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Abstract—Many mobile social networking applications are based on a “friend proximity detection” step, according to which two mobile

users try to jointly estimate whether they have friends in common, or share similar interests, etc. Performing “friend proximity detection”

in a privacy-preserving way is fundamental to achieve widespread acceptance of mobile social networking applications. However, the

need of privacy preservation is often at odds with application-level performance of the mobile social networking application, since only

obfuscated information about the other user’s profile is available for optimizing performance. In this paper, we study for the first time the

fundamental tradeoff between privacy preservation and application-level performance in mobile social networks. More specifically, we

consider a mobile social networking application for opportunistic networks called interest-casting. In the interest-casting model, a user

wants to deliver a piece of information to other users sharing similar interests (“friends”), possibly through multi-hop forwarding. In this

paper, we propose a privacy-preserving friend proximity detection scheme based on a protocol for solving the Yao’s “Millionaire’s

Problem”, and we introduce three interest-casting protocols achieving different tradeoffs between privacy and accuracy of the

information forwarding process. The privacy versus accuracy tradeoff is analyzed both theoretically, and through simulations based on

a real-world mobility trace. The results of our study demonstrate for the first time that privacy preservation is at odds with forwarding

accuracy, and that the best tradeoff between these two conflicting goals should be identified based on the application-level

requirements.

Index Terms—Opportunistic networks, interest-casting, opportunistic forwarding, privacy, secure multiparty computation
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1 INTRODUCTION

WITH the increasing penetration rate of smartphones,
tablets, etc., mobile social networks are being consid-

ered the natural evolution of online social networks. Mobile
social networks display several advantages over online
social networks, such as larger potential user base—more
than 5.6 billions mobile phone subscribers [1] versus about
500 millions broadband Internet users [2], enabling loca-
tion-aware social applications, possibility of ubiquitously
running social networking applications without Internet
access, and so on.

Mobile social networking applications have been recently
introduced in the market [3], [4], [5], as well as in the aca-
demic community [6], [7], [8], [9], [10]. As mentioned above,
mobile social networks enable novel, location-based serv-
ices, such as friends proximity detection. In the context of
mobile social networks, the term friend is used to refer to a
person (potentially, a stranger) with whom a user might be
interested in getting in touch with, where the notion of
friendship used for detection depends on the specific appli-
cation scenario.

While some mobile social network applications are
based on centralized detection of friend proximity [3], [4],
[6], [7], recent developments suggest using short-range
wireless interfaces available on the portable device
(typically, Bluetooth and/or Wi-Fi) for fully-distributed
friends proximity detection [9], [10]. Fully-distributed
friends proximity detection approaches present potential
advantages versus centralized ones, such as possibility of
operation in isolation from the Internet, lack of a single
point of failure, scalability, etc.

Typically, a fully-distributed friend proximity detection
approach operates as follows: Phase 1) a user (Alice) periodi-
cally performs a neighbor discovery process to detect
nearby devices; Phase 2) once a new user’s (Bob) device is
detected, Alice’s mobile social networking software auto-
matically starts a friendship estimation procedure, which
typically requires computing a similarity metric between
Alice’s and Bob’s profiles; Phase 3) if (and only) friendship
estimation is successful, the software on Alice’s and Bob’s
devices alerts them of the detected nearby friend, so that
Alice and Bob can start talking, exchanging text messages,
files, and so on.

Fully-distributed friend proximity detection raises seri-
ous privacy concerns: if users profiles are exchanged in
plain text, Bob can acquire sensible information from
Alice’s profile (and vice-versa), such as her interests,
home address, work place, political opinions, sexual ori-
entation, etc. (the specific information leaked depending
on how user profile is defined). If Bob is a malicious user,
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he can easily perform serious attacks such as identity
cloning, selling Alice’s personal information to third par-
ties, and so on.

A number of solutions have been recently proposed to
detect friend proximity in a privacy-preserving manner.
However, most of them are concerned with coarse-grained
matching of users profiles, i.e., on detecting the number of
common items (interest topics, names in the contact list,
etc.) in the user profiles [11], [12]. Only recently, a few
privacy-preserving approaches have been proposed to
match fine-grained users profiles [13], [14]—e.g., profiles
reporting a user’s degree of interest in specific topics,
including our work [15]. As observed in [14], fine-grained
profile matching allows implementation of a wider class of
mobile social networking applications than that enabled by
coarse-grained profile matching.

Differently from previous works [11], [12], [13], [14] that
only consider privacy-preserving profile matching, in this
paper we investigate for the first time the interplay
between privacy preservation and the resulting application-
level performance of the mobile social networking applica-
tion. To this purpose, we consider a specific mobile-social
networking application, namely, the interest-casting appli-
cation recently proposed in the context of opportunistic
networks (OppNets) [16].

In interest-casting, each user in the network is character-
ized by a (fine-grained) profile expressing his/her degree of
interest in different topics, and is both provider and consumer
of information. A user is interested in exchanging informa-
tion only with users sharing similar interests, where interest
similarity is computed based on the user interest profiles.
Notice that in the interest-casting application proposed in
[16] information can propagate multi-hop among users,
based on the store-carry-and-forward mechanism typical of
opportunistic networks [17].

In this paper, we present, for the first time in the litera-
ture, a number of privacy-preserving versions of interest-
casting. The need of privacy preservation in interest-casting
stems from the observation that a user’s interest profile can
contain sensible information such as political opinion, sex-
ual orientation, etc., and an individual, while in general
keen on exchanging information with a stranger having,
say, similar political opinions, might not want to disclose
such a sensitive information to a stranger with different
political views.

The different versions of interest-casting considered in
the paper share the common feature of allowing tuning the
level of privacy-preservation by means of a parameter used
to compute the profile similarity metric. Thanks to this fea-
ture of the designed protocols, we are able to investigate the
tradeoff between privacy-preservation and accuracy of the for-
warding process in opportunistic interest-casting. In particu-
lar, we: i) define an information-theoretic metric to quantify
privacy-preservation; ii) use the well-known coverage and
precision metrics borrowed from information retrieval to
quantify forwarding accuracy, i.e., the mobile social net-
working application ability to deliver information to all the
interested users (coverage), and only to them (precision);
and iii) investigate the inherent tradeoff between privacy-
preservation and forwarding accuracy both analytically and
through simulation.

Our specific technical advancements over the state-of-
the-art are the following:

� the definition of a family of privacy-preserving for-
warding protocols for interest-casting applications
based on a protocol to solve the well-known Yao’s
“Millionaire’s Problem” [18]. Each of these protocols
allows tuning the privacy-preservation versus for-
warding accuracy tradeoff by means of a parameter
used in the computation of interest similarity;

� the definition of an information-theoretic notion of
privacy-preservation, aimed at estimating the
amount of Bob’s uncertainty about the content of
Alice’s interest profile before and after the execution
of the profile matching protocol. Differently from
existing works that characterize privacy preserva-
tion in terms of a property the protocol must fulfill
[11], [13], [14], the one proposed in this paper is a
metric taking continuous values in the ½0; 1� inter-
val, with 0 and 1 expressing complete privacy leakage
and full privacy preservation, respectively. As we
shall see, the definition of a continuous privacy-
preservation metric is the pre-requisite for formally
investigating the privacy-preservation versus for-
warding accuracy tradeoff;

� the investigation of the interplay between privacy
preservation and forwarding accuracy in a complete
mobile social networking application, namely,
interest-casting. While attention in existing work
[11], [13], [14] is focused on the profile matching
phase only of a mobile social networking applica-
tion— Phase 2) of a typical application as previously
described—, in this work we mostly focus the atten-
tion on how privacy preservation requirements
impact the performance of a mobile social network-
ing application, i.e., we also analyze the Phase 3) of a
typical mobile social networking application, which
is the most important one since it is the phase
enabling the real social interaction between users.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss related work. Section 3 introduces the
network model and the interest-casting application. In
Section 4, we define the specific forwarding protocols con-
sidered in our work, and study some of their properties.
Section 5 discusses the challenges related with privacy-
preserving interest-casting, while Section 6 introduces an
optimized version of The Millionaire’s Problem to realize
privacy-preserving forwarding. In Section 7, we theoreti-
cally analyze the privacy-preservation versus forwarding
accuracy tradeoff, while we analyze the same tradeoff by
means of simulations in Section 8. Finally, Section 9 con-
cludes the paper.

2 RELATED WORK

2.1 Mobile Social Networking Applications

In this section, we present recently proposed fully-distributed
mobile social networking applications, that are more rele-
vant to our work.

Nokia Sensor [5] is an application available on some
Nokia cell phones that uses the Bluetooth (BT) interface to
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discover nearby users running the same application; once a
new user is discovered, her/his profile (called folio) can be
visualized, and a connection possibly established for free
messaging, file exchange, etc.

PeopleNet [8] is a system for multi-casting information
and querying a group of devices connected by a mobile ad
hoc network established through BT/Wi-Fi links.

In [9], the authors present an extension of the well-
known Twitter social network to opportunistic networks.
The basic idea is that users with a Twitter account can
opportunistically receive and send “tweets” also through
the BT interface, and then these “tweets” are propagated in
the opportunistic network in an epidemic fashion.

In [10], the authors present a mobile social networking
application aimed at assisting users in starting a small talk
with nearby users sharing similar (coarse-grained) interests.
Similarly to the above approaches, also the E-SmallTalker
application of [10] uses the BT interface to discover nearby
users and perform profile matching.

Other examples of social networking applications for
opportunistic networks are [19], [20], [21].

All mobile social networking applications mentioned
above are not concerned with privacy preservation: when
profile matching is needed to determine whether to estab-
lish a connection, profiles are exchanged in plain text, open-
ing the way to potentially serious security attacks as
described in the Introduction.

2.2 Privacy-Preserving Profile Matching

Following [14], profile matching protocols can be divided
into coarse-grained and fine-grained approaches. In the for-
mer approach, the user profile is defined in terms of a
set of items taken from a common universe I , where
items can represent attributes, interest topics, names in a
contact list, etc. The profile is coarse-grained in the sense
that, for each item i 2 I , we have that either i belongs or
it does not belong to a specific user’s profile. For
instance, if items represent interest topics, a user might
indicate “cinema” in her/his interest profile, but she/he
has no way of expressing the degree of interest in the
topic. Conversely, fine-grained profile matching proto-
cols allows a user to express different degrees of interest
in each item of the universe. Typically, a user’s interest
in a certain topic i is expressed by means of an integer
taking value in an interval ½0;max�, where 0 and max
denote no and maximal interest in a topic, respectively.
Since fine-grained profiles are a generalization of coarse-
grained ones, it is clear that fine-grained profile match-
ing protocols are more general and powerful than
coarse-grained ones, and can be used to implement a
larger class of mobile social networking applications.

Privacy-preserving profile matching protocols are typi-
cally based on security protocols designed within the realm
of secure multi-party computation [22], and more specifi-
cally secure two-party computation. In secure two-party
computation, the problem is to allow two parties to jointly
compute the outcome of a function fðx1; x2Þ whose input
values x1; x2 are held by the single parties, without reveal-
ing more than the information provided by the output itself
to the other party. Protocols for coarse-grained profile

matching are typically based on privacy-preserving set
intersection computation [11], [12], while existing fine-
grained profile matching protocols are based on privacy
preserving vector dot product [13] and ‘1 norm [14] compu-
tation. Independently of the specific function used to esti-
mate profile matching, all the above mentioned approaches
share the property that, when privacy-preservation of the
protocol at hand is investigated, this is defined in terms of a
certain privacy requirement the protocol must fulfill. For
instance, it might be required that, at the end of the protocol
execution, both parties involved in the computation know
the function f which is jointly computed, and the outcome
of the joint computation [13], [14]. A stronger privacy
requirement might be that only a party involved in the com-
putation knows the function f used to estimate profile
matching [13]. Furthermore, all existing approaches are con-
cerned only with the design of privacy-preserving profile
matching, and do not consider the impact of, say, different
privacy requirements on the mobile social networking
applications running on top of profile matching.

Our work differs from existing approaches under the fol-
lowing respects:

� we define an information-theoretic notion of
privacy-preservation expressed as a continuous
value in the ½0; 1� interval. Thus, we go beyond the
notion of privacy requirement, and we put forward
a more general privacy-preservation metric that can
be used to quantitatively estimate privacy preserva-
tion, also across different protocols;

� we study the impact of using stricter/looser privacy-
preservation requirements during the profile match-
ing phase on the application-layer performance of a
specific mobile social networking application;
namely, interest-casting.

3 NETWORK MODEL AND PRELIMINARIES

We consider an opportunistic network composed of n nodes
(users), and denote the set of nodes in the network by N .
Similarly to [16], we assume user interests can be modeled
as an m-dimensional vector in a common m-dimensional
interest space, where m� n. More formally, the interest pro-
file of user A is defined as:

IA ¼ ða1; . . . ; amÞ;

where ai 2 ½1;max� is an integer representing A’s interest
in the ith topic of the interest space. Note that interests are
expressed as integers in the range ½1;max�, with 1 repre-
senting no interest and max (an arbitrary integer >0) rep-
resenting maximum interest.1 Although our approach can
be extended to deal with the case of two users with the
same interest profile, to simplify presentation in the follow-
ing we make the assumption that no two users in the net-
work have the same interest profile.

In this paper, we are concerned with realizing a privacy
preserving interest-casting primitive, where the interest-
casting primitive is defined as follows [16]. Let S be a user

1. The notion of interest profile can be straightforwardly extended
to represent also information about a user’s habits, such as living in a
certain neighborhood, working in a certain place, and so on. For details,
see [16].
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denoted as the message source. The message M generated
by S must be delivered to all nodes in the setDðS; gÞ, where

DðS; gÞ ¼ U 2 N � fSgjsimðU; SÞ � gf g;

where simðU; SÞ is a similarity metric used to express simi-
larity between U and S’s interest profiles, with relatively
higher similarity values representing relatively more similar
interests, and g is the relevance threshold. Set DðS; gÞ is called
the set of relevant destinations, and in principle it is not known
in advance to node S. Instead, set DðS; gÞ is implicitly
defined by S’s interest profile, and by the relevance thresh-
old g. Furthermore, users in set DðS; gÞ are not assumed to
undertake any explicit action (e.g., subscribing to a thematic
channel) to be able to receive message M. This is in sharp
contrast to more traditional networking primitives such as
multicast, where the set of destinations is known in advance
to the source, and publish/subscribe, where subscriptions to
thematic channels are mandatory.

More specifically, in this paper we define the following
similarity metric between interest profiles, which we call
vector-component-wise (vcw) similarity metric.2 Let S ¼
ðs1; . . . ; smÞ and U ¼ ðu1; . . . ; umÞ be the interest profiles of
users S and U , respectively. We have:

vcwðU; S; �Þ ¼ 1 if 8i 2 f1; . . . ;mg; jui � sij � �
0 otherwise;

�

where � 2 ½0;max� is an integer parameter used to narrow/
widen the scope of the interest-cast.3 More specifically, by
setting g ¼ 1, we have that DðS; 1Þ ¼ N if � ¼ max, and
DðS; 1Þ ¼ ; if � ¼ 0. To simplify notation, in the following
we denote DðS; 1Þ by DðSÞ.

We assume message M generated by S is character-
ized by a TimeToLive (TTL), i.e., a time interval beyond
which the information contained in the message is con-
sidered no longer valuable. The goal of the forwarding
protocols described in the following is delivering a copy
of M to as many nodes in DðSÞ as possible within time
TTL since its generation at S. More specifically, for a
given forwarding protocol F, and denoting by IPFðUÞ the
property “user U received a copy of M within time TTL
under forwarding scheme F”, we define the set of covered
nodes CðFÞ as follows:

CðFÞ ¼ fU 2 N jIPFðUÞ is trueg:

We can now define the following precision and coverage
metric (equivalent to the precision and recall metrics well
known in information retrieval [23]). We have:

PrecðFÞ ¼ jCðFÞ \ DðSÞjjCðFÞj ;

and

CovðFÞ ¼ jCðFÞ \ DðSÞjjDðSÞj ;

where PrecðFÞ ¼ 1 represents maximum possible precision
(M is delivered only to nodes in DðSÞ), and CovðFÞ ¼ 1 rep-
resents maximum possible coverage (M is delivered to all
nodes in DðSÞ). Ideally, we would like to design a forward-
ing protocol simultaneously achieving maximum precision
and coverage. However, as we shall see in the following,
the two metrics above are often in contrast with each other,
and the most adequate tradeoff between them should be
sought. The notation used in this paper is summarized in
Table 1.

4 FORWARDING PROTOCOLS

In the following, we will present privacy-preserving ver-
sions of the following forwarding protocols:

� direct delivery (DD): strictly speaking, this is not a for-
warding protocol: source node S delivers a copy of
M whenever it has a communication opportunity
with a node U 2 DðSÞ. Message forwarding is not
allowed: only S can deliver copies of M to relevant
destinations.

� 2-hop forwarding (2H): similarly to DD, node S
delivers a copy of M to each node in DðSÞ it gets
in touch with. However, in this case forwarding of
a copy of M to other nodes is allowed. More spe-
cifically, any node U in DðSÞ holding a copy of M
can deliver a copy of it to any other node V it
meets under the condition that vcwðU; V ; �Þ ¼ 1.
Note that, in order to preserve a minimum level of
precision, forwarding can occur only along paths
composed of two hops at most: in particular, any
node which receives a copy of M from a node
U 6¼ S (as node V above) is not allowed to further
forward the message.

� restricted 2-hop forwarding (R2): similarly to DD and
2H, node S delivers a copy of M to each node in
DðSÞ it gets in touch with. Similarly to 2H, two-hops
forwarding of a copy of M is allowed, however
under a stricter condition than in case of 2H. In fact,
a node U which received message M from S is
allowed to act as forwarder if and only if
vcwðU; S; �0Þ ¼ 1, where �0 < �. When a forwarder
node U meets another node V , it can deliver a copy
of M to V under the condition that vcwðU; V ; �0Þ ¼ 1.
As we shall see in the following, this restrictive for-
warding rule allows, by suitably tuning parameter
�0, to optimally address the precision/coverage
tradeoff.

2. In the original definition of interest-cast [16], the authors used the
cosine metric for similarity. Unfortunately, using cosine metric in the
context of secure two-party computation is highly non trivial. For this
reason, we use instead the vcw similarity metric, which is equivalent to
one of the ‘1-norm similarity metrics defined in [14].

3. Notice that, while in principle it is possible to define vcw similar-
ity using different thresholds in each topic, using a single threshold �
for all topics is preferable to simplify notation, as well as to ease the
definition of the privacy preserving metric, and the simulation
experiments.

TABLE 1
Notation Table
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4.1 Properties of Forwarding Protocols

In this section, we state some properties of the forward-
ing protocols considered in this paper. First, we observe
that protocol DD always achieves maximum precision,
i.e., PrecðDDÞ ¼ 1. In fact, according to protocol DD,
only nodes in set DðSÞ can receive a copy of M. Notice,
however, that this protocol likely displays low coverage,
since no forwarding mechanism is realized; i.e., rela-
tively few communication opportunities can be exploited
to deliver M to relevant destinations.

Protocol 2H aims at increasing coverage introducing
two-hops forwarding. However, this comes at the price
of precision. In fact, the following example shows that
under protocol 2H, also nodes in N �DðSÞ can receive
M. Assume m ¼ 1, max ¼ 100, � ¼ 10, and the following
three nodes with respective interest profiles are part of
the network: S ¼ ð50Þ, U ¼ ð59Þ, and V ¼ ð65Þ. Consider
a message generated at node S. Given the parameter set-
ting as above, we have U 2 DðSÞ and V 2 N �DðSÞ.
Assume now that node S meets node U . According to
protocol 2H, message M is delivered to node U 2 DðSÞ.
If node U later on meets node V , the forwarding condi-
tion is satisfied: in fact, j65� 59j ¼ 6 < 10 ¼ �, which
implies that vcwðU; V ; �Þ ¼ 1. Since V 2 N �DðSÞ, this
proves that protocol 2H can deliver message M also to
unintended nodes.

Finally, protocol R2 aims at achieving an optimal
tradeoff between precision and coverage by tuning
parameter �0. In particular, the following proposition
states that setting �0 ¼ �=2 guarantees maximum preci-
sion for protocol R2. In the following, we call the ver-
sion of R2 with �0 ¼ �=2 protocol E2 (where E stands
for exact), to emphasize the fact that under this protocols
the message is delivered only to nodes in DðSÞ.
Proposition 1. If �0 ¼ �=2, then protocol R2 achieves maximum

precision, i.e., PrecðE2Þ ¼ 1.

Proof. To prove the claim, it is sufficient to show that mes-
sages M can be delivered only to nodes in set DðSÞ. To
show this, we first observe that M can be delivered to a
node V either: 1) directly from node S; or 2) from another
node U which received M directly from S (two-hops for-
warding). We prove that the condition CC ¼“node
V 2 DðSÞ” holds in both cases. In the first case, the speci-
fication of the forwarding protocol requires that
V 2 DðSÞ. In the second case, the specification of proto-
col E2 requires that node U can act as forwarder if and
only if it satisfies condition vcwðU; S; �=2Þ ¼ 1. This
implies that, for any interest dimension i, we have
jvi � sij � �=2. In order for M to be delivered to node V ,
protocol E2 requires that vcwðV ; U; �=2Þ ¼ 1, which,
in turn, implies jui � vij � �=2 for any i. Since
jui � sij � �=2 ^ jvi � uij � �=2 imply that jvi � sij � �,
and the inequality holds for any i, we have that
vcwðV ; S; �Þ ¼ 1, i.e., V 2 DðSÞ and the proposition
follows. tu

Notice that protocol R2 achieves maximum precision for
any value of �0 strictly smaller than �=2. However, with
such settings of �0 we would have restricted forwarding
opportunities, while not increasing precision with respect to

setting �0 ¼ �=2. For this reason, values of �0 strictly smaller
than �=2 (where � is assumed here to be an even value for
simplicity) are not useful in practice.

5 FORWARDING AND PRIVACY

For definiteness, in the following we assume that a user’s
interest is defined in a fixed range—from 1 to 100—,
reflecting the fact that a participant can be maximally
(100) or minimally (1) interested in receiving messages
about a specific topic. Table 2 reports a possible Alice’s
interest profile, with a degree of interest expressed for each
topic. Similarly, Bob’s interest profile is also shown in
Table 2. We recall that the general idea of interest-based
forwarding [16] is that when Bob and Alice meet, they
should be able to share messages in their respective buf-
fers if they find their interest profiles similar enough,
guided by the principle that a piece of information
which is relevant for Alice might be interesting for any
other individual (e.g., Bob) with similar interests.

Notice that, similar to other social-aware forwarding
approaches introduced in the literature, interest-casting
introduces several problems concerning user privacy, if
adequate counter-measures are not undertaken. In fact,
the interest-casting approach presented in [16] assumes
that Alice and Bob exchange their plain interest profiles,
thus revealing to the other party very sensitive personal
information.

Examples of attacks a malicious Bob may perform are the
following:

� He may discover the degree of Alice’s interest in
each topic.

� He may download all messages in Alice’s buffer by
first acquiring Alice’s profile in a first interaction,
then creating a false identity (Sybil attack) with an
artificially created interest profile resembling Alice’s
one, and then interacting again with Alice through
the faked identity.

� He may reveal information obtained from Alice’s
interest profile to another user (Collusion Attack).

Hence, it is a common opinion that user interest pro-
files should be kept private, and only minimal informa-
tion must be disclosed by a user when profiles are
matched for similarity computation. However, it is
important to observe that there exists an inherent trade-
off between the need of preserving privacy, and the effi-
ciency/accuracy of information forwarding in the
network. This tradeoff, which will be carefully investi-
gated in the remainder of this paper, is due to the fact
that interest-casting dictates that messages are circulated
only between network members sharing similar interests.
Thus, trivial privacy-preserving solutions in which no
information about interest profiles is exchanged, and
message forwarding proceeds in an epidemic fashion,

TABLE 2
Alice’s and Bob’s Interest Profiles
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are not acceptable if effective interest-casting is the
design goal. Summarizing, a certain leakage of informa-
tion regarding interest-profiles is inevitable, given the
need of designing an effective interest-cast protocol.

Remark. In this paper, we consider the problem of
preserving privacy of the user interest profiles. The
problem of ensuring security of the information
exchanged in the network by means of interest-casting
is largely orthogonal to the problem of ensuring pri-
vacy of interest-profiles considered herein. Neverthe-
less, a couple of observations are in order. In many
application scenarios, it is reasonable to assume that
the interest-casted information is not sensitive, such as
information about events in a community, etc. In case
the interest-casted information is instead sensible,
data encryption mechanisms should be used to protect
it. It is interesting to observe that, even in this sce-
nario, some of the forwarding protocols considered in
this paper (more specifically, DD and E2) satisfy the
property that information is exchanged only between
users whose profile is guaranteed to be similar to the
one of the user who generated the content. Thus, if
we assume a trust model in which a mutual trust rela-
tionship is established whenever two users share com-
mon interests, standard techniques can be used to
setup a secure channel between trusted parties.

6 PRIVACY-PRESERVING INTEREST-CASTING

To address the fundamental tradeoff between privacy and
forwarding accuracy, we present a privacy-preserving ver-
sion of interest-casting based on a protocol used to solve the
well-known “Millionaire’s Problem” introduced by Andrew
and Yao [18], which is an instance of secure two-party
computation.

We recall that the goal of the “The Millionaire’s Problem”
is to compare two numbers, i and j, and to discover whether:

i � j or i > j: (1)

However, this comparison must not leak out any infor-
mation about the values of i and j to the other party: if Alice
holds i and Bob j, at the end of the protocol’s execution
Alice knows only whether Bob holds a number larger than
i, and not the actual value of j (similarly for Bob). Notice
that there is a privacy leakage after the protocol execution.
Namely, at the end of the protocol’s execution both Alice
and Bob know whether the other party holds a larger or
smaller number than the own value. However, this privacy
leakage is unavoidable, if the goal is jointly computing con-
dition (1) above.

Since its introduction in [18], the “Millionaire’s Prob-
lem” has been widely studied in the literature, mainly
with the goal of reducing the computational complexity
of the cryptographic primitives used in the protocol [24].
Reducing computational complexity is especially impor-
tant in the scenario at hand, where the protocol should
be executed on mobile devices. Recently, efficient solu-
tions to the “Millionaire’s Problem” have been proposed.
For instance, in [25], [26] the authors propose protocols
for solving the “Millionaire’s Problem” based on

asymmetric cryptography, e.g., RSA. In addition, in [25]
the authors also propose a version of the protocol that
uses symmetric keys and real numbers. Computational
time evaluations, obtained using an old Pentium III/450
Mhz, prove that the hardware of recent mobile devices
(with CPU speed up to 1 Ghz and above) is able to effi-
ciently run these solutions to the “Millionaire’s Problem”.

6.1 The Millionaire’s Problem and Interest-Cast

In this section, we show how a protocol to solve the
“Millionaire’s Problem” can be modified to securely com-
pute the condition below:

ji� jj � �: (2)

In inequality (2), i represents Alice’s interest in a spe-
cific topic, and j Bob’s interest in the same topic. By
repeating the protocol on each topic of the interest profile,
Alice and Bob can securely compute the similarity metric
vcwðAlice; Bob; �Þ defined in Section 3.

Notice that, similarly to the original “Millionaire’s
Problem”, there is an unavoidable privacy leakage
caused by the execution of the protocol. Namely, at the
end of one iteration of the protocol execution, Alice
knows whether j is inside or outside the interval
½i� �; iþ �� (similarly for Bob). Thus, if the protocol to
jointly compute inequality (2) is repeated on each topic
of the interest profile, at the end of the execution the
information of whether j belongs to interval ½i� �; iþ ��
is known for each possible topic of the interest profile.
To reduce this privacy leakage, and to limit the impact
of Sybil attacks—see next section, we propose that,
when Alice and Bob meet, they estimate the similarity of
their profiles based on a random subset of topics of fixed
cardinality k, with k < m. More specifically, upon
encounter Alice and Bob compute an estimated similarity
metric vcweðAlice; Bob; �Þ, where vcweðAlice; Bob; �Þ ¼ 1 if
and only if jxi � yij � � for each i 2 I , where I is the
set of indexes of the topics in the random set, with
jIj ¼ k. The forwarding/message delivery decision in
any of the three considered forwarding protocols is then
taken based on the outcome of the vcwe similarity met-
ric, instead of the original vcw metric.

It is important to observe that using metric vcwe to
govern forwarding decisions introduces inaccuracies in
the message delivery process. In particular, it is possible,
even in case of protocols DD and E2, to deliver a copy
of the message to unintended recipients. In fact, it is
easy to see that, while ðvcwðA;B; �Þ ¼ 1Þ ) ðvcweðA;B;
�Þ ¼ 1Þ, the opposite implication does not hold. In other
words, due to the reduced number of topics on which
the similarity metric is computed, it is possible to errone-
ously estimate as similar two individuals whose com-
plete profiles do not satisfy the similarity metric. As the
value of k increases, the likelihood of erroneous similar-
ity estimation decreases, but privacy leakage increases.
This inherent tradeoff between forwarding accuracy and
privacy leakage will be thoroughly investigated in the
remainder of this paper.

The protocol we propose to securely verify condition
(2) on a single topic is reported in Fig. 1—right. The
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protocol consists in first verifying condition i � j using
an efficient protocol for solving the “Millionaire’s Prob-
lem”, such as those presented in [25], [26]. Depending
on the outcome of the first condition (which is known to
both parties), another condition is verified: i� � � j if
the outcome of the first condition was negative, or
iþ �þ � � j otherwise, where � is an arbitrarily small
positive number known to both parties. Notice that also
the value of � is assumed to be known to both parties.
Depending on the outcome of this second condition, a
common decision on the value of the vcw metric is taken.
It is immediate to see that, after the protocol execution,
vcwðA;B; �Þ ¼ 1 if and only if ji� jj � � (up to the small
approximation introduced by the constant �).

The complete protocol for estimating metric vcwe using
a random subset of k topics, which we name (privacy-
preserving interest-based forwarding (PPIF), is reported
in Fig. 1(left). Alice initiates the protocol communicating
Bob her intention to jointly compute similarity. Bob choo-
ses uniformly at random a set of k topics in his interest
profile, and communicates the chosen subset to Alice.
Then, Alice and Bob verify similarity on each of the cho-
sen topics using the protocol of Fig. 1(right). The value
of the jointly computed similarity metric vcwe is then
obtained by performing a logical AND operation between
the similarity values obtained in each topic. Notice that,
in order to reduce privacy leakage, we assume that some
form of authentication is used to prevent Alice from
repeatedly executing the protocol with Bob in a limited
time frame. For instance, we can assume that only a sin-
gle interaction between Alice and Bob is permitted within
an hour, a day, etc.

We have recently shown [27] that the PPIF protocol can
be implemented in mobile platforms with very reasonable
running times (less than 5 secs when vcwe is computed
using 4 topics).

As it will be carefully discussed in Section 7, the choice
of letting Bob, instead of Alice, randomly select the subset

of topics used to compute vcwe is motivated by the need of
reducing the impact of Sybil and Collusion attacks.

7 ANALYSIS

In this section, we discuss the security properties of our pri-
vacy-preserving interest-casting protocol and analyze its
robustness against different types of attacks.

7.1 Security Properties

The basic security properties of our proposed protocol
are directly derived from the properties of the underly-
ing protocol used to solve the “Millionaire’s Problem”.
Before proceeding further, we need to define the possible
attacker models.

Within the context of secure two-party computation, two
attacker models are typically considered:

� semi-honest model. In this model, the attacker is
assumed to behave according to the protocol spec-
ifications, with the exception that she/he keeps
track of all the intermediate computations with
the purpose of trying to derive the other party’s
input. This model is also named honest but curious
model in the literature;

� malicious model. In this model, the attacker may behave
arbitrarily, including refusing to participate in the
protocol, substituting an input with an arbitrary
value,prematurelyabortingtheprotocol,etc.

The protocols for solving the “Millionaire’s Problem”
introduced in the literature, including [25], [26], are
shown to be secure against both semi-honest and mali-
cious attackers. The word “secure”, in the context of
secure two-party computation, means that at the end of
the protocol execution, both parties only know the out-
come of the function evaluation (verification of condition
i � j in our case), with the minimal privacy leakage that
comes out from the outcome of the function used.

Fig. 1. Privacy-preserving interest-based forwarding.

830 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 4, APRIL 2014



Furthermore, as typical in secure two-party computation,
there is no other way to avoid that Bob does not send to
Alice the outcome of the function at the end of the proto-
col. Thus, if Bob is a malicious attacker,4 he could end
up the protocol before communicating to Alice the result
of the function computation. In such a case, though, Bob
would still know only the minimal information about
Alice’s input that can be derived from the outcome of
the function.

Notice that, differently from the “Millionaire’s Prob-
lem”, in the PPIF protocol, several computations of dif-
ferent functions (conditions on topic values)—namely,
2k—must be performed to jointly compute the metric
vcwe. These repeated executions of the underlying
“Millionaire’s” protocol might impair the security prop-
erties of the PPIF protocol. However, we have verified
[27] that the 2k logical interactions in the PPIF protocol
can be encoded into a single actual interaction using the
FairPlay framework for secure two-party computations
[28]. This framework is also robust w.r.t. the previous
attack models. We can then conclude that the PPIF pro-
tocol we developed is then secure against both semi-hon-
est and malicious attackers.

7.2 Privacy Preservation

As commented in Section 5, there is an inherent privacy
leakage versus forwarding accuracy tradeoff in privacy-
preserving interest-casting. To quantify this tradeoff, we
introduce a privacy preservation metric based on the
information-theoretic notion of entropy introduced by
Shannon [29] (see also [30], [31] for other approaches
using entropy in security). The Shannon entropy is a
measure of the average information content that is miss-
ing when the value of a random variable is not known.

In our setting, Alice’s interest profile, from Bob’s per-
spective, can be considered as a random variable. Thus, the
notion of entropy can be used to quantify Bob’s uncertainty
about the value of Alice’s profile.

More specifically, the random variable of interest is an m-
dimensional random variable X ¼ ðX1; . . . ; XmÞ, where all
random variables Xi have the same support ½1;max�. In
order to simplify the presentation, we assume in the follow-
ing that random variables Xi are mutually independent.
Although we acknowledge that in practice the interest val-
ues in different topics can be correlated, we retain the inde-
pendence assumption here to simplify the definition of the
introduced privacy leakage metric.

By definition [29], the bit entropy of a random variable Y
with possible values fy1; . . . ; yng is defined as:

H½Y � ¼ �
Xn
i¼1

pðyiÞ log2 pðyiÞ;

where pðyÞ is the probability mass function of random
variable Y .

If Y and Z are independent random variables, we can
write [29]:

H½ðY ; ZÞ� ¼ H½Y � þH½Z�;

from which we obtain:

H½X� ¼
Xm
i¼1

H½Xi�:

We are now ready to introduce our privacy preserva-
tion metric, whose purpose is to quantify the privacy
leakage (decrease of entropy) induced by one or multiple
executions of the PPIF protocol. Let Xinitial and Xafter be
the random variables modeling Bob’s uncertainty about
Alice’s interest profile initially and after a single execu-
tion of the PPIF protocol. Notice that, since Bob acquires
some knowledge about Alice’s profile during PPIF execu-
tion, we have in general that H½Xafter� � H½Xinitial�. We
can then define the following privacy preservation metric:

ppðPPIF Þ ¼ H½Xafter�
H½Xinitial�

:

The privacy preservation metric takes values in ½0; 1�,
with 0 indicating that after PPIF execution Bob knows
exactly Alice’s interest profile (zero privacy preservation),
and 1 indicating that after executing PPIF Bob has the
same knowledge about Alice’s profile he had before exe-
cuting the protocol (maximal privacy preservation).
Defining a privacy metric in the ½0; 1� interval is especially
important since it allows combining this metric with the
forwarding performance metrics of precision and cover-
age (also defined in the ½0; 1� interval), and computing the
overall pF score used to rank forwarding protocols in the
simulation experiments reported in Section 8.

To make the discussion more concrete, in the following
we assume that random variables Xis have uniform distri-
bution in the ½1;max� interval. Under this assumption, we
have that

H½Xinitial� ¼
Xm
i¼1

H½Xi� ¼ �
Xm
i¼1

Xmax
j¼1

1

max
log2

1

max

¼
Xm
i¼1

log2 max ¼ m log2 max:

To quantify H½Xafter�, we start assuming that k ¼ 1, and
observe that PPIF might have two possible outcomes:

� vcweðAlice; Bob; �Þ ¼ 0. In this case, Bob knows that
ji� jj > � on a specific topic. Thus, the set of possi-
ble values of i is reduced from max to max� 2�� 1
in the tested topic. In the other topics, the uncertainty
about Alice’s value is unchanged. We can then con-
clude that

H
�
X0
after

�
¼ ðm� 1Þlog2 maxþ log2ðmax� 2�� 1Þ:

� vcweðAlice; Bob; �Þ ¼ 1. In this case, Bob knows that
ji� jj � � on the tested topic, and the set of possible

4. Notice that the role of Alice and Bob in this section is reversed
with respect to what reported in Fig. 1: Bob (the attacker) initiates the
protocol, and Alice chooses the random set of topics to compute the
vcwe metric.
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values of i on that topic is reduced from max to
2�þ 1. Similarly to above, the uncertainty in the
other topics is unchanged, and we can write:

H
�
X1
after

�
¼ ðm� 1Þlog2 maxþ log2ð2�þ 1Þ:

We also notice that event vcweðAlice; Bob; �Þ ¼ 0 occurs
with probability equal to max�2��1

max (under the assumption
that �� max), while event vcweðAlice; Bob; �Þ ¼ 1 occurs
with probability 2�þ1

max . Thus, the expected value of the pri-
vacy preservation metric with k ¼ 1 (normalized in order to
have it between 0 and 1) amounts to:

Em½ppðPPIF1Þ� ¼
max�2��1

max �H
�
X0
after

�
þ 2�þ1

max �H
�
X1
after

�
m log2 max

;

where PPIF1 indicates that the protocol is executed with
k ¼ 1.

To compute the expected privacy preservation resulting
from a single execution of the PPIF protocol with k > 1, we
start observing that the entropy of random variable Xafter

when vcweðAlice; Bob; �Þ ¼ 0 is:

H
�
X0
after

�
¼ log2ðmaxm � ð2�þ 1ÞkÞ;

which follows from the observation that, under the assump-
tion that the m interest values are independent and uni-
formly distributed in ½1;max�, all the maxm possible values
of Alice’s profile are equiprobable and, out of those, only the
ones in which inequality ji� jj � � is verified for all k con-
sidered topics are not possible, given the outcome
vcweðAlice; Bob; �Þ ¼ 0. In fact, in the PPIF protocol it is Alice
who knows the outcome of the test on each specific topic and
performs the logical AND operation to compute vcwe, and
then send to Bob the outcome of the logical AND operation.

On the other hand, it is easy to see that the entropy of
random variable Xafter when vcweðAlice; Bob; �Þ ¼ 1 is

H
�
X1
after

�
¼ ðm� kÞlog2 maxþ k log2ð2�þ 1Þ:

We then observe that the probability of event
vcweðAlice; Bob; �Þ ¼ 0 when vcwe is computed using k
topics is 1� ð2�þ1

max Þ
k, and that the probability of the comple-

mentary event vcweðAlice;Bob; �Þ ¼ 1 equals ð2�þ1
max Þ

k. Thus,
we can conclude with the following theorem:

Theorem 1. The expected privacy-preservation when protocol
PPIF is executed using k > 1 topics to compute similarity is:

Em½ppðPPIFkÞ�

¼
1�

�
2�þ1
max

�k� �
�H
�
X0
after

�
þ
�

2�þ1
max

�k �H½X1
after�

m log2 max
;

where

H
�
X0
after

�
¼ log2ðmaxm � ð2�þ 1ÞkÞ;

and

H
�
X1
after

�
¼ ðm� kÞ log2 maxþ k log2ð2�þ 1Þ:

As shown in Fig. 2, the expected privacy preservation
of protocol PPIF is very close to 1 for reasonable setting of
the parameters, due to the fact that event vcweðAlice;
Bob; �Þ ¼ 0, which leads to negligible privacy leakage,
occurs with high probability. For instance, when max ¼
100; � ¼ 10 and k ¼ 4, we have that event vcweðAlice;
Bob; �Þ ¼ 0 occurs with probability 0.998. It is also inter-
esting to note that the value of k strongly influences
the probability of event vcweðAlice;Bob; �Þ ¼ 1, i.e., of a
successful message forwarding. For instance, Probðvcwe
ðAlice; Bob; �Þ ¼ 1Þ ¼ 0:002 when k ¼ 4, indicating that
only 2 out of 1,000 forwarding opportunities are exploited
in average. However, by setting k ¼ 1 we have Probðvcwe
ðAlice; Bob; �Þ ¼ 1Þ ¼ 0:21, which increases the average
number of exploited forwarding opportunities to 1 out 5.
The strong influence of parameter k on the message for-
warding process is confirmed by the simulation results
reported in Section 8.

It is also useful to define the notion of worst-case privacy
preservation to investigate the privacy leakage versus for-
warding accuracy tradeoff. Worst-case privacy preservation
is computed assuming the event leading to the highest pri-
vacy leakage (namely, event vcweðAlice; Bob; �Þ ¼ 1) occurs.
It is easy to see that the worst-case privacy preservation of
protocol PPIF using k � 1 topics to compute metric vcwe
amounts to

WS½ppðPPIFkÞ� ¼
ðm� kÞlog2 maxþ k log2ð2�þ 1Þ

m log2 max
:

The value of WS½ppðPPIFkÞ� as � increases from 1 to 20
for different values of k is reported in Fig. 3. As seen from
the plot, worst-case privacy can be augmented by increasing
� and/or decreasing k. In particular, while decreasing k has
a clear effect on the pp metric, increasing the value of � only

Fig. 2. Value of the expected privacy preservation metric for increasing
values of � and different values of k. Parameter max is set to 100 and m
is set to 15.

Fig. 3. Value of the worst-case privacy preservation metric for increasing
values of � and different values of k. Parameter max is set to 100 and m
is set to 15.
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marginally improve privacy preservation beyond a certain
threshold (e.g., around 5 for k ¼ 4). However, as we will dis-
cuss below and in Section 8, relatively high values of � and
relatively small values of k negatively affect the accuracy of
the forwarding process. Clearly, privacy is also increased
for increasing values of m.

Overall, the results presented in this section can be
used by the protocol designer to identify the best trade-
off between privacy preservation and forwarding accu-
racy as a function of the protocol parameters. An
example of this usage is the computation of the pF score
in the simulation experiments to identify the best per-
forming protocol—see Section 8.

7.3 Forwarding Accuracy

As we have already observed, using the vcwe metric instead
of the complete vcw one to compute similarity between inter-
est profiles introduces inaccuracies in the forwarding pro-
cess. In particular, the following event, which we call mis-
forwarding and denote MS, can occur with non-zero proba-
bility: “ðvcweðAlice; Bob; �Þ ¼ 1Þ ^ ðvcwðAlice; Bob; �Þ ¼ 0Þ”.
Mis-forwarding should be avoided to preserve confidential-
ity of information (if shared data is intended to circulate
only amongst users with similar profiles), and to avoid
spamming of undesired information to un-interested users
more in general. In what follows we estimate the probability
of eventMS as a function of k.

Let CtðA;BÞ denote the number of topics in Alice’s and
Bob’s profile for which condition ji� jj � � is satisfied. We
can write:

P ðMSÞ ¼
Xm�1

t¼k
P ðMSjCtðA;BÞ ¼ tÞP ðCtðA;BÞ ¼ tÞ:

Notice that the summation above starts from t ¼ k,
since if Alice and Bob have less than k topics in com-
mon, event MS cannot occur. Similarly, if t ¼ m then
vcwðAlice; Bob; �Þ ¼ 1, and MS cannot occur as well.

If we assume that interests in each topic are uniformly
distributed in the ½1;max� interval, the similarity event on a
single topic can be considered as a Bernoulli trial, and we
can compute P ðCtðA;BÞ ¼ tÞ as follows:

P ðCtðA;BÞ ¼ tÞ 	 m

t

� � 2�þ 1

max

	 
t
� 1� 2�þ 1

max

	 
ðm�tÞ
;

where the approximation is due to the fact that the success
probability in each of the m Bernoulli trials is less than
ð2�þ 1Þ if the value of i or j is close to the border of the
½1;max� interval. It is easy to see that the above approxima-
tion is very accurate whenever �� m.

Conditioned on event CtðA;BÞ ¼ t, the probability of
event MS can be computed as follows:

P ðMSjCtðA;BÞ ¼ tÞ ¼
t
k

� �
m
k

� � ;
where, we recall, k � t � m� 1.

The probability of mis-forwarding for increasing val-
ues of k and different values of � is reported in Fig. 4.

As seen from the figure, setting k ¼ 4 already ensures a
negligible probability of mis-forwarding, while at the
same time providing good privacy-preservation proper-
ties (recall Fig. 3).

7.4 Sybil Attack

In order to acquire more information about Alice’s interest
profile, an attacker (Bob) could forge multiple identities and
perform repeated interactions with Alice. In this section, we
estimate the number of identities Bob has to forge in order
to perform a successful Sybil attack.

To this end, we start defining two notions of Sybil attack:

� weak Sybil attack: in this case, the attacker’s goal is to
perform a successful interaction with Alice. In other
words, the attacker’s goal is to compute a profile
such that the metric vcwe computed against Alice’s
profile returns 1 (i.e., at the end of a successful attack,
the attacker knows the Alice’s profile up to �).

� strong Sybil attack: in this case, the attacker’s goal is
to discover Alice’s exact profile. Clearly, this implies
complete privacy leakage. This attack is much more
valuable than the other for a potential attacker, since
a user’s profile can be considered as an asset many
companies, organizations like political parties, etc.,
might be interested in.

The number of identities required to successfully per-
form a weak Sybil attack when k ¼ 1 can be estimated notic-
ing that the problem under investigation is similar to the
well-known coupon collector’s problem [32]: since Alice
chooses the topics on which the vcwe metric is computed
uniformly at random, each time a Bob’s fake identity inter-
acts with Alice, this is equivalent to randomly extracting a
coupon (topic) among a set of m possible coupons. In order
to perform a successful attack, Bob needs to extract all the m
coupons. The expected number of tries in order to collect m
coupons is given by Flajolet et al. [32]: m �Hm where
Hm 
 log m is the mth Harmonic number. In order to per-
form a weak Sybil attack, Bob has to interact several times
with Alice on each topic, each time using a different value
as the own (fake) interest in the topic, with the purpose of
disclosing Alice’s value on that topic. The number of inter-
actions needed to discover the value i of Alice on each topic
can be computed as follows. With max

2�þ1 interactions, Bob can
discover in which of the mutually disjoint intervals of
length 2�þ 1 value i lies in. Thus, sW ¼ max

2�þ1 interactions are
needed on each of the m topics to fully disclose Alice’s pro-
file, where subscript W stands for “weak”. To sum up, the
total number of identities needed to successfully perform a

Fig. 4. Probability of mis-forwarding for increasing values of k and differ-
ent values of �. Parameter max is set to 100 and m is set to 15.
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weak Sybil attack can be estimated by observing that the
problem at hand is equivalent to the sW -coupon collector’s
problem, where the collector’s goal is collecting s copies of
each coupon. From [33], we get

EwS½Id� ¼ m � log mþ ðsW � 1Þm log logmþOðmÞ: (3)

For the strong attack, one can consider logð2�þ 1Þ
additional interactions (with binary search) to exactly
identify the value of i within the selected interval. Thus,
sS ¼ max

2�þ1þ logð2�þ 1Þ interactions are needed on each of
the m topics to fully disclose Alice’s profile, where sub-
script S stands for “strong”. The expected number of
identities needed to successfully perform a strong Sybil
attack can then be computed according to equation (3),
with sW replaced with sS .

The expected number of identities needed to success-
fully perform a weak or strong Sybil attack to the PPIF
protocol when k ¼ 1 for increasing values of m is
reported in Fig. 5. For instance, when m ¼ 15, the
attacker needs approximately 54 identities to perform a
weak Sybil attack, while he/she needs about 59 identities
to perform a strong Sybil attack. Unfortunately, extend-
ing the above analysis to the case k > 1 is highly non-
trivial, since in this case the number of new coupons
that are collected at each interaction (which is either 0 or
1 when k ¼ 1) can take any value between 0 and k, lead-
ing to an explosion of the number of possible ways of
collecting all the m coupons, which hinders analytical
derivation.

It must be noticed that in the above analysis we
assumed that it is always the attacker who starts the proto-
col with Alice, giving to Alice the possibility of randomly
choosing the topics. In practice, it might happen that Alice
starts the interaction with one of Bob’s sybils, which
would give the attacker the opportunity of choosing the
topics. Thus, the one reported above must be considered
as the worst case for the attacker.

The analysis above applies also to the situation in
which the forgery of identities is not possible, e.g., in pres-
ence of strong authentication mechanisms. In this situa-
tion, an alternative attack is the collusion attack, in which
multiple malicious users cooperate and share knowledge
they acquire on Alice’s profile. Multiple malicious users
are equivalent to multiple identities in a Sybil attack, and
the analysis above can be readily applied also to deal with
collusions attacks.

8 SIMULATIONS

In this section, we report the results of the simulations we
have performed to better investigate the privacy preserva-
tion versus forwarding accuracy tradeoff in interest-casting.
The simulations are based on the MIT reality mining mobil-
ity trace [34], which collects mobility traces of 97 users hold-
ing a Bluetooth device from July 2004 to April 2005. The
trace was generated by periodically performing a BT scan
operation, and by recording the ID of neighboring devices
and time of contact. Unfortunately, the trace does not con-
tain any information about user interest profiles. To fill this
gap, we decided to run a survey at our Institute (the
“Istituto di Informatica e Telematica” of the Italian National
Research Council), asking 97 volunteers to fill an online,
anonymous form. The form contained 15 topics (e.g.,
“Books”, “Music”, “Sport”, etc.); for each topic, we asked
the user to indicate an interest value in the range [1;100].
Then, we associated each generated interest profile to a ran-
domly chosen user in the MIT trace.

In order to perform a number of significant experiments,
we pre-processed user interest profiles, with the purpose of
selecting a representative subset of the interests where the
user population display a sufficient degree of similarity. In
fact, considering the limited number of users (97) in the
MIT trace, and the relatively large number of topics (15) in
the user profile, if no pre-processing is performed it is likely
that the set DðSÞ of relevant destinations for a certain source
node S is empty (no users with profile similar to S on all the
topics). Clearly, if DðSÞ ¼ ; no other node in the network
should receive the message generated by S, and the notion
of interest-cast is not meaningful.

To avoid the above described situation, we have identi-
fied six topics in which user interests are highly concen-
trated on relatively few values (typically, either very high or
very low). These topics are: “Boats”, “Books”, “Cars”,
“Environment”, “Music”, and “Traveling”. Since user inter-
ests in these topics are highly concentrated on relatively few
values, it is more likely that set DðSÞ contains at least one
node as desired. The simulation results reported in the fol-
lowing are then obtained setting m ¼ 6 and varying the
number k of topics used to compute the estimated metric
vcwe, where the six topics in the user interest profiles are the
ones mentioned above.

A simulation experiment consists in randomly select-
ing a source node S, and in initially computing the set
DðSÞ of relevant destinations based on user interest pro-
files. The value of � used to compute the similarity met-
ric is � ¼ 20. If set DðSÞ is empty, the simulation is
discarded for the reason explained above. Otherwise, an
interest-cast message is generated at node S with TTL
equal to the duration of the data trace, and is propagated
in the network according to one of the three forwarding
protocols defined in Section 4, namely, DD, 2H, and E2.
Then, the following metrics are computed:

� coverage, as defined in Section 3;

� precision, as defined in Section 3;

� delay, defined as the average delay with which the
message is received (computed only for messages
received by nodes in set DðSÞ).

Fig. 5. Expected number of identities needed to successfully perform a
weak or strong Sybil attack for increasing values of m. Parameters are
max ¼ 100 and � ¼ 10.
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The results presented in the following refer to 97 simula-
tion experiments, corresponding to generating a message
at each node in the network. In 42 out of 97 experiments,
the condition jDðSÞj > 0 was satisfied, and performance of
the different forwarding protocols evaluated.

For the purpose of comparison, we implemented also
the SANE interest-cast protocol introduced in [16], which
is not privacy aware (interest profiles are plainly
exchanged between users). There are two differences
between SANE and the protocols introduced here. First,
the metric used for computing interest similarity is the
cosine metric, instead of vcw. Second, since privacy is not
a concern in SANE, when a message is propagated multi-
hop in the network, the profile of the possible forwarder/
destination node is compared with the profile of the
source node which generated the message. In other words,
a message circulating in the network carries also the inter-
est profile of the source node, which is not the case in our
multihop protocols due to the need of preserving privacy.
We have implemented two forwarding rules for SANE,
corresponding to DD and 2H forwarding.

In order to make the comparison between SANE and
our multi-hop protocols the fairest possible, we have
proceeded as follows. First, we have computed the aver-
age size of the set DðSÞ of intended destinations on the
42 selected source nodes, where set DðSÞ is computed
using the vcw similarity metric. This average size turned
out to be 6.4. For the same set of 42 source nodes, we
have then computed the size of the set DcðSÞ of intended
destinations using the cosine metric, using different simi-
larity thresholds g. Finally, we have selected the value of
g corresponding to a size of the set DcðSÞ as close as pos-
sible to 6.4. This value turned out to be ĝ ¼ 0:99, for
which the average size of the sets DcðSÞ is 5.62.

The coverage, precision, and delay of the different for-
warding protocols obtained when k varies from 1 to 6 are
reported in Fig. 6. The figure also reports 95 percent confi-
dence intervals. First, we observe that coverage with DD
protocol is independent of k. This comes from the fact
that in DD it is only the source node that can deliver the
message to a node in DðSÞ, and that when S meets a node
U in DðSÞ it always delivers the message to U indepen-
dently of the value of k. In fact, ðvcwðU; SÞ ¼ 1Þ )
ðvcweðU; SÞ ¼ 1Þ, independently of the value of k and of
the specific topics used to compute the vcwe metric. On
the other hand, the precision of DD increases with k,
since a higher value of k results in a lower occurrence of
false positives in the computation of the vcwe metric

(recall also Fig. 4). Maximum precision of 1 is achieved
when k ¼ 6, since in this case vcw � vcwe, and in protocol
DD only the source node is allowed to deliver the mes-
sage to nodes in DðSÞ—recall Section 4.1.

Protocols 2H and E2 stand at the opposite ends of the
coverage versus precision tradeoff. Protocol 2H has the best
coverage performance (	87 percent when k ¼ 1), thanks to
the two-hops propagation of the interest-cast message. Cov-
erage has a decreasing trend with k, due to the fact that
more copies of the message circulate in the network with
lower values of k. However, the better coverage with low
values of k is paid in terms of decreased precision, which is
very low for values of k � 4.

Conversely, protocol E2 provides the best precision
performance, with optimal precision of 1 obtained with
k ¼ 6. The good precision performance of the E2 protocol
is due to the fact that a lower value of �0 ¼ �=2 ¼ 10 is
used to compute the estimated similarity metric vcwe.
However, the good precision performance is paid in
terms of coverage, which is always lower than that pro-
vided by protocol 2H: the decreasing trend of coverage
with increasing k with the E2 protocol is more pro-
nounced than with the 2H protocol. When k > 3, E2 cov-
erage is worse than that provided by protocol DD, which
does not exploit multi-hop message propagation.

Since SANE uses the cosine similarity metric for mes-
sage forwarding/delivery, its performance is not influ-
enced by the choice of parameter k. In terms of precision,
SANE is clearly optimal, since the plain interest profile of
the message source is propagated in the network jointly
with the message (compromising privacy). In terms of
coverage, SANE provides intermediate performance, cov-
ering 42 percent of the intended destinations with DD
forwarding and 56 percent of the intended destinations
with 2H forwarding.

To have a more comprehensive understanding of the
coverage versus precision tradeoff with the various proto-
cols, we have also computed the F-score, which is formally
defined as follows [23]:

F ðFÞ ¼ 2 � PrecðFÞ � CovðFÞ
PrecðFÞ þ CovðFÞ ;

where F is the forwarding protocol at hand. The F-score of
the various protocols for increasing values of k is reported
in Fig. 7. As seen from the plot, the best F-score is pro-
vided by SANE with 2H forwarding, which, however, is
not privacy preserving. Amongst privacy preserving

Fig. 6. Coverage (left), precision (center), and delay (right) of the different forwarding protocols when k ¼ 1; . . . ; 6.
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protocols, the best F-score is provided by protocol 2H
when k ¼ 6. More in general, the best F-score is provided
by protocol DD when k ¼ 1; 5, by protocol E2 when
k ¼ 2; 3; 4, and by protocol 2H for k ¼ 6.

Notice, though, that the F-score metric does not account
for the privacy level provided by the different forwarding
protocols. In order to obtain a single metric accounting also
for privacy, we have defined a privacy-preserving version
of the F-score metric, which we call pF-score and is defined
as follows:

pF ðFÞ ¼ 3 � PrecðFÞ � CovðFÞ �WS½ppðFÞ�
PrecðFÞ þ CovðFÞ þWS½ppðFÞ� ;

where WS½ppðFÞ� is the worst-case privacy-preservation
metric of protocol F which, similarly to coverage and pre-
cision, is also defined in the ½0; 1� interval. The pF-score of
the three protocols for increasing values of k is reported
in Fig. 8. Notice that, apart from the relatively lower val-
ues of the pF-score with respect to the F-score, the relative
performance of the various protocols is preserved. In par-
ticular, the best pF-score is also achieved when protocol
2H is used with k ¼ 6. Notice finally that the plot of the
SANE protocols is not reported, since the privacy preser-
vation metric of SANE is 0 independently of the forward-
ing strategy. Hence, SANE has pF-score of 0.

It is important to observe that the pF-score as defined
above is based on the assumption that, from the application
designer’s viewpoint, both coverage, precision, and privacy
have the same relative importance. In case the three perfor-
mance metrics have different relative importance from the
designer’s viewpoint, the notion of pF-score defined above
can be easily extended to account for different weights of
the three performance metrics.

Concerning delay, protocols 2H and E2 have similar
performance, and they both provide considerably lower
delay than that provided by protocol DD, which does not
exploit multi-hop forwarding of information (see Fig. 6).
The reduced delay provided by multi-hop forwarding is
visible also comparing the delay of SANE with DD and
2H forwarding.

To summarize, simulation results indicate that protocols
2H and E2 can be used to address different needs of the
interest-casting application: if the designer’s goal is to cover
as many interested users as possible, protocol 2H should be
preferred. On the other hand, if the designer’s goal is to
deliver information only to really interested users, so to

avoid spamming of information within the opportunistic net-
work, then protocol E2 is the best choice.

9 CONCLUSION—FUTURE WORK

In this paper, we have studied for the first time the funda-
mental tradeoff between privacy preservation and appli-
cation-level performance in a specific mobile social
networking application, namely, interest-casting. We have
introduced three forwarding protocols based on a pri-
vacy-preserving detection of users sharing similar inter-
ests, two of which exploit multi-hop forwarding of
information. We have also introduced an entropy-based
notion of privacy preservation, and analyzed the tradeoff
between privacy preservation and forwarding accuracy by
means of both analysis and simulation. The most impor-
tant contribution of our study is demonstrating for the
first time that privacy preservation and application-level
performance must be traded off with each other, and that
the optimal tuning of this tradeoff depends on the specific
application requirements.

We believe the study reported in this paper discloses
several avenues for further research in the field. A first
interesting direction is extending our study to other mobile
social networking applications, such as small talking [10],
Twitter [9], etc. More research is also needed to demon-
strate feasibility of the secure multi-party computation
framework proposed herein, as well as in [11], [12], [13],
[14], on a mobile platform. Initial steps along this direction
are reported in [27].
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