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Abstract. The aggregation of generic items into coalitions leads to the creation of sets of homoge-
nous entities. In this paper we accomplish this for an input set of arguments, and the result is a
partition according to distinct lines of thought, i.e., groups of “coherent” ideas. We extend Dung’s
Argumentation Framework (AF) in order to deal with coalitions of arguments. The initial set of ar-
guments is partitioned into not-intersected subsets. All the found coalitions show the same property
inherited by Dung, e.g., all the coalitions in the partition are admissible (or conflict-free, complete,
stable): they are generated according to Dung’s principles. Each of these coalitions can be assigned
to a different agent. We use Soft Constraint Programming as a formal approach to model and solve
such partitions in weighted AFs: semiring algebraic structures can be used to model different op-
timization criteria for the obtained coalitions. Moreover, we implement and solve the presented
problem with JaCoP, a Java constraint solver, and we test the code over a small-world network.
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1. Introduction and Motivations

A coalition structure is a temporary alliance or partnering of similar entities (according to some criteria)
in order to achieve a common purpose [23]. To form a successful coalition, it is necessary to efficiently
recognise compatible interests, since each piece of information in the set to be clustered may be incorpo-
rated into two (or more) similar “lines of thought”: the same information could be coherently accepted
by both coalitions.

The abstract nature of Dung’s seminal theory [20] of argumentation accounts for its widespread
application for various species of non-monotonic reasoning. A Dung argumentation framework (see
Section 2) is classically instantiated by arguments and a binary conflict-based attack relation, defined
by some underlying logical theory. The justified arguments under different extensional semantics (e.g.,
conflict-free ones) are then evaluated, and the claims of these arguments define the inferences of the
underlying theory.

The aim of this paper is to partition a given set of arguments into coalition-structures of them [17,
1, 14], where each coalition inherits the same Dung-like properties, e.g., admissibility (or stability).
Therefore, each coalition of the obtained partition is eventually admissible (or stable). Thus, even if each
coalition corresponds to an extension in the classical vision of Dung [20], we call it a “coalition” and
not an “extension”, to highlight the fact that now all the arguments are partitioned and each coalition
forms a line of thought on his own, in “contrast” with the others. An application scenario is represented,
for example, by the need to aggregate a set of distinct arguments into several acceptable or defensible
lines of thought at the same time, in order to assign them to the different agents that have produced
them. Suppose, for example, to collect some statements belonging to candidates of different political
parties; it would be interesting to check how consistent their ideas are. For example, a) “We do not want
immigrants with the right to vote” is clearly closer to b) “Immigration must be stopped”, than to c) “We
need a multicultural and open society in order to enrich the life of everyone and boost our economy”.
For this reason, arguments a) and b) on one side, and argument c) on the other one, may be assigned to
two different admissible coalitions, corresponding to politicians P and Q respectively.

In general, cooperating groups, referred to as “coalition structures” [26], have been thoroughly inves-
tigated in AI and Game Theory and have proved to be useful in both real-world economic scenarios and
Multi-agent Systems [26, 29, 3]. Some applications might be Task Allocation Problems (let tasks be the
agents), Sensor Network Problems (agents must form groups of “event detectors”), distributed winner
determination in Combinatorial Auctions, or agents grouping to handle work-flows [26, 29, 3].

In order to model and solve the proposed extended problems we use (Soft) Constraint Programming
((S)CP) [28] (see Section 3), which is a powerful paradigm for solving combinatorial problems that
draws on a wide range of techniques from AI, Databases, Programming Languages, and Operations
Research [28]. The idea of the semiring-based constraint formalism presented in [9, 5] is to further extend
the classical constraint notion by adding the concept of a structure representing the levels of satisfiability
of constraints. Such a structure is similar to a semiring (see Section 3). Problems defined according to
the semiring-based framework are called Soft Constraint Satisfaction Problems (SCSPs) [9, 5, 28]. There
already exist many efficient techniques (as constraint propagation, see Chapter 4 in [28]) to solve such
complex problems. The solution of the obtained SCSP represents the partition of the arguments (see
Section 4) where each subset (i.e., coalition) of arguments has the same property originally defined by
Dung in [20], e.g., each coalition in the partition is admissible. Semirings can be used to relax conflict-
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free partitions, by allowing a certain degree of conflict inside coalitions, by representing a weight (or
preference) associated with each attack between arguments.

At last, we propose an implementation of the proposed frameworks as crisp CSPs (equivalent to use
a Boolean semiring in SCSPs) with the JaCoP (i.e., Java Constraint Programming) solver, and we test
it over a small-world network randomly generated with the Java Universal Network/Graph Framework
(JUNG) [27].1 We also refer to the tool we have recently developed, named ConArg [12, 13], which is
able to solve many Argumentation-related problems, the one presented in this paper included.

The paper extends the work in [6] and it is organized as follows: in Section 2 we provide the back-
ground about Argumentation Frameworks, while Section 3 summarizes the background on semiring-
based constraints. Section 4 explains how to extend the theory behind [20] to deal with partitions of
extensions and Section 5 presents how these partitions can be described as weighted. Then, Section 6
shows the problem of finding these partitions as a SCSP and Section 7 shows an implementation in
JaCoP. At last, Section 8 reports the related work and Section 9 draws the final conclusions.

2. Dung’s Argumentation

In his seminal papers, Dung has proposed an abstract framework for argumentation in which he focuses
on the definition of the status (attacked/defended) of arguments [20]. It is assumed that the sets of
arguments and conflicts among them are given as part of the problem.

Definition 2.1. ([20])
An Argumentation Framework (AF) is a pair ⟨A, R⟩ of a set A of arguments and a binary relation R on
A called the attack relation. ∀ai, aj ∈ A, aiRaj means that ai attacks aj . An AF may be represented
by a directed graph (the interaction graph) whose nodes are arguments and edges represent the attack
relation. A set of arguments B attacks an argument a if a is attacked by an argument of B. A set of
arguments B attacks a set of arguments C if there is an argument b ∈ B which attacks an argument c ∈ C.

a b c
Sunny Rainy and

windy

Mild
Breeze

Figure 1. A graphical rerepsentation of an AF on weather forecast; e.g., b attacks c and viceversa.

In Figure 1 we show an example of AF represented as an interaction graph: we have three different
weather forecasts in contrast, where R(a, b), R(b, c), R(b, a) and R(c, b). Dung [20] gives several
semantics of “acceptability”, which produce none, one, or several acceptable sets of arguments, called
extensions. The stable semantics is only defined via the notion of attack:

Definition 2.2. ([20])
A set B ⊆ A is conflict-free iff for no two arguments a and b in B, a attacks b. A conflict-free set B ⊆ A
is a stable extension iff each argument not in B is attacked by an argument in B.

1The home page of JaCoP is http://www.jacop.eu
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The other semantics for “acceptability” rely upon the concept of defense. An admissible set of
arguments according to Dung must be a conflict-free set which defends all its elements. Formally:

Definition 2.3. ([20])
An argument b is defended by a set B ⊆ A (or B defends b) iff for any argument a ∈ A, if a attacks b
then B attacks a. A conflict-free set B ⊆ A is admissible iff each argument in B is defended by B.

Besides the stable semantics, one semantics refining admissibility has been introduced by Dung [20]:

Definition 2.4. ([20])
An admissible B ⊆ A is a complete extension iff each argument which is defended by B is in B.

In Figure 2 we show an example of a stable, an admissible, and a complete extension, respectively
(A), (B), and (C). For instance, (B) is admissible but not complete because x6 is defended by the exten-
sion (through x4), but it is not contained in it. Moreover, (B) is not stable because x6, which is not taken
in the extension, is not attacked by it.
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Figure 2. A stable (A), an admissible (B) and a complete (C) extension (clearly conflict-free as well).

3. Semirings and Soft Constraints

A c-semiring [9] (simply semiring in the sequel) is a tuple S = ⟨A,+,×,0,1⟩, where A is a possibly
infinite set with two special elements 0,1 ∈ A (respectively the bottom and top elements of A) and with
two operations + and × that satisfy certain properties over A: + is commutative, associative, idempotent,
closed, with 0 as its unit element and 1 as its absorbing element; × is closed, associative, commutative,
distributes over +, 1 is its unit element, and 0 is its absorbing element. The + operation defines a partial
order ≤S over A such that a ≤S b iff a + b = b; we say that a ≤S b if b represents a value better than
a. Moreover, + and × are monotone on ≤S , 0 is the min of the partial order and 1 its max, ⟨A,≤S⟩ is a
complete lattice and + is its least upper bound operator (i.e., a+ b = lub(a, b)) [9].

Some practical instantiations of the generic semiring structure are the boolean ⟨{false, true},∨,∧,
false, true⟩, fuzzy ⟨[0..1],max,min, 0, 1⟩, probabilistic ⟨[0..1],max, ×̂, 0, 1⟩ and weighted ⟨R+∪{+∞},
min, +̂,∞, 0⟩ (where ×̂ and +̂ respectively represent the arithmetic multiplication and addition). The
boolean semiring can be used to represent classical crisp constraints.

Given a semiring ⟨A,+,×,0,1⟩ and a, b ∈ A, we define the residuated negation of a as ¬a =
max{b : b × a = 0}, where max is according to the ordering defined by +. Note that over the boolean
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Figure 3. A graphical representation of four
weighted constraints, e.g., c2 = c3 ⊗ c4.

X Y

c1 c3

c2

<a>     1

<b>     9

<a>     5

<b>     5

<a,a>     5

<a,b>     1

<b,a>     2

<b,b>     2

Figure 4. An SCSP based on a weighted semiring.

semiring the negation operator corresponds to the logic negation, since ¬0 = max{b : b× 0 = 0} = 1,
and ¬1 = max{b : b× 1 = 0} = 0.

A soft constraint [9] may be seen as a constraint where each instantiation of its variables has an
associated preference. Given S = ⟨A,+,×,0,1⟩ and an ordered finite set of variables V over a domain
D, a soft constraint is a function that, given an assignment η : V → D of the variables, returns a value
of the semiring, i.e., c : (V → D) → A. Let C = {c | c : D|I⊆V | → A} be the set of all possible
constraints that can be built starting from S, D and V : any function in C depends on the assignment of
only a (possibly empty) finite subset I of V , called the support, or scope, of the constraint. For instance,
a binary constraint cx,y (i.e., {x, y} = I ⊆ V ) is defined on the support supp(c) = {x, y}. Note
that cη[v = d] means cη′ where η′ is η modified with the assignment v = d. Note also that cη is the
application of a constraint function c : (V → D) → A to a function η : V → D; what we obtain is,
thus, a semiring value cη = a.2

Given the set C, the combination function ⊗ : C × C → C is defined as (c1 ⊗ c2)η = c1η × c2η [9];
supp(c1 ⊗ c2) = supp(c1) ∪ supp(c2). Given the set C, the combination function ⊕ : C ⊕ C → C
is defined as (c1 ⊕ c2)η = c1η + c2η [5]; supp(c1 ⊕ c2) = supp(c1) ∪ supp(c2). Informally, ⊗/⊕
builds a new constraint that associates with each tuple of domain values for such variables a semiring
element that is obtained by multiplying/summing the elements associated by the original constraints to
the appropriate sub-tuples. Given a constraint c ∈ C and a variable v ∈ V , the projection [9] of c over
V \{v}, written c ⇓(V \{v}) is the constraint c′ such that c′η =

∑
d∈D cη[v = d]. Informally, projecting

means computing the best possible rating over all values of the remaining variables.
The partial order ≤S over C can be easily extended among constraints by defining c1 ⊑S c2 ⇐⇒

∀η, c1η ≤S c2η. In order to define constraint equivalence we have c1 ≡S c2 ⇐⇒ ∀η, c1η =S c2η and
supp(c1) = supp(c2).

In Fig. 3 we show a graphical example of four weighted constraints (i.e., defined in the weighted
semiring), where we have c3 ⊗ c4 = c2, c3 ⊑ c4, c2 ⊑ c3, c1 ⊑ c3, but c1 ̸⊑ c2 because of the grey
region, where c2 ⊑ c1 instead; moreover, in Fig. 3 we can see that supp(c1) = supp(c2) = supp(c3) =
supp(c4) = {x}.

An SCSP [9] is defined as a quadruple P = ⟨S, V,D,C⟩, where C ⊆ C is the constraint set of the
problem P . The best level of consistency notion defined as blevel(P ) = Sol(P ) ⇓∅, where Sol(P ) =⊗

C [9]. A problem P is α-consistent if blevel(P ) = α [9]; P is instead simply “consistent” iff

2The constraint function ā always returns the value a ∈ A for all assignments of domain values, e.g., the 0̄ and 1̄ functions
always return 0 and 1 respectively.
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blevel(P ) >S 0 [9]. P is inconsistent if it is not consistent. Figure 4 shows an SCSP as a graph: S
corresponds to the weighted semiring, i.e., ⟨R+ ∪ {+∞},min, +̂,∞, 0⟩. Variables (V = {x, y}) and
constraints (C = {c1, c2, c3}) are represented respectively by nodes and arcs (unary for c1 and c3, and
binary for c2), and semiring values are written to the right of each variable assignment of the constraint,
where D = {a, b}. The solution of P in Fig. 4 associates a preference to every domain value of x and
y by combining all the constraints, i.e., Sol(P ) =

⊗
C. For instance, for the assignment ⟨a, a⟩ (that

is, x = y = a), we compute the sum of 1 (which is the value assigned to x = a in constraint c1),
5 (which is the value assigned to ⟨x = a, y = a⟩ in c2) and 5 (which is the value for y = a in c3).
Hence, the resulting preference value for this assignment is 11. The blevel for the example in Fig. 4 is 7,
corresponding to the assignment x = a, y = b.

4. Extending Dung Argumentation to Coalitions

Given the set of arguments Args, the problem of coalition formation consists in selecting the appropriate
partition of Args, G = {B1, . . . ,Bn} (|G| = |Args| if each argument forms a coalition on its own),
such that ∀Bi ∈ G, Bi ⊆ Args and Bi ∩ Bj = ∅, if i ̸= j. In this section we extend the Dung’s se-
mantics (see Section 2) in order to deal with a partition of arguments, that is we cluster the arguments
into different subsets representing distinct lines of thought. An example representing the difference be-
tween the original framework [20] and our extension is illustrated in Figure 5: Figure 5 (A) represents
a conflict-free extension as described in Definition 2.3, while Figure 5 (B) represents a conflict-free
partition of arguments, since each coalition is conflict-free (see Definition 4.1). Thus, while in Dung
it is sufficient to find only one set with the conflict-free property, here we want to find a partition of
conflict-free sets with the given arguments; we can compute partitions by considering also the other
properties as well, i.e., admissible, complete and stable semantics. Notice that, in general, we can have a
combinatorial number of partitions for a given set of arguments [15, 26]. For example, instead of P1 =
{{x1, x2, x3}, {x4, x5, }, {x6, x7, x8, x9}} we can have P2 = {{x1, x2, x3, x4}, {x5, }, {x6, x7, x8, x9}}.
We can have 21147 different partitions for the 9 elements in Figure 5 (B): this number is called the Bell

Number, and it is recursively computed as Bn+1 =

n∑
k=0

(
n

k

)
Bk, with B0 = B1 = 1 [15].

Figure 5. The graphical difference between a conflict-free extension (A) and a conflict-free partition (B).

In the following, we extend the definitions given in Section 2 in order to consider coalitions.

Definition 4.1. A partition of coalitions G = {B1,B2, . . . , Bn} is conflict-free iff for each Bi ∈ G, Bi

is conflict-fre, i.e., ∀a, b ∈ Bi.(a, b) ̸∈ R: no attacking arguments inside the same coalition.
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From the argumentation theory point of view, finding a conflict-free partition of coalitions corresponds
to partitioning the arguments into coherent subsets, in order to find feasible lines of thought which do
not internally attack themselves. Now we revise the concept of attack/defense among coalitions and
arguments and the notion of stable partitions of coalitions:

Figure 6. A stable (A), an admissible and complete (B), and an admissible but not complete (C) partition of
arguments.

Definition 4.2. A coalition Bi attacks another coalition Bj if one of its elements attacks at least one
element in Bj , i.e., ∃a ∈ Bi, b ∈ Bj s.t. aR b. Bi defends an attacked argument a, e.g., bR a, if ∃c ∈ Bi

s.t. cR b.

Definition 4.3. A conflict-free partition G = {B1,B2, . . . , Bn} is stable iff for each coalition Bi ∈ G,
all its elements a ∈ Bi are attacked by all the other coalitions Bj with j ̸= i, i.e., ∀a ∈ Bi, ∃b ∈ Bj .bR a
(∀j ̸= i).

Figure 6 (A) represents a stable partition: each argument in B2 (i.e., x4) is attacked by at least one
argument in B1 (i.e., x3) and one argument in B3 (i.e., x6), and the same holds also for the arguments
in B2 and B3. To have a stable partition means that each of the arguments cannot be moved from one
coalition to another without inducing a conflict in the new coalition. In the next two definitions we
respectively extend the concept of admissible and complete extensions.

Definition 4.4. A conflict-free partition G = {B1,B2, . . . , Bn} of coalitions is admissible iff for each
argument a ∈ Bi attacked by b ∈ Bj (i.e., bR a), then ∃c ∈ Bi that attacks b ∈ Bj (i.e., cR b), that is
each Bi defends all its arguments.

According to Dung’s definition of admissible extension, “the set of all arguments accepted by a
rational agent is a set of arguments which can defend itself against all attacks on it” [20]. Notice that
if only one argument a in the interaction graph has no grandparents, it is not possible to obtain even
one admissible partition: no argument in Args is able to defend a. In Definition 4.4, we have naturally
extended the definition of admissible extension [20] to coalitions: since each coalition represents the line
of thought of an agent, each rational agent is able to defend its line of thought because it counter-attacks
all its attacking lines.

Figure 6 (B) represents an admissible partition as it is conflict-free and both B1 and B2 defend
themselves: x5 is defended by x6, x3 is defended by x2, and, finally, x2 and x6 defend themselves.
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Definition 4.5. An admissible partition G = {B1,B2, . . . , Bn} is a complete partition of coalitions iff
each argument a which is defended by Bi is in Bi (i.e., a ∈ Bi).

Figure 6 (B) is a complete partition because all the elements defended by B2 (i.e., x5, x6) belong to
B2 and all the elements defended by B1 (i.e., x2, x3) belong to B1 . Figure 6 (C) represents an admissible
but not complete partition because x6 is defended also by coalitions B1 (via x1) and B2 (via x4) but
it only belongs to B3. Intuitively, the notion of complete partition captures all the rational agents who
believe in every argument they can defend [20], possibly attacking the arguments of the other coalitions
in the partition, i.e., the line of thought of the other agents.

In Theorem 4.6 we prove that each of the coalitions in every possible conflict-free partition is a
conflict-free extension as defined by Dung [20]. Respectively, we can prove the same property also for
admissible, complete and stable partitions.

Theorem 4.6. Given an AF ⟨Args, R⟩,

(a) given the set of all conflict-free extensions CFE , each CFP conflict-free partition (as defined in
Definition 4.1) is a subset of them, i.e., CFP ⊆ CFE .

(b) given the set of all admissible extensions AE , each AP admissible partition (as defined in Defini-
tion 4.4) is a subset of them, i.e., AP ⊆ AE .

(c) given the set of all complete extensions CE , each CP complete partition (as defined in Defini-
tion 4.5) is a subset of them, i.e., CP ⊆ CE .

(d) given the set of all stable extensions SE , each SP stable partition (as defined in Definition 4.3) is a
subset of them, i.e., SP ⊆ SE .

Proof:
Since all the coalitions of arguments B1,B2, . . . , Bn in the CFP partition named G are conflict-free
extensions by definition (see Definition 4.1), that is B1 is conflict-free, B2 is conflict-free and so on, then
G belongs to the set of all conflict-free extensions, i.e., G ⊆ CFE . The same reasoning also holds for
AP , CP and SP partitions. ⊓⊔

We can now define the hierarchy of the set inclusions among the proposed partitions like Dung has
shown for set inclusions among classical extensions [20]:

Proposition 4.7. Given the CFPS the set of all conflict-free partitions, and APS , CPS and SPS re-
spectively the set of all admissible, complete and stable partitions, we have that SPS ⊆ CPS ⊆ AS ⊆
CFPS .

Proof:
From the theory behind AFs we have that SE ⊆ CE ⊆ AE ⊆ CFE (see Section 2), i.e., stable
extension is also a complete extension, which is also an admissible extension, which is, finally, also
a conflict-free extension. Moreover, Theorem 4.6 proves that each CFP is composed by conflict-free
extensions, each AP by admissible extensions, each CP by complete extensions and each SP by stable
extensions. Therefore, the inclusions among all the CFP , AP , CP and SP is preserved. ⊓⊔
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Note that it is possible that, given the same set of arguments, a stable (for example) extension ex-
ists, but, at the same time, a stable partition cannot be found over the same set of arguments. Let us
consider the following example: Args = {a, b, c, d, e} and R = {(b, c), (c, d), (d, e), (e, b)} (i.e., a loop
of attacks). According to Dung’s stable semantics, this framework has two stable extensions: {a, b, d}
and {a, c, e}. However, this framework has no stable partition because argument a is not attacked by
any argument and it cannot belong to two sets at the same time (it cannot be a partition). This is not a
limitation: our goal is to simultaneously form distinct stable extensions within the same set of arguments,
since our goal is to assign all these arguments to different agents.

5. Semiring-based Weighted Partitions

Weighted AFs extend Dung’s AFs by adding weight values to every edge in the attack graph, intuitively
corresponding to the strength of the attack, or equivalently, how reluctant we would be to disregard
it [11, 21]. In this section we define a quantitative framework where attacks have an associated prefer-
ence/weight and, consequently, also the computation of the coalitions as presented in this paper has an
associated weight representing how much inconsistency we tolerate in the solution: more specifically,
“how much conflict” we tolerate inside a conflict-free partition, which can now include attacking argu-
ments in the same coalition. Modeling this kind of problems as SCSPs (see Section 3) leads to a partition
that optimizes the criteria defined by the chosen semiring, which is used to mathematically represent the
attack weights.

Figure 7 represents three contradictory weather forecasts of BBC, CNN and Fox with a weighted
interaction graph:

a: Today will be dry in London since BBC forecasts sunshine
b: Today will be wet in London since CNN forecasts rain
c: Today will be dry in London since Fox forecasts sunshine

In this example Args = {a, b, c}, aR b and cR b. In Figure 7 each of these two attack relationships
is associated with a fuzzy weight (in [0, 1]) representing the strength of the attack: since BBC forecast
is more reliable than Fox forecast, a attacks b with more strength, i.e., 0.5, than c attacks b, i.e., 0.9 (0
represents the strongest possible attack and 1 the weakest one).

BBC

sunshine

CNN

rain

0.9 FOX

sunshine

0.5

Figure 7. A fuzzy Argumentation Framework with fuzzy scores modeling the attack strength.

Many other classical weighted AFs in literature can be modeled with semirings [11]. An argument
can be seen as a chain of possible events that makes the hypothesis true. The credibility of a hypothesis
can then be measured by the total probability that it is supported by arguments. The proper semiring to
solve this problem consists in the Probabilistic semiring [5]: ⟨[0..1],max, ×̂, 0, 1⟩, where the arithmetic
multiplication (i.e., ×̂) is used to compose the probability values together (assuming that the probabilities
being composed are independent). Weights can be interpreted as subjective beliefs [21]. For example,
a weight of w ∈ (0, 1] on the attack of argument a1 on argument a2 might be understood as the be-
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lief that (a decision-maker considers) a2 is false when a1 is true. This belief could be modeled using
probability [21].

The Fuzzy Argumentation [11] approach enriches the expressive power of the classical argumenta-
tion model by allowing to represent the relative strength of the attack relationships between arguments, as
well as the degree to which arguments are accepted. Hence, the Fuzzy semiring ⟨[0..1],max,min, 0, 1⟩
can be used (e.g., in Figure 7). In addition, the Weighted semiring ⟨R+ ∪ {∞},min, +̂,∞, 0⟩, where +̂
is the arithmetic plus (0 = ∞ and 1 = 0), can model the (e.g., monetary) cost of the attack: for example,
the number of votes in support of the attack [21].

By using the Boolean semiring ⟨{true, false},∨,∧, false, true⟩ we can cast the classic AF origi-
nally defined by Dung [20] in the same semiring-based framework (0 = false,1 = true). In this case,
if W (a, b) = true then it means there is no attack between a and b. Definition 5.1 rephrases the notion
of AF given by Dung (see Section 2) into semiring-based AF, i.e., an AFS :

Definition 5.1. (Semiring-based Weighted Argumentation Frameworks [11])
A semiring-based Argumentation Framework (AFS) is a quadruple ⟨Args, R,W, S⟩, where S is a semir-
ing ⟨A,+,×,0,1⟩, Args is a set of arguments, R the attack binary relation on Args, and W : Args ×
Args −→ A a binary function called the weight function. Given a, b ∈ Args, ∀(a, b) ∈ R, W (a, b) = s
means that a attacks b with a strength level s ∈ A.

We suppose that a semiring value of 1 means that there is not attack between two arguments. In
Definition 5.2 we redefine the notion of α-conflict-free partition: conflicts inside the same coalition can
be now part of the solution until a cost threshold α is met, and not worse:

Definition 5.2. (α-conflict free property [11] extended to partitions)
Given a semiring-based AFS , a partition of coalitions G = {B1,B2, . . . ,Bn} is α-conflict-free for AFS

iff
∏

b,c∈Bi

W (b, c) ≥S α (the
∏

uses the × of the semiring).

In Figure 8 there is an example of a 0.5-conflict-free partition using a Fuzzy semiring, i.e., the × used
to compose the weights corresponds to min. Notice that only the attacks within the same coalition are
considered: min(0.6, 0.7, 0.5) = 0.5.

Figure 8. A 0.5-conflict-free partition by using the Fuzzy semiring, i.e., min(0.6, 0.7, 0.5) = 0.5. The attack
between x3 and x5 is not considered since they belong to different coalitions.

Proposition 5.3. If a partition is α1-conflict-free, then the same partition is also α2-conflict-free if
α1 >S α2.
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Proof:
From Definition 5.2 if we have that

∏
b,c∈Bi

W (b, c) ≥S α1 and α1 >S α2, then
∏

b,c∈Bi

W (b, c) ≥S α2. ⊓⊔

For instance, in Weighted semirings a 3-conflict-free partitions is also 4-conflict-free. In Defini-
tion 5.4 we extend with weights also the other kinds of partitions.

Definition 5.4. Given an AFS , a partition of coalitions G = {B1,B2, . . . ,Bn} can be defined as α-stable
(or α-admissible or α-complete) by replacing conflict-free partitions with α-conflict-free partitions in
Definition 4.3 (or Definition 4.4 or Definition 4.5).

In Proposition 5.5 we relate the weighted partitions with not-weighted ones presented in Section 4.

Proposition 5.5. Iff a partition is 1-conflict-free (or 1-stable, 1-admissible, 1-complete), then the same
partition is also conflict-free (or respectively, stable, admissible, complete) as shown in Section 4.

Proof:
Since we suppose that W (a, b) = 1 means there is no attack between a and b and we have that 1 is the
unit element for × (see Section 3), then a partition is 1-conflict-free iff there are no attacks among the
arguments of each of its coalitions, i.e., all the attacks are weighted with 1. ⊓⊔

6. Mapping Partition Problems to SCSPs

In this section we show a mapping from the AFS extended to coalitions (see Section 5) to SCSPs (see
Section 3), i.e., M : AFS → SCSP . M is described as follows: given an AFS as described in Section 5,
we define a variable for each argument ai ∈ Args, i.e., V = {a1, a2, . . . , an}. The value of a variable
represents the coalition to which argument ai belongs: i.e., each variable domain is D = {1, n}. For
example if a1 = 2 it means that the first argument belongs to the second coalition. We can have a
maximum of n coalitions, that is all singletons.

In the following explanation, b attacks a means that b is a parent of a in the interaction graph, and c
attacks b attacks a means that c is a grandparent of a. For the following constraint classes we consider a
AFS = ⟨Args, R,W, S⟩ where S = ⟨A,+,×,0,1⟩ and s ∈ A:

1. Conflict-free constraints. Since our goal is to find a α-conflict-free partition, if aiRaj and
W (ai, aj) = s we need to assign a s preference to the solution that includes both ai and aj
in the same coalition of the partition: cai,aj (ai = p, aj = p) = s (p ∈ [1..n]). Otherwise
cai,aj (ai = p, aj = q) = 1 (with q ̸= p and q ∈ [1..n])). Using Figure 9 as example and
considering only the conflict-constraints between x1 and x2, we have cx1,x2(x1 = 1, x2 = 1) = 0,
cx1,x2(x1 = 2, x2 = 2) = 0 . . . cx1,x2(x1 = 5, x2 = 5) = 0 (having 5 nodes, max 5 coalitions are
possible), otherwise, cx1,x2 = 1 (i.e., the assignment satisfies the conflict-free constraints).

2. Admissible constraints. For the admissibility of a partition, if ai has several grandparents ag1 , ag2 ,
. . . , agk through the same parent af , we add the following k + 1-ary constraint cai,ag1,...,agk (ai
= p, ag1 = q1, . . . , agk = qk) = 0 if ∀qi.qi ̸= h (1 otherwise). This is because at least a
grandparent must be taken in the same coalition, in order to defend ai from his parent af . Notice
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Figure 9. An example of an interaction graph.

that, if an argument is not attacked (i.e., he has no parents), it can be taken or not in any admissible
set. Moreover, if ai has a parent but no grandparents, it is not possible to find any admissible
partition, that is the SCSP is inconsistent (see Section 3). With respect to Figure 9, considering
only argument x3 and its parent x2, for example we have cx3,x1(x3 = 1, x1 = 1) = 1, cx3,x1(x3 =
2, x1 = 2) = 1 . . . cx3,x1(x3 = 5, x1 = 5) = 1 (0 for any other possible assignment of x3 and
x1). This constraint clearly forces x1 to be taken in the same coalition of x3.

3. Complete constraints. To compute a complete extension B, we impose that each argument ai
which is defended by B is in B, except those ai that, in such case, would be attacked by B it-
self [4]. This can be enforced by imposing that for each ai taken in the coalition k, also all its
as1 , as2 , . . . , ask grandchildren (i.e., all the arguments defended by ai), whose fathers are not taken
in the same coalition, must be in B. Formally, cai,as1 ,...,ask (ai = p, as1 = p, . . . , ask = p) = 1
only for those asi for which it stands (premise of the constraint) that afs1 = q1 ∧ afs2 =
q2∧· · ·∧afsz = qz , where afs1 , afs2 , . . . , afsz are fathers of asi and q1, . . . , qz ̸= p, i.e., the fathers
of asi belong to a different coalition. With respect to Figure 9 and considering only argument x1,
we have constraints cx1,x3(x1 = 1, x3 = 1) = 1, cx1,x3(x1 = 2, x3 = 2) = 1, . . . , cx1,x3(x1 =
5, x3 = 5) = 1 (0 otherwise).

4. Stable constraints. They can be represented with a constraint such that for each couple of argu-
ments ai, aj belonging to two different coalitions, respectively r and s, at least one of the attacks to
ai has to come from an argument in coalition s: if b1, b2, . . . bt are all the arguments that attack ai,
cai,aj ,b1,b2,...,bn(ai = r, aj = s, ((b1 = s) ∨ (b2 = s) ∨ · · · ∨ (bn = s))) = 1 (0 otherwise); there-
fore, we model stable constraints with disjunctive constraints. Concerning the example in Figure 9,
if we consider x1 assigned to coalition 1 and x5 to coalition 2 (i.e., the case of the stable partition
P1 in Tab. 1), we consequently add the constraint cx1,x5,x2(x1 = 1, x5 = 2, (x2 = 2)) = 1 (0
otherwise).

Notice that, in the mapping M, only constraints describing the attacks between arguments are soft in
the strictest sense, while the other ones return the values 0 or 1 in the semiring set, i.e., the correspond-
ing variable assignment is respectively not admitted, or admitted. Other examples of argumentation-
to-constraints mapping can be found in [11] (mappings with weights) and [12, 13] (mapping without
weights), however not concerning coalitions.

Theorem 6.1. (Solution equivalence)
Given an AFS = ⟨Args, R,W, S⟩, the solutions of the related SCSP obtained with the mapping M
correspond to:

• all the α-conflict-free partitions of coalitions by using conflict-free constraints;
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• all the α-admissible partitions by using admissible, and conflict-free;
• all the α-complete partitions by using complete, admissible and conflict-free constraints;
• all the α-stable partitions by using stable and conflict-free constraints.

Proof:
Given an AFS named L, we can apply the mappings M(L) →cf Pcf , M(L) →a Pa, M(L) →c

Pc and M(L) →s Ps, respectively applying only the conflict-free (i.e., Ccf ), admissible (i.e., Ca),
complete (i.e., Cc) or stable (i.e., Cs) classes of constraints in the corresponding mapping. Then we
have that Sol(Pcf ) =

⊗
Ccf , Sol(Pa) =

⊗
Ca, Sol(Pc) =

⊗
Cc and Sol(Ps) =

⊗
Cs. Since

blevel(P ) = Sol(P ) ⇓∅ (see Section 3), then if blevel(Pcf ) = α, blevel(Pa) = α, blevel(Pc) = α
and blevel(Ps) = α we have respectively obtained the α-conflict-free, admissible, complete or stable
partitions. ⊓⊔

Conflict-free, stable, admissible and complete partitions can be found by searching for 1-consistent
solutions in the respective problems defined in Theorem 6.1, as defined by Proposition 5.5. Notice that
finding 1-conflict-free partitions is equivalent to the well-known graph coloring problems, which has
been deeply studied also from in constraint programming [28], and where no two adjacent vertices share
the same color:

Proposition 6.2. The problem of finding a conflict-free partition of coalitions corresponds to finding a
vertex-coloring partition of a graph [28], where each node of the same color belongs to the same coalition
in a 1-conflict-free partition. The minimum number of colors needed to solve the problem corresponds
to the minimum number of coalitions in a possible partition.

Proof:
By construction of the problem, an attack relationship with a weight of 0 represents that two nodes are
neighbor nodes, while a weight of 1 means that they are not. The solutions of this problem groups in the
same coalition those nodes who can share the same color. ⊓⊔

In Figure 9 we can see an example of classical (i.e., the attacks are not weighted) interaction graph.
Only for this example we have 15 conflict-free partitions, as reported in Table 1. Among these conflict-
free partitions, P1, P2, P3, P4, P5 are also admissible partitions and P1 is also the only one complete
partition, and the only one stable partition as well; these partitions have been obtained with the imple-
mentation in Section 7.

Table 1. The list of all the conflict-free partitions of coalitions for the example in Figure 9.

P1 = {{x1 , x3 , x4}, {x2 , x5}},P2 = {{x1 , x3 , x4}, {x2}, {x5}},P3 = {{x1 , x3}, {x2 , x4}, {x5}},P4 = {{x1 ,x3}, {x2,
x5}, {x4}},P5 = {{x1 , x3}, {x2}, {x4}, {x5}},P6 = {{x1 , x4}, {x2 , x5}, {x3}},P7 = {{x1 , x4}, {x2}, {x3}, {x5}},
P8 = {{x1 , x5}, {x2 , x4}, {x3}},P9 = {{x1}, {x2 , x4}, {x3}, {x5}},P10 = {{x1 , x5}, {x2}, {x3 , x4}},P11 = {{x1 , },
{x2 , x5}, {x3 , x4}},P12 = {{x1}, {x2}, {x3 , x4}, {x5}},P13 = {{x1 , x5}, {x2}, {x3}, {x4}},P14 = {{x1}, {x2 , x5},

{x3}, {x4}},P15 = {{x1}, {x2}, {x3}, {x4}, {x5}}
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Figure 10. A small-world network with 25 nodes
generated with JUNG by using the KleinbergSmall-
WorldGenerator class [27, 24].

Figure 11. The ConArg window showing the sta-
ble solution P1 in Table 1: the nodes of the two
coalitions are in dark/light grey respectively.

7. Implementation in JaCoP

The Java Constraint Programming solver (JaCoP) is a Java library which provides Java user with Finite
Domain Constraint Programming paradigm [28]. JaCoP provides different type of constraints: most
commonly used primitive constraints, such as arithmetical constraints, equalities and inequalities, logi-
cal, reified and conditional constraints, combinatorial (global) constraints.

To develop in practice and test our model, we adopted the Java Universal Network/Graph Frame-
work (JUNG) [27], a software library for the modeling, generation, analysis and visualization of graphs.
Interaction graphs, where nodes are arguments and edges are attacks (see Section 2), clearly represent a
kind of social network and consequently show the related properties [14]. Therefore, for the following
tests we used the KleinbergSmallWorldGenerator class [27, 24] in JUNG, which randomly generates a
m × n lattice with small-world properties [24]. In the implementation provided by JUNG [27], each
node u has four local connections, one to each of its neighbors, and in addition one or more long range
connections to some node v, where v is chosen randomly according to probability proportional to dθ

where d is the lattice distance between u and v and θ is the clustering exponent. An example of such
random graphs with 25 nodes is shown in Figure 10.

In this first implementation we decided to only implement 1-conflict-free partitions, that is we do
not consider weights on attacks; therefore, we only need crisp constraints, as offered by JaCoP. With
this tool we can immediately check if a given partition is conflict-free, admissible, complete or stable.
Moreover, we can exhaustively generate the partitions with such given properties: since the problem is
O(nn) [26] (where n is the number of arguments), we limit the implementation to a partial search. In
particular, we used the Limited Discrepancy Search (LDS) offered by JaCoP, which is a kind of Depth
First Search procedure exploiting the method proposed in [22]: simplifying, If a predetermined number
of different decisions is exhausted along a search path, then backtracking is initiated [22]. At each
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branching point during the search, we select the variable which has most constraints assigned to it, and
we try the middle value from its current domain. Moreover, we set a timeout of 60 seconds to interrupt
the search procedure, and to report the number of solutions found only in that interval.

We ran our experiments over 3 different randomly-generated Kleinberg graphs with 9, 25 and 100
nodes respectively, whose properties have been previously described in this section. The results are
shown in Table 2: the table reports the number of edges/attacks, the numbers of found conflict-free (i.e.,
CFPS) and stable (i.e., SPS) partitions, which superiorly/inferiorly limit the number of admissible and
complete partitions (as defined in Proposition 4.7). Moreover, the table reports the number of constraints
used to model the problem and the measured maximum depth of the search tree, explored using branch-
and-bound techniques limited by LDS principles [22]. Notice that, within the 60 seconds timeout, the
adopted partial search is able to find only one stable partition for the graph with 100 nodes; for the
same reason, that are timeout in conjunction with the depth of the search tree, the reported number of
conflict-free solutions in Table 2 is less in the 100-nodes graph than in the 25-nodes one.

Table 2. The test on three different small-world graphs and the related statistics: CFPS and SPS respectively are
all the found conflict-free and stable partitions.

Nodes Attacks CFPS SPS Constraints Max. Search Depth

9 45 123 8 ∼220 11

25 125 495984 119543 ∼1440 61

100 500 92562 1 ∼20600 218

Notice also that, in order to prevent symmetrically equivalent solutions, we have also implemented
symmetry breaking constraints for graph coloring (see Proposition 6.2 for the analogies): any value
permutation is a value symmetry in the coalition assignment of arguments. Performance in Table 2 have
been retrieved by using a tool we recently developed, named ConArg [12, 13].3

In Figure 11 we show the only stable solution for the graph reported in Figure 9, that is P1 in Table 1.
Figure 11 reports a screenshot directly taken from ConArg. These results can be obtained by importing
the graph in Figure 9 as textual input. All the found solutions can be browsed by using the graphical
interface: the nodes belonging to the same coalition are highlighted with the same color.

8. Related Work and Comparison

The classical Dung’s framework has been extended by Amgoud in [1] with a preference relation between
elements; more in detail, Amgoud [1] provides the semantics (conflict-free, stable and preferred ones) of
a coalition structure and a proof theory for testing whether a coalition is in the set of acceptable coalitions.
An application of the model is also provided for the problem of task allocation among partitions of
autonomous agents. With respect to the work in this paper, the view in [1] is not focused on generating
partitions of arguments, but on directly checking the property of already given coalitions structures.
Furthermore, [1] has no implementation to practically find solutions, as we instead perform in Section 7.
Moreover, the method to compute the weights of coalitions is not quantitative (but it is only qualitative)
and parametric, as we are alternatively able to represent with semirings.

3The tool is downloadable from https://sites.google.com/site/santinifrancesco/tools/ConArg.zip
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In [17] an extension of the Alternating-time Temporal Logic (ATL) for modeling coalitions through
argumentation is presented: a merge between ATL and the coalitional framework is obtained in order
to express that agents are able to form a coalition which can successfully achieve a given property; the
notions of defence and conflict-free are defined in terms of defeat rather than attack and preferences
of arguments are given in a qualitative way (instead of quantitative as in our paper); to compute the
desired classes of coalitions a model checker can be used; however, with such techniques, exponential
complexity can be hardly faced while constraint programming provides a lot of techniques to tackle
combinatorial problems [28].

In [14], social viewpoints (a model for goal based reasoning) are used to argue about coalitions
in argumentation theory. The attack relation is based on the goal that agents have to achieve, that is, a
coalition attacks another coalition if they share the same goal; this work does not provide a computational
framework and only qualitative preferences over arguments are considered.

In [18], the authors see coalitions as conflict-free sets of arguments supporting each other. They start
from a bipolar argumentation framework that extends Dung [20] with a support relation, and they come
out to a meta-level representation of arguments (i.e., coalitions) in such a way to reuse Dung’s principles
and algorithms. Comparing [18] with our work, first, our solutions does not takes into account bipolar
preferences, even if this bipolarity extension would be rather easy to cast in the same framework [10];
secondly, we use weights to model different strength values for attacks, while weights/preferences are
out of the scope of the work in [18].

Eventually, our notion of coalition is completely different from the one presented in [18], since the
latter exploits the support relationship (we have not), and also because we require a partition of the whole
set of arguments into different coalitions with the same constraints (e.g., all admissible coalitions). In
[18] arguments are not partitioned (arguments belong to “at least” one coalition), and i) coalitions consist
in conflict-free sets of arguments (therefore, not considering admissibility constraints, for instance), ii)
whose support sub-graph is connected, and iii) maximality considering i) and ii) is required.

In [16] the authors introduce an acceptability function which states when an argument is accepted
with regard to the acceptability of a subset of arguments. The acceptability function establishes con-
straints on the acceptability of the arguments. Moreover, they introduces also weights represented mainly
from the qualitative point of view. The main difference consists in the fact that in [16] no definition of
coalition is provided, which consists in the core of our proposal instead. Moreover, our approach for
attack weights is more quantitative than qualitative, since we adopt a semiring-like value structure (see
Section 3). In addition, our solutions is parametrical with the chosen system of preferences.

In [25] the authors associate fuzzy degrees of acceptability with arguments in the context of games.
They take advantage of probability theory to compute these degrees, which are the outcome of Game
Theory. As a comparison, our system of preference is constrained to be a semiring structure: this does
not allow the freedom to define acceptability degree functions as in [25], but it is parametrical and comes
with several sound algebraic-properties.

In [2], arguments have an associated strength that influences the acceptability of the arguments they
attack. Even this approach is mainly qualitative, while ours is quantitative and more from the “compu-
tational” point of view, since we offer a framework where we can use different aggregation functions
for attack strength-values (as long they can be modelled as a semiring). Moreover, coalitions are not
mentioned in [2].

At last, in [19] the proposed framework may be regarded as a belief revision model, based on argu-
mentation. An agent interacts with the world by receiving arguments from one or more sources. The
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agent’s internal mental state is completely described by a fuzzy set of trustful arguments, from which the
beliefs of the agent may be derived. In addition to the fact that coalitions are not treated, our computa-
tional framework appears to be more comprehensive and less specialised for that particular case. Notice
that the semiring-based framework has been already adopted to model trust-related problems, where
semiring values can be used to compute a trust score between the entities in the relationship graph [7],
or to define access policies [8].

In [11], some of the authors of this paper propose a computational framework where attacks have
an associated weight to represent how much inconsistency can be tolerated in the final solution. This
paper extends [11] by considering partitions of arguments and providing an implementation with JaCoP
(no implementation is given in [11]), with tests on small-world graphs. Partitions of arguments implies
redefining all the theory concepts w.r.t [11], e.g., stability or admissibility.

9. Conclusions

We extended classical argumentation frameworks of [20] to the problem of forming coalitions of argu-
ments, partitioning all the arguments of a given starting set. We have redefined the classical definitions of
Dung’s extensions (conflict-free, admissible, stable and complete ones) in order to consider a partition of
all the arguments into multiple coalitions, and modelled the problem of finding such coalitions with SC-
SPs [9, 5, 28]: this semiring-based formalism can be used to relax the concept of conflict-free partitions
in order to allow some inconsistency (i.e., attacks) within the same coalition. The proposed quantitative
framework can be used also to solve classical (i.e., crisp) CSPs. We have also solved a problem ex-
ample considering only 1-solutions with JaCoP and then we performed tests on a small-world network
randomly generated with [27]. Starting from a single set of arguments, the goal has been to partition
it into multiple coalitions with the same features (e.g., stability or admissibility) without discarding any
argument.

In the future we want to improve the performance obtained in Section 7 by testing different solvers
and constraint techniques (e.g., by taking the inspiration from [26]). Moreover, other kinds of networks
can be used to execute the experiments, in order to catch different graph properties.
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