform [5], [6]. A related geometry-based approach was
also proposed in [7] to cover both macro and micro types
of cells. Among the fundamental works in this area is [8],
where Fuhl et al. developed a modeling approach to estimate
the spatial correlation coefficients for a variety of angular
distributions. Other research works that have considered non-
isotropic scattering environments and their impact on the
cross-correlation function, including multimodal PAS can be
found in [9]–[12]. Modeling the dependency of the directional
channel impulse response and the associated parameters is the
primary objective in spatial channel modeling.

The main goal of this paper is to provide a theoretical
framework for a complete (i.e., including PAS) 2-D spatial
channel characterization under the Gaussian scatterer assump-
tion and therefore complete the analysis already presented in
[13]. The authors in [13] laid the foundations of the model
extended herein, by jointly deriving distance and angular
statistics, thus allowing a theoretical characterization of the
expected PAS under the 2-D Gaussian model. The notions of
PAS (a time-averaged estimation of the power spectrum at
the receiver) and PASR (an estimation of the instantaneous
power spectrum observed at the receiver) were first explained
in [13], with particular emphasis given to the latter definition,
i.e., PASR. While PASR characterization is important for
the statistical analysis of a single channel impulse response
(CIR) snapshot (provided adequate resolution in space-time),
the time-averaged version obtained from the averaging of
many CIR snapshots, i.e. PAS, is fundamental for estimating
important performance parameters such as spatial correlation
between antenna elements, link capacity, etc. Thus, a major
goal of this paper is to provide a thorough characterization
of the PAS under the 2-D spatial channel model introduced
in [13], considering not only free-space propagation as done
in [13], but also for higher path-loss exponents. A major
finding of our analysis is that the expected PAS attains a
Gaussian functional form for the free space exponent, while
a heavier tailed function provides a more accurate fit for
higher path-loss exponents. Therein, the Lorentzian function
is an excellent candidate, but the Laplacian function performs
very well too, thus providing a theoretical framework for
explaining functional forms of the PAS observed in real-world

1536-1276/13$31.00 c© 2013 IEEE



MAMMASIS and SANTI: AVERAGE-INSTANTANEOUS, UNIMODAL AND MULTIMODAL SCATTERING RESPONSES IN SPATIAL GAUSSIAN CHANNELS 5481

measurements. The fits are assessed using the mean square
error metric.

Another major contribution of this paper is the derivation
of the PASR in presence of multiple scatterer clusters in
the propagation environment. This extension of the model is
fundamental to improve its accuracy, since radio environments
with multiple scatterer clusters are frequently observed in
real world. An important feature of the derived multi-cluster
model is that, differently from previous approaches, in the
presented model the “weight” of a scatterer cluster is implicitly
computed as a byproduct of the distance of the cluster from
the transmitter and receiver station. To prove the practicality
of this approach, we consider a simulation scenario with two
scatterer clusters, and compute the observed PASR accord-
ingly.

Finally, the analysis continues by estimating the spatial
correlation experienced between adjacent antenna elements
under the derived unimodal and multimodal power angular
scattering responses, and extensive comparisons with other
well-known angular power fields are presented. These com-
parisons indicate that existing models tend to over-estimate
the correlation between the adjacent links, which may be
attributed to the fact that other models such as Laplacian and
von-Mises do not account for distance from/to transmitter and
receiver station when computing the correlation statitistics.
To achieve the above, the correlation function is derived
as a result of the expansion of a plane wave into a series
of cylindrical harmonics, which reveals the response of an
antenna to the derived angular power scattering field.

The rest of this paper is organized as follows: in Section
II the full derivation of the expected PAS experienced un-
der the Gaussian model for various path-loss exponents is
presented. Section III derives the angular power scattering
response experienced at the observation point in space under
the existence of multiple scatter clusters, giving rise to the
multimodal PASR. In Section IV, the response of an antenna
to the derived angular power field is assessed by correlating
it to an adjacent antenna’s response for the derived and
other well-known angular power fields; essentially, serving
as a performance metric. In the same section the field is
expanded under a circular array topology from which various
correlation matrices are obtained. Results are presented for the
derived, Laplacian and von-Mises fields. Finally, Section VI
summarizes the main contributions of this work.

II. A TWO-DIMENSIONAL GAUSSIAN POWER ANGULAR

SPECTRUM

In this section, the observed PAS under the Gaussian scat-
tering mechanism is derived, which was not presented in [13].
Additionally, this work investigates the effect of higher path-
loss exponents on the corresponding spectrum. The final result
is therefore in a spectrum form and not a distribution function,
that characterizes the average spatial channel statistics and not
the instantaneous response (PASR). Hence, it is of interest to
estimate the expected amount of power outgoing in an arbitrary
direction ψ. In mathematical terms the PAS is equivalent to:

PAS = E[f(�e|ψ)]f (ψ) ,

Fig. 1. This figure presents the geometrical structure of a two-cluster channel
topology.

where �e defines the outgoing power along direction ψ,
and f(�e|ψ) denotes a conditional distribution. The above
definition was also given in [3]. To derive the above, two
random quantities need to be derived: the density of scatterers
observed by Tx along direction ψ – i.e., the angular scatterer
density f(ψ)–, and the density of power transmitted by Tx,
outgoing to a scatterer along direction ψ – i.e., the scatterer
power density f(�e) (see Fig. 1). In [13], explicit expressions
for the characterization of the radial and angular domain
were provided, some of which will be re-stated here for
convenience.

A. PAS Derivation under 2-D Gaussian Scattering

First, consider the transformation of the Gaussian distribu-
tion in polar co-ordinates and the resultant expression, which
is summarized in (1).

In (1), ‖Ωo‖ denotes the distance of the mean directional
vector Ωo to the scatter cluster (see Fig. 1) and ψo the
associated azimuthal angle to this vector. The concentration
of scatterers around the mean directional vector is defined
through the parameter σ (standard deviation). This function
represents the so-called distance-dependent AoA spectrum as
observed at Tx = ρ2. Under this representation, the density
at ρ2 is taken with respect to the center of gravity (xo, yo) of
the scatterers in its vicinity. Note that Fig. 1 has been created
in view of the multiple cluster scenario that is also of interest
in this work. Consequently, the angular distribution f(ψ) is
obtained in (2), by integrating the joint distribution over the
whole radial space.

This is the general form of the distribution of angles for a
Gaussian distribution of scatterers in 2-D. The distribution of
angles is a function of ψ. As shown in [13], increments in the
length of Ωo cause an increase in the concentration of angles,
which is in accordance with intuition, since by increasing the
distance from the observation point the concentration of angles
increases. The functional form of (2) can be found in [13].

To proceed in estimating the PAS, the conditional dis-
tribution of distances on angle ψ is obtained, which after
normalization becomes the equation shown in (3). The de-
rived density, defining distance density conditioned on an
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fR,Ψ(‖Ωρ2,sc‖, ψ) =
‖Ωρ2,sc‖
2πσ2

e−(‖Ωρ2,sc‖2+‖Ωo‖2)/2σ2

e‖Ωρ2,sc‖‖Ωo‖ cos(ψ−ψo)/σ
2

. (1)

f(ψ; ‖Ωo‖, σ) =
∫ ∞

0

f(‖Ωρ2,sc‖, ψ)d‖Ωρ2,sc‖

=
1

4π
e−‖Ωo‖2 sin[ψ−ψo]

2/2σ2
(
2e−‖Ωo‖2 cos[ψ−ψo]

2/2σ2

+
1

σ
‖Ωo‖

√
2π cos[ψ − ψo]

(
1 + Erf

[‖Ωo‖ cos[ψ − ψo]√
2σ

]))
.

(2)

f(‖Ωρ2,sc‖|ψ) =
f(‖Ωρ2,sc‖, ψ)

f(ψ)

= 2e(−‖Ωρ2,sc‖2+2‖Ωρ2,sc‖‖Ωo‖ cos[ψ−ψo])/2σ2‖Ωρ2,sc‖/D,
D = 2σ2 + e‖1symbolΩo‖2 cos[ψ−ψo]

2/2σ2‖Ωo‖σ
√
2π cos[ψ − ψo]

(
1 + Erf

[‖Ωo‖ cos[ψ − ψo]√
2σ

])
.

(3)

infinitesimal angular sector, closely resembles the derived
distribution of distances in terms of functionality [13]; with the
dependency being shifted to the angular domain. The derived
distribution is two-fold; it obtains a symmetric or asymmetric
to the mean shape within an angular sector Δψ depending on
the characteristics of the mean direction vector, i.e. the angle
ψo, and length of Ωo. The distribution is symmetric provided
that conditioning on angle ψ occurs within the angular sector
Δψ.

In the following, the conditional distribution of distances
is transformed into a power distribution according to the
free-space propagation model. Subsequently, the expectation
of each conditional distribution is obtained and as shown a
Gaussian-like angular power spectrum emerges. To proceed,
the conditional distribution of distances near the mobile ρ2
is assumed to be f(‖Ωρ2,sc‖|ψ) with a small ‖Ωo‖/σ ratio,
which is representative of a macrocellular scenario with the
scatterers being relatively close to the receiver as opposed to
the transmitter. A hypothetical transmitter is placed in another
point on the Euclidean plane. The length of the mean distance
vector Ωc � Ωo. As shown in [13] the power extracted
at the scatter cluster may be well described by an Inverse-
Gamma distribution, which makes the presented analysis more
tractable. To proceed, consider the following transformation
function:

�e = α/‖Ωρ2,sc‖2, (4)

where α typically accounts for the transmit power, antenna
gain and the cluster’s cross sectional area. We denote w =
‖Ωρ2,sc‖ for notational convenience. Subsequently, transform-
ing the conditional distance distribution into a power condi-
tional distribution, we re-write (4) as follows:

�e =
α

w2
⇒ w =

√
α

�e
, (5)
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Fig. 2. This figure illustrates the effect of altering the angle at which the
power distribution is conditioned for a constant set of parameters Ωo, σ, ψo on
the derived power conditional density function. Note that a direct comparison
between the expected conditional values of the two curves does not lead to
intuitive results since both should be scaled by the probability density in angle
of arrival. Note that the x-axis is in linear scale (Watts) and that the y-axis
has been normalized.

whose derivative with respect to the variable �e is given by

dw

d�e
= −

√
α

2�e
√
�e
. (6)

After substitution of (5) into (3) and making use of the above
derivative, the conditional distribution of power in each angle
is obtained in (7). In Fig. 2 the derived distribution is examined
under the conditional case of angles ψ = 180◦ and ψ = 230◦

respecticely. The cluster is centered at ψo = 180◦, at a mean
distance of ‖Ωo‖ = 10 and σ = 3.

The derivations thus far are based on the fundamental
inverse square law assumption, which is only valid in the far-
field of the antenna response. The distance variable r ∈ [0,∞)
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f(�e|ψ) = αe

(
−α/�e+2

√
α/�e‖Ωo‖ cos[ψ−ψo]

)
/2σ2

/�2eD,

D = 2σ2 + e‖Ωo‖2 cos[ψ−ψo]
2/2σ2‖Ωo‖σ

√
2π cos[ψ − ψo]

(
1 + Erf

[‖Ωo‖ cos[ψ − ψo]√
2σ

])
.

(7)

and the corresponding transformation function introduces an
ambiguity into the derived spectrum. This ambiguity originates
from the fact that �e will be similarly defined, �e ∈ [0,∞), if
left unchanged. However, the power extracted at the scatter
cluster and subsequently received by the receiver cannot
exceed the power at the boundary of the far-field zone Pf .
Therefore, instead of defining the conditional random variable
Pe|ψ within 0 ≤ Pe|ψ < ∞, it should be defined as
0 ≤ Pe|ψ ≤ Pf . To introduce this dependency into the
model there are two methodologies that could be followed:
i) posing a restriction to the distance variable r by left-
truncating the joint density function in (1), or ii) transform
(7) such that the conditional distribution of power on angle
is truncated from the right, i.e. 0 ≤ Pe|ψ ≤ Pf . The first
case is equivalent to creating a circular region in space,
inside which the probability of finding a scatterer is zero and
resultantly the distance variable can only be defined outside
this circular region, whose minimum distance is dictated by
rmin = 2L2/λ (Fraunhofer region), with L being the antenna
dimension and λ the wavelength of radiation. The truncated
density can then be obtained by computing (1 − F (rmin))–
where F (rmin) denotes the cumulative distribution function–
and by dividing this probability by the original joint density
f(r, ψ). Alternatively, one is forced to use the second method
proposed herein, under which the truncated conditional power
density takes the following form:

ftr(�e|ψ;Pe ≤ Pf ) = f(�e|ψ)/F (Pf ),

F (Pf ) =

∫ Pf

0

f(�e|ψ)d�e.
(8)

The second definition matches well with the presented analysis
and assists in finding the appropriate limits when evaluating
the expectation of the truncated random variable shown in
(9), therefore is preferred. Essentially, this definition accounts
for far-field scattering and bounds the average PAS above
Pf . It follows directly from (7) and (8) that the 2-D PAS
is Gaussian-like, having considered the expectation of the
truncated conditional variable in (8):

PAS = f(ψ)E [Pe|ψ] = f(ψ)

∫ Pf

0

�eftr(�e|ψ)d�e,
0 ≤ Pe ≤ Pf .

(9)

The expected power in each direction has been scaled by
the probability density of finding a scatterer along the condi-
tioning angle. Therefore, the final spectrum form is actually a
weighted angular function. As discussed, the expected power
in each direction is upper bounded by the power Pf = α/r2min
at the boundary of the far-field zone. In view of the above,
it should be highly emphasized that a more general model,
accounting for the near-field dependencies and associated im-
pact on the average PAS would be an important contribution,
especially, considering that the impact of near-field correlation
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Fig. 3. Estimated PAS in accordance with (9) for various path-loss exponents,
namely n on the caption of the figure. To focus on the impact that higher
path-loss exponents exhibit on the power angular profile, i.e. PAS, the y-axis
has been logarithmically scaled [dB]. The derived PAS seems to follow a
Gaussian distribution for the free-space path loss exponent, while it more
accurately approximates a heavily tailed function, e.g. Lorentzian, as the
exponent increases. To place an upper limit on the original power conditional
distribution and thus obtain the truncated conditional density, f(�e|ϕ) has
been truncated at 10% of the length of the mean directional vector. This
places the boundary of the far-field zone at rmin = 1, corresponding to a
frequency f in the MHz range.

has not received a full treatment in the literature. Under
the proposed approach, the ratio ‖Ωo‖/σ is assumed to be
larger than rmin, in order to obey the far-field dependence.
Note that the resultant spectrum may also be truncated due
to the limited angular range of incoming paths, as well as
the associated radial characteristics. Truncated spectrum forms
have been observed in practice that may be typically attributed
to the directionality of the antenna pattern. The evaluation
of the above expectation for each conditional distribution in
the range [0, 2π) and the corresponding multiplication by the
angular density is shown in Fig. 3; superimposed with the
evaluation of higher pathloss exponents. For clarity the y-axis
has been logarithmically scaled. Note that the above integral
was evaluated numerically1. Through a statistical goodness-
of-fit assessment it was revealed that a Gaussian function
approximates well the derived PAS in free space conditions.
The Gaussian PAS was also proposed in [14]. Additionally, the
PAS estimated from measurements in Stockholm and Aarhus
in [15] may serve as another indication of a Gaussian PAS
observed in practice.

1Alternatively, an analytical expression may be obtained by approximating
(7) with an Inverse-Gamma distribution, whose first order moment is given
by E [Pe|ψ] = β/α − 1. Mapping the associated expectation in the range
0 ≤ ψ < 2π reveals a Gaussian-like PAS.
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To complete the analysis presented herein, the derived trans-
mitting PAS is evaluated under different path-loss exponents.
The transformation function in (4) is modified accordingly,
�e = α/‖Ωρ2,sc‖n, where n is the path-loss exponent, which
implies that one needs to take the n-th root of the transforma-
tion function in (5). As shown in Fig. 3 increasing the path-
loss exponent results in a loss of power in the corresponding
angle. This observation follows theoretical intuition, since
at higher path-loss exponents the expected power on each
angle should drop in order to compensate for the higher loss
encountered in the propagation path. The effect of path-loss
variations on the power angular spectrum is one of the major
findings of this work, since as shown in Fig. 3 and Fig. 4
the spectrum attains heavier tails 2, as n increases. Among
various examined functions, the three-parameter Lorentzian3

function performed extremelly well in capturing the derived
spectrum’s sharp peak characteristics. Note that the above
analysis complements the analysis presented in [13], where
emphasis was placed on the instantaneous power angular
scattering response, i.e. the probability of observing exactly
power �e at an incoming angle ψ, at a generic instant of time
t. In addition to [13], this paper provides an exact derivation
of the PAS due to Gaussian scattering, providing a thorough
analysis of this important subject and for the first time a
complete theoretical framework under which a heavier tailed
spectrum, e.g. Laplacian spectrum, is observed.

Please refer to [3] for the measurement-based approach,
where the authors obtained a Laplacian PAS from a Gaussian
distribution in angle of arrival. As shown in Fig. 4 however,
although the Laplacian function serves as a good candidate,
the Lorentzian function provides a better fit. The mean square
error (MSE) metric was used as a goodness-of-fit indicator,
which confirmed that the Lorentzian fit is superior for all path-
loss exponents n > 2.

B. Transforming the Transmitting PAS into a Receiving PAS

Converting the transmitting PAS into the receiving PAS
necessitates the use of a transformation function, similar to
the one used in [13]. In essence, (9) needs to be modified
so that it accounts for the mapping of power �r|ϕ, ψ, and
therefore express the bi-directional nature of the spectrum. Bi-
directionality imposes a dependency between the transmitting
PAS and receiving PAS, independently of whether the study
focuses on the average or instantaneous form of the spectrum.
Thus, we are interested in the modification of the average
PAS at the RX-MS due to transmission from the TX-BS.
The final transformation function considering the transmission
from TX-BS to the scatter cluster in angle ψ and the associated
loss of power along the incoming scattered direction ϕ is
also a function of the distance between the scatter cluster
and the RX-MS. The transformation function due to the
derived spectrum form is akin to the transformation function

2Heavy-tailed distributions exhibiting large positive excess kurtosis fall
under the family of leptokurtic distributions that are highly peaked and possess
”fatter” or ”heavier” tails. Distributions that do not have a variance are also
termed heavy-tailed and such is the Lorentzian-Cauchy distribution.

3The Lorentzian function, also known as Cauchy function, is typically
defined as: f(�) = α/((�− γ)2 + δ), where α, γ and δ are the parameters
of the distribution.
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(a) Model assessement for path-loss exponent n = 3.
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(b) Model assessement for path-loss exponent n = 5.

Fig. 4. This figure illustrates a comparison between the estimated normalized
PAS for n = 3 and n = 5, and the corresponding Lorentzian, Laplacian and
Gaussian fits in linear scale. The x-axis is scaled in radians. As shown, the
Lorentzian function provides an excellent fit with an estimated scale parameter
in the order of 1.8. In fact the computed mean square error indicated that the
Lorentzian function outperforms all other candidate models for both n = 3,
n = 4 and n = 5 types of exponents. Path-loss exponents in the range of
n = 3 are typical in urban micro type of cells, while path-loss exponents
n > 3.7 typically characterize urban macrocells [27]. Note that as the path-
loss exponent increases the tails of the PAS extend further.

proposed in [13], equation (10) therein, accounting for the
conditional distributions in this instance, i.e., (7). Its form
is equivalent to: Pr|ϕ = Pe|ψ (1/Y |ϕ). Pe|ψ denotes the
extracted power at the scatter cluster in ψ due to transmission
from TX-BS. The product of the two random variables –
i.e., the random variable from the distribution in (7) and the
transformed random variable 1/Y |ϕ that is also distributed4 as
(7), however with different parameters–results in the desired
conditional random variable, which cannot be obtained in an
analytical form, unless an approximation is performed in (7)

4The validity of this statement is clarified here for convenience. The random
variable Y denotes the new set of squared distances from the RX-MS to
the scatter cluster, ‖Ωρ1,sc‖2. To arrive at this distribution, (3) needs to be
transformed accordingly, and this transformation is exactly the same as the
one followed earlier for obtaining f(�e|ϕ).
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with possibly other well-known functions. As mentioned in
Section II, a good approximation to (7) is achieved using the
Inverse-Gamma distribution, whose application in this instance
leads to a closed-form solution for the PAS (and PASR as
we will shortly see). In this respect, we can trivially arrive
at E [Pr|ϕ], which as expected will be a scaled version of
E [Pe|ψ]; we recall that the product of two Inverse-Gamma
random variables results in another Inverse-Gamma random
variable [13].

III. UNIMODAL AND MULTIMODAL POWER ANGULAR

SCATTERING RESPONSES UNDER SPATIALLY GAUSSIAN

CHANNELS

In this section, the instantaneous power angular scattering
response is highlighted and used in order to extend the derived
model into the multi-cluster case. The reason of shifting
our current focus to instantaneous power angular scattering
response rests on its simplicity in studying multimodal sce-
narios. The power angular scattering response is the result of
multiplication between the conditional distribution of power
in each angle, i.e. (7), and the distribution of angles given in
(2). In this respect, we are able to study correlation due to the
fluctuating instantaneous PAS–named power angular scatter-
ing response–and not only the average PAS. In the following,
the power angular scattering response is extended to multiple
scatter clusters and any uncovered statistical dependencies in
[13] – between the parameters of the various distributions –
are addressed, at least for the unimodal case.

A. Unimodal Power Angular Scattering Response Formula-
tion

To proceed, first consider the unimodal response in (10)
resulting from the combination of (2) and (7), as shown on
the top of the next page. The derived distribution jointly
accounting for extracted power �e along direction ψ denotes
the transmitting power angular scattering response, and needs
to be transformed depending on the side of the link where the
received spectrum is to be observed. Bi-directionality imposes
a dependency between the transmitting PASR and receiving
PASR, as is the case for the transmitting and receiving
PAS. Similarly, we are interested in the modification of the
instantaneous PASR due to transmission from the BS-TX.
Thus, although (10) provides us with an analytical expression
of the joint distribution in power and angular dimensions (the
desired power angular scattering response), it needs to be
modified so that it accounts for the mapping of power �r|ϕ, ψ,
in order to express the bi-directional nature of the channel. The
transformation procedure is similar to the one detailed earlier
in the closing paragraph of Section II, and leads directly to
f(�r, φ). In this respect, we can trivially arrive at f(�r, φ),
which as expected will be a scaled version of f(�e, ψ). As
shown in [13], the product of two Inverse-Gamma random
variables results in a random variable that is also distributed
as Inverse-Gamma. The evaluation of (10) for the exemplary
case of ‖Ωo‖ = 10, σ = 3 and ψo = 180o appears in Fig. 5.

To simplify the derivations and present a more tractable
methodology for obtaining the PAS and PASR at the TX-BS,
the authors in [13] instead of dealing with the conditional
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Fig. 5. The transmitting power angular scattering response is shown for the
exemplary case of ‖Ωo‖ = 10, σ = 3 and ψo = 180o. The response is
plotted against power �e (dB-scale) and the azimuthal angle ψ.

distributions, directly tranform distances into power values
and finally express the joint distribution of power and angle
as a product of two marginal distributions, i.e., the power
density f(�e) and the angular density f(ϕ; ‖Ωo‖, σ) that was
derived earlier. This methodology introduces an error in the
approximation of the original joint function, however as shown
in Section III-A1, this error diminishes to zero under certain
parameter settings. Accordingly, the unimodal response was
given as:

f(�e, ϕ) = f(�e)× f(ϕ; ‖Ωo‖, σ). (11)

In turn, the power density f(�e) is well approximated with an
Inverse Gamma distribution ∼ (α, β) as shown in [13]. It is
then trivial to transform Pe to Pr, which as shown in [13], is
a random variable also distributed as Inverse-Gamma. Direct
substitution in (11) and alternation of the parameters of the
angular density as viewed by the TX-BS leads to the receiving
power angular scattering response.

1) Mutual Information: The validity of the independence
assumption used in (11) is confirmed by examining the
Kullback–Leibler divergence between the actual joint distri-
bution and the product of marginals, which at least classifies
the circumstances under which independence can be claimed.
This is formally denoted as the Mutual Information (MI) and
is a measure of distance between two density functions or can
also be understood as the degree of correlation between them.
The MI is attained by taking the relative entropy of the actual
joint distribution with respect to the distribution of the product
of marginals [16]:

I(Pe,Ψ) =

∫∫
�e,ψ

f(�e, ψ) loge(
f(�e, ψ)

f(�e)f(ψ)
)d�edψ. (12)

By numerical analysis (not reported due to lack of space), it
was observed that for large values of ‖Ωo‖ the product of
marginals serves as a good approximation. More specifically,
it was observed that the mutual information reduces practically
to zero whenever ‖Ωo‖ > 4σ.
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f(�e, ψ) = f(�e|ψ)× f(ψ; ‖Ωo‖, σ) = 1

4π�2eσ
2
e−(1+‖Ωo‖2�e−2‖Ωo‖√�e cos[ψ−ψo])/2�eσ2

. (10)

B. Multimodal Power Angular Scattering Response Formula-
tion

Several research studies have indicated that the channel
tends to cluster the directional components in space and time.
The existence of multiple scatter clusters has been confirmed
in the literature [1], [17]–[19]. Procedures for estimating the
parameters of various clusters identified in measurements can
be found in [20], [21], among others. To extend the unimodal
PASR into a multimodal PASR it suffices to represent the
spatial domain structure in an additive manner, i.e., summation
of the scatter clusters, the number of which is clearly de-
pendent on the propagation environment, on the methodology
used to identify them (clustering approach), and on various
other criteria that fall beyond the scope of this work. The
multimodal representation of the sum function (analogous to
the mixture density function) g(�r, ϕ) may be written in the
following form:

g(�r, ϕ) =

N∑
n=1

fn(�r)× fn(ϕ; ‖Ωo‖, σ), (13)

where the ratio ‖Ωo‖/σ is allowed to vary depending on
the distance of each cluster to the observation point. Typi-
cally, each component’s contribution in the mixture density is
characterized by an associated prior weight. The membership
contribution in clustering terms is determined by the power
emanated from each cluster. In contrast, this is directly speci-
fied in the model derived in this work, since the power of each
path is directly accounted for. To exemplify this, consider the
case depicted in Fig. 1, where two spatial clusters appear. Our
objective is to obtain the multimodal PASR at the MS: i) from
the power extracted at each scatter cluster due to transmission
from TX-BS ii) and re-emanated towards the RX-MS, albeit
dictated by a new set of distances. Assume momentarily that
lengths ρ1 and ρ

′
1 are equivalent, which translates to the scatter

clusters being equi-distant from the TX-BS and RX-MS. This
fact does not necessitate the existence of equally weighted
lobes in the multimodal density function, since the power
extracted at each cluster may be due to different distances
between them and the TX-BS. The assumptions made for
simulating the above scennario are listed below:

1) The length of vector Ωo = Ω
′
o = 5.

2) The length of vector Ωc = 10 and Ω
′
c = 16.

3) The standard deviation σ = 3 for both clusters.
4) Free-space propagation n = 2.

It follows directly from the pre-stated assumptions and Table
I that the estimated parameters for the transmitting side are:
αc = 3.7346, βc = 0.0311 for the cluster at a mean distance
of ‖Ωc‖ = 10, and αc′ = 7.7332, βc′ = 0.0281 for the cluster
at ‖Ωc‖ = 16. On the other side, the estimated parameters are
αo = αo′ = 1.5887, βo = βo′ = 0.0358. After considering
the analysis in [13]–more specifically formulae (13) detailed
therein–the estimated parameters that characterize the power
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Fig. 6. Estimated multimodal PASR for two clusters located at ϕo = 90◦
and ϕo = 180◦ respectively. The derived modeling approach captures the
effect of increased distance due to the second cluster, i.e. Ω

′
c = 16, and

reflects it on the PASR by assigning a lower power weight on the second
lobe at ϕo = 180◦ .

density function at the TX-BS (as a result of re-transmission
from the scatter cluster) for each pair of clusters are: αo1 =
0.95, βo1 = 0.0002 and αo′1 = 1.2, βo′1 = 0.0001 respectively.
The resultant mixture density appears in Fig. 6. Note that the
proposed modeling approach captures the effect of increased
distance due to the second cluster, i.e. Ω

′
c = 16, and reflects

it on the PASR by assigning a lower power weight on the
second lobe at ϕo = 180◦. In the next section, an application
of the derived unimodal and multimodal fields is provided.
The fields are assumed to be impining on an antenna array of
a circular topology, aiming at the assessement of the spatial
correlation between the patterns.

1) Characterizing the Inverse Gamma Distribution: To
characterize various cases and facilitate the modeling process,
a statistical analysis has been performed for the approximation
of the Inverse-Gamma distribution in all instances encountered
under the assumption of independence. The estimated param-
eters presented below correspond to various mean distances
from the observation point. In order to derive the parameters
of the receiving PASR f(�r, ϕ), it is essential to first obtain the
parameters of the transmitting power density function f(�e).
To achieve this, equation (10) in [13] needs to be considered
and any desirable pair of ‖Ωo‖, ‖Ωc‖ specified apriori. A
rejection sampling technique was used to sample from the
derived power density function and a maximum likelihood
estimation procedure followed in order to estimate and assess
the fit of the Inverse Gamma distribution to the drawn sample.
The estimated parameter values can then be inserted into
equation (13) in [13] to obtain the receiving PASR parameter
values. This is exactly the procedure followed to estimate the
parameters for the two cluster scenario analyzed ealier. For
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TABLE I
PARAMETER ESTIMATES OF THE POWER DENSITY FUNCTION FOR

VARIOUS LENGTHS OF THE MEAN DISTANCE VECTORS AND σ = 3.

‖Ωo‖or‖Ωc‖ α β
1 1.2648 0.0632
2 1.2527 0.0545
3 1.3056 0.0418
4 1.3411 0.0386
5 1.5887 0.0359
6 1.8764 0.0339
7 2.2971 0.0334
8 2.6421 0.0316
9 3.0233 0.0302

10 3.7346 0.0311
12 4.6736 0.0287
14 5.9937 0.0279
16 7.7332 0.0281
20 11.814 0.0282
25 17.771 0.0276
30 25.381 0.0276
35 34.572 0.0277
40 45.075 0.0278

a detailed analysis the reader is referred to [13]. Herein, the
addition of Table I serves as an assisting tool for the simulation
of a wide range of distances for the derived model, albeit
scaling of the parameter σ is not considered in the estimation.
Finally, all derived distributions and associated approximations
(where applicable) are listed in Table II.

IV. AN APPLICATION: SPATIAL CORRELATION STATISTICS

A potential application of the derived model is for the as-
sessement of spatial correlation in antenna patterns. In essence,
the derived field may be used to assess the responses of two
adjacent antenna elements, due to the derived angular power
field impinging on them. The antenna response of a radiating
element is dependent on various factors, which cannot all
be accounted for in this work. For instance, the mounting
platform, mutual coupling between the radiating elements,
individual radiation patterns (embedded), power angular field
and associated directions in space, as well as, polarization
properties are among the main contributing factors. The as-
sociated complexity in analyzing such systems has always
been deterring from a modeling perspective. To simplify the
analysis and concentrate on the main targets of this work,
let us assume that there exist a circular topology of elements
that possesses omnidirectional (2-D) properties. The question
that naturally arises is the following: “How does the antenna
response due to an impinging power angular field f(�r, ϕ) at
element r1 differs from the antenna response at an adjacent
element r2 due to the same power angular field?”.

In the literature, research works attempting to provide an
insight of the spatial correlation estimation [21], [22] have
mostly assumed normalized power angular fields, i.e., power
angular fields originating from distributions that are strictly de-
fined on the circle or the sphere, e.g., von-Mises or von-Mises
Fisher. Thus, the above assumption explicitly states that each
incoming plane wave is of unit amplitude. Admittedly, this is
a questionable statement, since the restriction of the angular
power field on the circular circumference or the surface of
the sphere essentially removes the power dimension from the
whole approach and conditions the power angular response

Fig. 7. A series of plane waves originated from a distant cluster, impinge on a
circular array of radius R. Two horizantally oriented dipoles are present in the
array, on position r1 and r2 respectively. The plane waves are characterized
by the wavevector k, whose associated angle is ϑ,ϕ. Observe that in practical
implementations the dipole elements are vertically oriented. The array is
mounted on a cylindrical platform.

to a particular distance, which is at least inaccurate from a
geometry-based stochastic modeling perspective. Additionally,
the array response is dependent on the amplitude/power of
each incoming plane wave. It is therefore expected that the
strength of each plane wave scales equally all harmonics
in the wavefield decomposition process, and this should be
considered.

A. Spatial Correlation Function

The analysis of the antenna response directly accounts for
the normal Fourier tranform in 2-D. This basis function repre-
sents a plane wave that is expandable in a series of cylindrical
functions, namely the circular harmonics. As expected, a
series of plane waves impinge on the array with a power �r and
from an angular direction ϕk. All plane wave contributions on
the array’s aperture are then weighted and integrated to yield
the pattern-weighted response. A graphical representation of
the above scenario is illustrated in Fig. 7. Note that the array
is mounted on a cylindrical platform.

The decomposition of a plane wave into circular harmonics
on a circular aperture of radius R = r can then be expressed
by the following series [23]:

eik
Tr = eikr cos(ϕr−ϕk) =

∞∑
n=−∞

inJn (kr) e
in(ϕr−ϕk), (14)

where Jn (·) denotes the Bessel function of order n. In (14), k
is the wavevector of the incoming planewave with k = ‖k‖ =
2πf/c, where f denotes the frequency of the planewave and r
is the position of the observation point. The above equation is
also known as the Jacobi-Anger expansion. More specifically,
in polar coordinates the individular vectors are:

k = k

[
cosϕk
sinϕk

]
, and r = r

[
cosϕr
sinϕr

]
. (15)



5488 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 11, NOVEMBER 2013

TABLE II
LIST OF DERIVED DISTRIBUTIONS AND ASSOCIATED APPROXIMATIONS.

Derived Distributions Approximations Performed
f(ψ; ‖Ωo‖, σ) The derived angular distribution remains unchanged throughout the paper. Nonetheless, the distribution can be approximated

by a von-Mises distribution in case ‖Ωo‖ ≥ 2σ.
f(‖Ωρ2,sc‖|ψ) The derived conditional distance density also remains unchanged in this work.
f(�e|ψ) This distribution expresses the conditional power density in each angle and is a key function for the analysis presented

herein. It is well approximated using the Inverse-Gamma distribution.
f(�e, ψ) The joint distribution of power and angle defining the so-called power angular scattering response.
f(�r |ϕ) The conditional distribution at the TX-BS is derived by using the appropriate transformation function, resulting in the

product of two Inverse-Gamma random variables. The first random variable is due to f(�e|ψ) and the second arises
directly from the new set of distances between the TX-BS and the scatter cluster, which has exactly the same distribution
(detailed analysis in Section II-B). Therefore, f(�r |ϕ) is a scaled version of f(�e|ψ).

f(�e) If the assumption of independence between the radial and the angular domain is claimed, then as shown in [13], f(�e)
may be well approximated using the Inverse-Gamma distribution.

f(�r) Similarly, and by using the transformation function presented therein, the power density at the receiver resulting from the
product of two Inverse-Gamma random variables can also be approximated by an Inverse Gamma distribution.

The inner product of the two vectors is given by:

kTr = kr [cos (ϕr − ϕk)] . (16)

The spatial correlation function (SCF) experienced between
any two antenna responses can then be estimated using the
following formulae, which serves as an extension of the SCF
derived in [23]:
ρ (r1, r2) ≡ ρ (r2 − r1) =

∫ ∞

0

∫ 2π

0
f (�r , ϕ) e

i(r2−r1)·k�rdϕkd�r .

(17)

Combining (14) and (17) results in the analytical expression
for the level of correlation in (18). The coefficients of the
power angular scattering response, i.e. δn(�r), may be ob-
tained analytically by partioning the marginal densities and
solving the two integrals independently. However, as explained
in Appendix VIII, the derived analytical expression is only
a valid approximation for the case of ‖Ωo‖ ≥ 2σ. In case
‖Ωo‖ < 2σ, the coefficients need to be computed numeri-
cally5. To validate the derived formulae, i.e. (27) in Appendix
VIII, the coefficients were also evaluated numerically. The
coefficients derived in Appendix VIII are therefore relevant
only for the ‖Ωo‖ ≥ 2σ case. Initially, a unimodal cluster
case is examined, under which the corresponding coefficents
are computed and compared with the coefficients of other
well-known fields. An excellent fit between the numerical and
the derived coefficients was observed. Note that the standard
deviation of the von-Mises model was computed in accordance
with the derived definition in Appendix VIII and for the
Laplacian distribution the definition in [23] was adopted. The
concentration parameter of the von-Mises distribution was
estimated using the length of the mean direction vector Ωo,
as: κ = ‖Ωo‖2/σ2 (see derivation in Appendix VIII). The
comparisons presented in the following not only present a
useful insight on the discrepancies between the derived and
the other models (e.g. Jakes, von-Mises), but also show the 2-
D model’s performance with respect to the modified von-Mises
power angular field. The radial dimension is suppressed in the
classic von-Mises representation. However, in Appendix VII a
definition is provided that translates the angular spread of the
von-Mises distribution so that it becomes representative of the
distance at which the cluster is observed. We encourage the
adoption of the presented von-Mises functional form, since it

5It was observed that although the angular density in (2) cannot be well-
approximated by the von-Mises distribution for the ‖Ωo‖ < 2σ case, the
associated contribution to the spatial correlation estimates was minor.

is more intuitive and at least captures some of the interesting
spatial properties for clustered types of channels.

B. Pattern Correlation Dependency on 2-D Power Angular
Scattering Response

In the following, an evaluation of the derived correlation
function in (18) is performed under the assumed circular array
topology employed at the receiving end for all pre-discussed
power angular fields. In Fig. 8, the derived model is assessed
for different lengths of the mean direction vector Ωo, and
as shown increasing this length increases spatial correlation;
attributed to the increased concentration of incoming power
in a smaller angular sector. Note also the Bessel oscillatory
behavior of the correlation function as the length of Ωo tends
to zero. The preceding point serves as another validation
of the derived 2-D model, since at short lengths of the
mean directional vector, the observation point is attracted to
the centre of mass of the scatter points; indicating a full
angular span. This follows Jakes model (also plotted in Fig.
8), in accordance to which, narrowband spatial correlation
varies with frequency as a Bessel function, given the inter-
element spacing, as expressed through: J0 (k(r2 − r1)) [24].
As shown, there is an excellent agreement between the two
models. In the same figure the von-Mises model is also
presented, allowing a fair comparison only when conditioned
at a particular distance ‖Ωo‖ (see Appendix VII). Of course,
the shortfall of the von-Mises model lies in its inability to
explicitly relate distance to angular concentration, in addition
to the exclusion of power as a dimension. The relationship
between distance and angular concentration is only handled
implicity through parameter κ. As shown, the derived model
may be well approximated by the von-Mises density function
when the concentration parameter is set appropriately (see
Appendix VII). To exemplify this, consider the case where
the length of the mean directional vector is set to ten (Fig. 8)
and the corresponding estimate of the von-Mises field under
the derived parameter, i.e. κ = ‖Ωo‖2/σ2. The goodness-of-
fit is excellent. As depicted in the same figure, the correlation
experienced under the two cluster model (recall discussion
at Section III) drops–confirming intuition–since the addition
of spatial clusters should de-correlate channel statistics. Rich
multipath propagation decreases the spatial correlation by
spreading the signal such that multipath components are re-
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ρ (r2 − r1) =

∫ ∞

0

∫ 2π

0

f (�r, ϕk)

∞∑
n=−∞

inJn (k‖r2 − r1‖) einϕ‖r2−r1‖e−inϕk�rdϕkd�r

=

∞∑
n=−∞

inJn (k‖r2 − r1‖) einϕ‖r2−r1‖
∫ ∞

0

∫ 2π

0

f (�r) f (ϕk) e
−inϕk�rdϕkd�r

=
∞∑

n=−∞
inδn(�r)Jn (k‖r2 − r1‖) einϕ‖r2−r1‖ .

(18)

ρ (r2 − r1) =
∞∑

n=−∞
inJn (k‖r2 − r1‖) einϕ‖r2−r1‖

∫ 2π

0

∫ ∞

0

�rf(�r|ϕ)d�r︸ ︷︷ ︸
Conditional Expectation

f(ϕ)e−inϕkdϕk

=

∞∑
n=−∞

inδn,EJn (k‖r2 − r1‖) einϕ‖r2−r1‖ .

(19)

� ��� ��� ��� ��� � ��� ��� ��� ��� �
�

���

���

���

���

��	

���

��


���

���

�

���������� ������ ������� ��� � ��� !

"
#
$%
&$
'
(
)*
*+
'$
%&
),
-
./
0
1
/ 2
3

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� ��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� �� �� �� �� �� �� �� �� �� �� ��

|

|

|

|

|

|

|

| |

|

|

| |
|

|

|
| |

|
|

|
| |

|
|

| | |
|

|
| | |

|
|

|
| | |

�� �� �� �� �� �� ��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� �� �� �� �� �� �� �� �� �� ��

� �
�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � � � � � � � �

�
�

�

�

�

�

�

� �
�
� � �

�

�
�
� � � � � � �

�
�
� � � � � � � � � � � � � �

��

��

��

��

��

��

��

�� ��

��

��
�� ��

��

��

��
�� �� ��

��
�� �� �� ��

��
�� �� ��

��
��
�� �� �� ��

��
��
�� �� ��

����4�5 6���5 �78� 9 :;
����4�5 6���5 �78� 9 <;
����4�5 6���5 �78� 9 ;
4= >���� 6���5 ? 9 �78� @

�

����4�5 6���5 AB= C�D�����
����4�5 6���5 6�4� C�D�����
E�F�� >=5��

��

��

|

��

�

�

��

Fig. 8. Correlation estimates between antenna patterns for different imping-
ing fields and various inter-element spacings. These estimates were computed
for various lengths of the mean directional vector. For the multimodal two
cluster case depicted also on the same figure the parameters are as detailed
in Section IV. Note that there is an excellent match between the derived
model for ‖Ωo‖ = 0 and Jakes model and therefore the two curves are
superimposed.

ceived from different directions in space. Increasing the num-
ber of spatial clusters to five clearly shows this de-correlation
tendency, which further validates the model’s practicality.

C. Pattern Correlation Dependency on 2-D Power Angular
Spectrum

In Section IV-A the correlation due to the derived 2-D
PASR was evaluated, indicating that a good approximation
is provided by the von-Mises model under appropriate pa-
rameter settings. Although there are numerous evaluations
of the correlation function in the literature, the impact of a
more general model–accounting for the expected power on
angle–has not been thoroughly analyzed, since a theoretical
characterization of the expected power conditioned on angle

poses more difficulties in contrast to the simple alternative
of a probability density in the angular domain. Thus, the
experienced correlation is subject to investigating the instanta-
neous spatial statistics (PASR) or the average spatial channel
statistics (PAS). Both definitions have been widely used for
simulating the SCF. Recall the analysis in Section II, where
definiton (9) expresses the expected power conditioned on
angle ϕ. Direct use of (9) in (18) transforms the latter into
(19).

Numerically evaluating (19) results in Fig. 9, which clearly
illustrates the difference between the instantaneous PASR and
average PAS on the behavior of the correlation function.
For comparison purposes, the PAS’s contribution to corre-
lation is compared with the von-Mises model used earlier.
The von-Mises model in this instance does not follow the
correlation function estimated using the expected PAS. This
reveals the difference between the power-angular model (based
on the expectation of power in angle) that is developed in
this work and other unscaled angle of arrival models, in
evaluating spatial correlation. High fidelity models such as
the one developed herein, indicate that the performance of
the average PAS significantly deviates from the probabilistic
PASR approach, which seems to be very well approximated
by known probability density functions such as the von-Mises,
under appropriate parameter settings.

To accurately exploit the spatial correlation properties polar-
ization should be included in the model. As this contribution
highly focuses on the derivations on a geometry-based stochas-
tic model, it would be difficult to also include a polarization
assessment. A good treatment is provided in [25], and can
trivially be replicated for the power angular fields developed
in this work.

V. SPATIAL CORRELATION PROPERTIES FOR

POLARIMETRIC ANTENNA RESPONSES

The analysis presented thus far has not consider the effect
of polarization on system performance. The polarization is
associated with the antennas and scattering mechanisms en-
countered within the propagation path, i.e. the channel can de-
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Fig. 9. Correlation estimates between antenna patterns for estimated PAS
and various inter-element spacings reveals the resultant over-estimation of the
von-Mises model. Two different cases are drawn: ‖Ωo‖ = 10 and ‖Ωo‖ = 5.

polarize the transmitted antenna field, and this is dependent on
the dielectric properties of the particular scatterer on which the
wavefield impinges. Antennas being 3-D complex functions
can be described in both principal planes, and therefore
patterns are typically expressed in their cut-plane versions
of electric and magnetic fields, commonly referred to, as
E and H-field patterns. It is the electric field that is of
interest in determining the complex antenna response due to
an impinging wavefield from direction ϑ, ϕ. In this case, the
vertical polarization denotes the component of the electric field
directed as eϑ, while eϕ denotes horizontal polarization.

Each pattern corresponds to one polarization (vertical or
horizontal) and is a function of both azimuth and elevation.

VI. CONCLUSION

In this paper, a spatial channel model has been developed
under which it is formally shown that a Gaussian distribution
of scatterers can justify both Gaussian, as well as, heavy-
tailed (Lorentzian, Laplacian) functional forms of the PAS,
depending on the path-loss exponent. The presented spatial
channel model completes the initiatory work in [13], which
has now been extended in order to account for the average
incoming power from each direction due to the presence of
a Gaussian-scatter cluster in space. The model was enhanced
so to account for various path-loss exponents and therefore
generalize the proposed methodology. The average PAS was
fully derived and as shown it attains a Gaussian shape for the
free space exponent, while the spectrum tends to Lorentzian
as the exponent increases. Notably the Laplacian function
provided a very good fit to the derived spectrum, validating
earlier measurement-based findings in the literature that claim
the observance of a Laplacian power angular spectrum due
to Gaussian scattering in the angular domain. Further, it was
shown how the model can be extended to account for multiple
scatterer clusters, with the flexible property that the “weights”
used to balance the contribution of the various clusters to
the observed PAS are directly derived from the reference

geometry. Finally, various contributions in terms of the spatial
correlation experienced between adjacent antennas were made,
especially concerning the derivations of the coefficients for the
derived power angular field. As shown earlier, the average PAS
statistics significantly differ from the instantaneous PASR in
terms of the experienced correlation. The derived PASR can al-
ways be well-approximated by other probabilistic models such
as the von-Mises model under appropriate parameter settings.
To assist the reader and allow a fair comparison between the
PASR and the von-Mises model, an exact relationship between
the concentration parameter of the von-Mises distribution and
the model parameters was derived.

The model presented in this paper may prove useful in
improving accuracy of MIMO channel performance parameter
estimation, especially in those settings where co-existence
of several spatially separated MIMO links is considered. To
this purpose, we believe a major avenue for future work is
complementing the proposed model with techniques aimed at
estimating MIMO link channel capacity as a function of the
scatterer geometry. The above is a challenging task consider-
ing that the authors have introduced a dependency between
the transmitting and receiving power angular spectrums.

VII. APPENDIX: DERIVING THE VON-MISES

CONCENTRATION CONSTANT

The von-Mises distribution is a well-known directional
distribution suitable for the statistical description of direc-
tional variables. It is obtained by conditioning the Normal
distribution on the circle. As shown in [13], the joint density
function in polar co-ordinates - after transformation of the
corresponding Gaussian density in Cartesian co-ordinates -
obtains the form shown in (20). It was also shown that the
distribution of distances closely resembles the Rician distribu-
tion, whose functional form depends on the ratio of ‖Ωo‖/σ.
The distribution of distances may therefore be expressed as
shown in (21), [13]. In accordance with the above and after
some simple algebraic manipulations, the conditional angular
distribution is obtained in (22). Formulae (22) is another form
of the von-Mises distribution, with the ratio ‖Ωr‖‖Ωo‖/σ2

being equivalent to the well-known concentration parameter κ.
Conditioning the above to solely one distance (circumference
of circle), translates to κ = ‖Ωo‖2/σ2. Restricting the value
of ‖Ωo‖ to lie on the unit circle results in the classic formulae
that relates angular concentration and standard deviation, i.e.
σ = 1/

√
κ. To counteract the loss of the radial dimension, the

parameter κ should be divided by ‖Ωo‖2 in order to capture
the effect of increased concentration due to changes in the
mean directional vector.

VIII. APPENDIX: FOURIER COEFFICIENTS

Any 2-D function f (�r, ϕk) defined on the whole space
can be expanded with respect to the Normal Fourier basis
function, i.e. Ψ = e−inϕk . This signifies that a function is
expandable in a series of cylindrical functions, the so-called
cylindrical harmonics, that need not necessarily be of unit
length. In mathematical terms this translates to:

f (�r, ϕk) =

∫ ∞

0

∞∑
n=−∞

δ (�r) e
−inϕk�rd�r. (23)
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fR,Φ(‖Ωr‖, ϕ) = ‖Ωr‖
2πσ2

e−(‖Ωr‖2+‖Ωo‖2)/2σ2

e‖Ωr‖‖Ωo‖ cos(ϕ−ϕo)/σ
2

. (20)

f(‖Ωr‖; ‖Ωo‖, σ) =
2π∫
0

f(‖Ωr‖, ϕ)dϕ

=
‖Ωr‖
2πσ2

e−(‖Ωr‖2+‖Ωo‖2)/2σ2

2π∫
0

e‖Ωr‖‖Ωo‖ cos(ϕ−ϕo)/2σ
2

dϕ

=
‖Ωr‖
σ2

e−(‖Ωo‖2+‖Ωr‖2)/2σ2

I0

(‖Ωo‖‖Ωr‖
σ2

)
, ‖Ωr‖ ≥ 0.

(21)

f (ϕ|‖Ωr‖) = fR,Φ(‖Ωr‖, ϕ)
f(‖Ωr‖; ‖Ωo‖, σ) = e‖Ωr‖‖Ωo‖ cos(ϕ−ϕo)/σ

2

/2πI0

(‖Ωo‖‖Ωr‖
σ2

)
. (22)

δ (�r) =

∫ ∞

0

∫ 2π

0

f (�r, ϕk) e
−inϕk�rd�rdϕk =

∫ ∞

0

f (�r) �rd�r︸ ︷︷ ︸
First-order moment of I-G Power Density

∫ 2π

0

f (ϕk) e
−inϕkdϕk︸ ︷︷ ︸

Characteristic Function of Angular Density

.
(24)

The coefficients of the Fourier transform become a function of
�r and may be directly obtained from (24). The coefficients are
formed by the product of the expected power of the Inverse-
Gamma distribution and the characteristic function of the
angular density function in (2). The first-order moment of an
I-G distributed random variable, Pr, is given by:

E[Pr] =
βα

Γ[α]
β1−αΓ[α− 1] =

β

α− 1
. (25)

The situation is more complicated for the integral involving the
angular density function. To proceed, (2) should be simplified
in order to succeed in obtaining an analytical expression for
the integral in consideration. It was found that the von-Mises
density provides a good approximation of the angular density
in (2), at least for ‖Ωo‖ ≥ 2σ. The degree of approximation
in case the length of the mean directional vector Ωo is greater
than 2σ follows a similar reasoning as the one attributed to the
symmetrical and asymmetrical regions of the distance distribu-
tion, explained in [13]. However, the parameters of the original
density are lost by this approximation, and is left purely to
the parameters of the von-Mises density to characterize any
changes in distance. The proof of this relationship was given
earlier in Appendix VII. Proceeding with the approximation
and using (9.6.19) in [26], we have:

γn =

∫ 2π

0

f (ϕk) e
−inϕkdϕk = e−inϕo

I−n(κ)
I0(κ)

. (26)

Thus, the coefficients take the following form:

δ = E[Pr]γn =
β

α− 1
e−inϕo

I−n(κ)
I0(κ)

. (27)

ACKNOWLEDGMENT

This research has been co-financed by the European Union
(European Social Fund — ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALES: Reinforce-
ment of the interdisciplinary and/or inter-institutional research
and innovation. The work of P. Santi has been supported by the
MIMONet Project, funded by Italian Registration Authority
“Registro.it”.

REFERENCES

[1] 3GPP-SCM, “Spatial channel model for multiple input multiple out-
put (MIMO) simulations, tr.25.966 v.6.10,” http://www.3gpp.org/, Sept.
2003.

[2] P. Kysti, J. Meinil, and et al., “WINNER II Channel Models, D1.1.2
v1.1, IST-4-027756,” http://www.ist-winner.org/, Aug. 2007.

[3] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “A stochastic model
of the temporal and azimuthal dispersion seen at the base station in
outdoor propagation environments,” IEEE Trans. Veh. Technol., vol. 49,
no. 2, pp. 437–447, Mar. 2000.

[4] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst,
“Modeling the statistical time and angle of arrival characteristics of an
indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 347–360, Mar. 2000.

[5] R. Janaswamy, “Angle and time of arrival statistics for the Gaussian
scatter density model,” IEEE Trans. Wireless Commun., vol. 1, no. 3,
pp. 488–497, July 2002.

[6] R. B. Ertel and J. H. Reed, “Angle and time of arrival statistics for
circular and elliptical scattering models,” IEEE J. Sel. Areas Commun.,
vol. 17, no. 11, pp. 1829–1840, Nov. 1999.

[7] A. F. Molisch, “A generic model for MIMO wireless propagation
channels in macro- and microcells,” IEEE Trans. Signal Process.,
vol. 52, no. 1, pp. 61–71, 2004.

[8] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel model for mobile
radio systems with smart antennas,” IEE Proceedings -Radar, Sonar and
Navigation, vol. 145, no. 1, pp. 32–41, Feb. 1998.



5492 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 11, NOVEMBER 2013

[9] T. Lamahewa, T. Abhayapala, R. Kennedy, and J. Ho, “Space-time
cross correlation and space-frequency cross spectrum in non-isotropic
scattering environments,” in Proc. 2006 IEEE International Conference
on Acoustics, Speech and Signal Processing, vol. 4, p. IV.

[10] T. Betlehem, T. Lamahewa, and T. Abhayapala, “Dependence of MIMO
system performance on the joint properties of angular power,” in Proc.
2006 IEEE International Symposium on Information Theory, pp. 2849–
2853.

[11] T. Betlehem and T. Abhayapala, “Spatial correlation for correlated
scatterers,” in Proc. 2006 IEEE International Conference on Acoustics,
Speech and Signal Processing, vol. 4, p. IV.

[12] R. Iqbal, T. Abhayapala, and T. Lamahewa, “Generalised clarke model
for mobile-radio reception,” IET Commun., vol. 3, no. 4, pp. 644–654,
Apr. 2009.

[13] K. Mammasis and P. Santi, “A two-dimensional geometry-based stochas-
tic model,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 38–43,
2012.

[14] F. Adachi, M. Feeny, W. A. Williamson, and J. Parsons, “Crosscorre-
lation between the envelopes of 900 MHz signals received at a mobile
radio base station site,” IEE Proceedings Commun., Radar and Signal
Process., vol. 133, no. 6, pp. 506–512, Oct. 1986.

[15] J. B. Andersen and K. I. Pedersen, “Angle-of-arrival statistics for low
resolution antennas,” IEEE Trans. Antennas Propag., vol. 50, no. 3, pp.
391–395, Mar. 2002.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
John Wiley & Sons, 2006.

[17] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “Spatial channel
characteristics in outdoor environments and their impact on BS antenna
system performance,” in Proc. 1998 IEEE Veh. Technol. Conf., vol. 2,
pp. 719–723.

[18] K. Kalliola, H. Laitinen, P. Vainikainen, M. Toeltsch, J. Laurila, and
E. Bonek, “3-D double-directional radio channel characterization for ur-
ban macrocellular applications,” IEEE Trans. Antennas Propag., vol. 51,
no. 11, pp. 3122–3133, Nov. 2003.

[19] A. F. Molisch, “Effect of far scatterer clusters in MIMO outdoor channel
models,” in Proc. 2003 Vehicular Technology Conf. – Spring, vol. 1, pp.
534–538.

[20] N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen, and J. Ylitalo, “A
framework for automatic clustering of parametric MIMO channel data
including path powers,” in Proc. 2006 IEEE Vehicular Technology Conf.
– Fall, pp. 1–5.

[21] K. Mammasis and R. W. Stewart, “Spatial fading correlation model
using mixtures of vMF distributions,” IEEE Trans. Wireless Commun.,
vol. 8, no. 4, pp. 2046–2055, Apr. 2009.

[22] S. K. Yong and J. S. Thompson, “Three-dimensional spatial fading
correlation models for compact MIMO receivers,” IEEE Trans. Wireless
Commun., vol. 4, no. 6, pp. 2856–2869, Nov. 2005.

[23] P. D. Teal, T. D. Abhayapala, and R. A. Kennedy, “Spatial correlation for
general distributions of scatterers,” IEEE Signal Process. Lett., vol. 9,
no. 10, pp. 305–308, Oct. 2002.

[24] W. C. Jakes, Microwave Mobile Communications. John Wiley & Sons,
1974.

[25] D. ManhTuan, N. Viet-Anh, and S.-O. Park, “Derivation and analysis
of spatial correlation for 2x2 MIMO system,” IEEE Antennas Wireless
Propag. Lett., vol. 8, pp. 409–413, 2009.

[26] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
Dover, 1964.

[27] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

Konstantinos Mammasis received his M.Sc. in
Microwave Engineering and Wireless Subsystems
Design from the University of Surrey in 2004, and
Ph.D. degree in Wireless Communications Spatial
Channel Modeling from the Department of Elec-
tronic and Electrical Engineering at the University
of Strathclyde, Scotland in 2009. From 2010 to 2012
he served as a Wireless Communications Researcher
in the National Research Council of Italy, Pisa. He
is currently working in the University of Patras,
Greece. His research interests fall within the area

of Multiple Input Multiple Output wireless communications systems, with
emphasis on 2-D and 3-D geometry-based stochastic spatial channel modeling
approaches. At the same time, he has a keen interest in the implementation of
software-defined radio platforms for practical multi-element antenna systems.
From September 2004 to November 2006 he worked as a Telecommunications
Consultant and technical trainer in Aircom International Ltd., where he
provided training to various operators worldwide related to RF planning and
network optimization. He has published various papers in the area of wireless
communications.

Paolo Santi received the Laura Degree and Ph.D.
degree in computer science from the University of
Pisa in 1994 and 2000, respectively. He has been
researcher at the Istituto di Informatica e Telematica
del CNR in Pisa, Italy, since 2001. During his
career, he visited Georgia Institute of Technology in
2001, and Carnegie Mellon University in 2003. His
research interests include fault-tolerant computing
in multiprocessor systems (during PhD studies),
and, more recently, the investigation of fundamental
properties of wireless multihop networks such as

connectivity, lifetime, capacity, mobility modeling, and cooperation issues. He
has contributed more than 60 papers and a book in the field of wireless ad
hoc and sensor networking, he is Associate Editor of IEEE Trans. on Mobile
Computing and IEEE Trans. on Parallel and Distributed Systems, he has been
General Co-Chair of ACM VANET 2007 and 2008, and he is involved in the
organizational and technical program committee of several conferences in the
field. He is a member of IEEE Computer Society and a senior member of
ACM and SIGMOBILE.


