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Abstract—In this paper, we examine the problem of packet scheduling
in a single-hop multichannel system, with the goal of minimizing the
average message waiting time. Such an objective function represents
the delay incurred by the users before receiving the desired data. We
show that the problem of finding a schedule with minimum message
waiting time, is NP-complete, by means of polynomial time reduction of
the time table design problem to our problem. We present also several
heuristics which result in outcomes very close to the optimal ones. We
compare these heuristics by means of extensive simulations.

Index Terms—packet scheduling, minimum message waiting time, NP-
completeness, heuristics.

1 INTRODUCTION

The problem of allocating limited communication re-
sources among competing entities, is becoming more
and more relevant with the increasing utilization of
parallel and distributed systems, both for communica-
tion and for computing [1]. The communication portion
of many parallel and distributed systems, as well as
communication networks, or part of them, is formed by
single-hop multichannel systems. Examples of this kind
of systems are interconnection networks, like Benes or
Clos networks (used for instance in the best performing
internet routers), optical networks with passive stars,
and also some wireless networks, such as WiMax and
some WiFi LAN (for example, IEEE802.11e) [15], [3], [4],
[5], [6], [7], [10].

A system is single-hop when entities share the com-
munication medium, and can communicate directly each
other, i.e. without store and forward of messages in
intermediate entities. On the converse, in multi-hop sys-
tems, entities are distributed on several media and the
communication happens through intermediate stations
that store and relay the messages.

A single-hop system can be of two types: singlechannel
or multichannel. In a singlechannel system, only one
transmission at time can be carried out correctly, like
in Ethernet LANs. In a multichannel system instead, the
available communication bandwidth is split in several
parallel channels (e.g. by dividing the frequency spec-
trum into subchannels, or by using orthogonal codes)
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and then multiple stations can communicate simultane-
ously. So, the systems under investigation in this pa-
per will use FDMA/TDMA or CDMA/TDMA medium
access control protocols. In this kind of systems, the
packet scheduling problem is of crucial importance to
achieve good performances in terms of both bandwidth
utilization and delay perceived by the final users.

Packet scheduling problems arise in many different
settings, so much work is present in literature. There are
papers about the optimization of an objective function,
with respect to a set of constraints on the physical
communication medium, such as the number of channels
[11], or precedence constraints on messages [12], or, in
case of real-time traffic, the compliance of the deadlines
[5]. Another important feature, mainly studied in optical
networks, is the tuning latency: in that setting, preemp-
tive schedules are likely longer than non-preemptive
ones, because of the time needed for swapping from a
wavelength to another one [4], [19]. The typical objective
function is the minimization of the schedule length,
which is equivalent to maximize the throughput of the
systems. Other objective functions are: fairness among
users, or minimizing the average packet waiting time.

Depending on the type of traffic and the system model,
scheduling problems can be divided in offline and online:
in offline models, schedules computation is performed
after a packet transmission requests gathering, while in
online models, a packet is scheduled as soon as it arrives
at the communication subsystem, or at the queues before
such subsystem. In online setting, much work has been
done about the stability of the system, namely to find
conditions and algorithms which avoid the input queues
(of finite size) to grow indefinitely [18]. The time a
packet remains in the queue before being transmitted,
represents the delay that it incurs until it is received by
the final user. So the minimization of the packet delay
represents a measure of system performance from the
point of view of the users [18], [17], [16].

Offline algorithms offer better systems performances,
since the schedule is computed on a frame basis. Of
course, considering a set of time slots, instead of just one
(as in online algorithms), for user allocations, brings to
a better overall utilization of the system. For instance,
WiMax systems show how to take advantage of of-
fline scheduling algorithms [25]. Although performance
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optimization is often possible only by means of slow
algorithms, frequently good performances are achieved
also with fast sub-optimal heuristics.

In this paper, we consider offline algorithms and ex-
plore the waiting time problem, focusing on the delay
affected by messages, instead of packets. Usually, the
final users exchange variable-length messages, which
often consist of computer files, which are splitted in
equal length packets for being transmitted on the net-
works. So, from the point of view of the users, it is
more important the delay of the last packet of a message,
since he/she can not use the message information before
receiving it completely (think, for instance, to typical
web applications browsing text or images, which are
displayed only after being totally received). The delay
incurred in the communication subsystem is only part
of the total delay, but it is a considerable one.

The problem we face is modeled as follows: time is
divided in slots, and a set of consecutive slots forms a
frame. Consecutive frames can be formed by a different
number of time slots. For each variable length frame, a
traffic matrix represents the requests for data transmis-
sion, and on it the scheduling algorithm is applied. A
schedule is a set of switching matrices, each one repre-
senting the amount of traffic which could be transmitted
without conflicts, in one or more consecutive time slots:
more precisely, the problem constraints are equivalent
to the physical limits of the systems, namely, an input
(output) can transmit (receive) only one packet at time,
and each channel can carry only one packet at time.
The scheduling goal is to minimize the average message
waiting time, namely the delay incurred in transmit-
ting the last packet of each message. Observe that the
complimentary problem of minimizing the maximum
message waiting time is equivalent to the classical and
well studied problem of minimizing the schedule length
(in fact, the schedule length is given by the time the last
message is scheduled to completion).

The paper is organized in this way: in Section 2, we
define the model of the system under consideration,
and formulate the problem to solve; in Section 3 we
present the relevant work published on our and on
strictly related problems, while in Section 4, we give
some properties on the value of the objective function
and on the optimal schedules. In Section 5 we show
that the problem of finding optimal schedules is NP-
complete, while in Section 6 we present some sub-
optimal heuristics, that are evaluated by means of simu-
lations in Sections 7 and 8 . Finally, Section 9 terminates
the paper.

2 PROBLEM DEFINITION

For the sake of simplicity, we define in this section
the minimum message waiting time problem for single
messages between any communicating pair (i; j). All the
results easily extend to the multiple messages case, i.e.
the case in which input i has more than one message

for output j. Multiple messages between pairs of inputs
and outputs has been considered in the simulation ex-
periments. Similarly, we explicitly consider symmetric
systems, where the number of inputs is equal to the
number of outputs, denoted with N . Again, it is easy
to see that all results extend to the case of asymmetrical
systems, where we have N inputs and M outputs. A
traffic matrix D is an N × N matrix with nonnegative
entries. Let entry dij = x > 0, then we say that
input i has a message destined to output j which is x
packets long. A line in a matrix is a column or a row.
In general, the communication subsystem can have a
limited number C of channels, C < N , thus allowing
the simultaneous transmission of at most C packets. A
switching matrix Sk is an N×N matrix with entries equal
to 0 or 1, such that no two non-zero entries are on the
same line, and there are at most C non-zero entries. It
represents a switch configuration for one time slot. Given
a traffic matrix D, a legal schedule (or simply schedule) S
is a decomposition S = {Sk}, 1 ≤ k ≤ LS of the traffic
matrix, such that

D =

LS∑
k=1

Sk

where Sk are switching matrices, and LS is the schedule
length. From [11], [20], we recall that the lower bound
LBL on the schedule length LS is given by

LBL = max{T/C, ri, cj , 1 ≤ i, j ≤ N}

where

T =
N∑
i=1

N∑
j=1

dij , ri =
N∑
j=1

dij and cj =
N∑
i=1

dij ,

i.e. it is the maximum between line sums (ri for row i,
and cj for column j), and the total traffic divided by the
number of internal channels, of the traffic matrix D.

We define wS(i, j) = max{k|Sk(i, j) > 0} as the wait-
ing time of the message from input i to output j in schedule
S: it is equal to k whenever Sk is the switching matrix
in which the last packet of that message is scheduled.

The total message waiting time of a schedule S is given
by

WS =
N∑
i=1

N∑
j=1

wS(i, j)

Now, we can state the problem studied in this paper:
Minimum Message Waiting Time (MMWT): Given a

traffic matrix D, find a schedule S such that the total
waiting time WS is minimum.

In the following, we state some properties of the
problem, and in Section 5 we show that this problem
is NP-complete.
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3 RELATED WORK

In spite of its importance, this problem has received little
attention till now, probably for its hardness. In particular,
in [17], the minimum packet waiting time problem has
been studied in a setting of satellites equipped with
an interconnection network. In that paper, an optimal
algorithm which produces minimum length schedules
with minimum average packet waiting time has been
presented. Such an algorithm is computationally very
slow, since it is based on a branch and bound technique
and the running time grows exponentially with the size
of the input. In the same paper, some fast heuristics are
proposed, which produce solutions very close to the op-
timal one. For these heuristics, worst case performance
bounds are provided, but simulations show that they
perform (on the average) much better than the predicted
bounds, and produce schedules very close to the optimal
one.

In [18], the problem of minimizing the packet delay
has been studied from a theoretical point of view, by
considering input queued crossbar switches, and with
the objective of investigating the queue length due to
different scheduling policies. In such switches, arriving
packets are stored in the queues at the inputs before be-
ing transmitted. In the paper, the authors show that any
scheduling strategy, which does not consider the queue
backlog information, produces average delay which is at
least O(N) (N being the size of the switch). By contrast,
they show that an O(logN) delay is achievable with
random inputs, under some constraints on the queue
size and the maximum traffic load for the inputs.

The analysis of delay in priority queues has been
investigated in [8]. In that paper, the delay of individual
packets is addressed. Such packets can belong to two dif-
ferent classes, one having higher priority over the other.
New scheduling mechanisms for controlling, in an exact
way, the delay differentiation between the two classes,
are proposed and analyzed. In a related paper [9], the
same assumptions on traffic (namely, packets belonging
to two different priority classes) have been made, and
analytic techniques to compute delay characteristics of
the two classes, are presented.

The problem of efficiently sequencing variable-length
messages has been studied in case of optical networks
with passive star [19]. Such a network has a number
of channels (wavelengths), and the main scheduling
problem is to assign channels to the users. They show
that if the channel assignment problem is considered
together with the message sequencing problem (namely
the transmission order among messages), a better overall
system performance can be achieved. About the message
sequencing problem, two techniques are taken under
consideration for imposing a priority on the order in
which messages are transmitted: longest-job-first, and
shortest-job-first. The first technique allows better load
balancing among the transmission channels, while the
second one allows reduced average delays. In [19] it

v
1 2 3 4 5 6

1 1 1 2 2 3 DLB

1 2 3
ch1 v[1] v[3] v[5]
ch2 v[2] v[4] v[6]

Fig. 1. Lower bound computation in the general case
C ≤ N . In the example, N = 3, C = 2, and D is that one in
Figure 2 (a). The lower bound value is given by summing
the slot numbers of the last packet of each message:
LBW = 1 + 2 + 4 + 1 + 3 + 6 = 17.

is shown that the best system performances can be
achieved by a proper tradeoff between the two tech-
niques.

4 PROPERTIES

In this section, we investigate some properties of our
problem, and give two lower bounds on WS . The first
one is for the case C < N , and is obtained by disregard-
ing both constraints on rows and on columns, and then
by using the minimum waiting time optimal policy of
shortest transmission time first.

Let us define a modified traffic matrix DLB of size
C ×

⌈
T
C

⌉
. The non-zero entries of D are first placed

in a vector v of proper size, and then sorted by non-
decreasing values. After this, the entries in v are placed
in DLB by column first, and following their place in
v: the first entry of v is placed in row 1 and column
1 of DLB , the second in row 2 column 1, and so forth
untill the Cth row. This is repeated by considering all
entries in v (see Figure 1). Finally, the lower bound is
computed as for matrix D′ of the case C = N , namely
by the progressive sum of the non-zero entries in each
row i, and then by summing all these row progressive
sums (see below).

3 2
2

1 1 1
(a) D

nr1 = 2
nr2 = 1
nr3 = 3

2 3
2
1 1 1

wtr(1) = 2 + 5 = 7
wtr(2) = 2
wtr(3) = 1 + 2 + 3 = 6

(b) D′

nc1 = 2
nc2 = 3
nc3 = 1

1 1 1
3 2

2

wtc(1) = 1 + 4 = 5
wtc(2) = 1 + 3 + 5 = 9
wtc(3) = 1

(c) D′′

Fig. 2. Lower bound computation in case C = N .

A more refined lower bound can be computed in
the following way, but only in the special case of un-
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3 2
2

1 1 1
(a) Traffic matrix,
LBL = 5, LBW =
15

1
1

1
1

1

1

1

1 1 1

(b) Optimal schedule S1, with non minimum length: WS1 = 1 + 2 + 2 + 3 + 4 + 6 = 18

1
1

1

1
1

1

1

1

1

1

(c) Minimum length optimal schedule S2: WS2 = 1 + 2 + 3 + 3 + 4 + 5 = 18

1

1

1
1

1

1
1

1

1

1

(d) Minimum length not optimal schedule S3: WS3 = 1 + 2 + 3 + 4 + 5 + 5 + 6 = 25

Fig. 3. Examples of schedules: a bold entry in position Sk
ij represents the last packet of the message between i and

j, and gives a contribute of k to the W value.

constrained communication, namely when C = N . Let
modified by rows traffic matrix D′, an N ×N matrix built
by considering each row at time, and rearranging the
non-zero entries in non-decreasing order. Similarly, let
modified by columns traffic matrix D′′, an N × N matrix
built by rearranging the non-zero entries of each column
in non-decreasing order. In Figure 2, an example of
D, D′, D′′ is shown. The waiting time of row i (column
j) wtr(i) (wtc(j)) is the progressive sum of the non-
zero entries in row i (column j) of matrix D′ (D′′).
Specifically: let nri (ncj) be the number of non-zero
entries in row i (column j) of matrix D′ (D′′). Then

wtr(i) =

nri∑
p=1

p∑
q=1

d′iq

and

wtc(j) =

ncj∑
p=1

p∑
q=1

d′′qj .

In particular, the inner sum represents the sum of the
waiting times of all the messages shorter than the pth
one, when it would be scheduled after those. An exam-
ple of wtr(i) and wtc(j) computation is given in Figure 2.
Now, we can state the following lemma on the lower
bound.

Lemma 1: Given a traffic matrix D, a lower bound LBW

on the total waiting time for that matrix, when the
number of channels available is equal to N , is

LBW = max


N∑
i=1

wtr(i),
N∑
j=1

wtc(j)


where wtr(i) and wtc(j) are computed on D as described
before.

Proof: Clearly, since the contribution to LBW of a
traffic entry (i.e. a message) is given by the position in
the schedule of the switching matrix in which the last
packet is scheduled, the best way to keep W as low

as possible is to schedule smaller entries before larger
entries of the traffic matrix. So, consider a row of D:
the smallest entry, say dij , will be scheduled in the first
dij switching matrices; the second smallest, say dik, will
be scheduled after dij , namely the last packet of dik
will be at least in the (dij + dik)-th switching matrix;
and so on. Then, considering the traffic entries by rows
(i.e. not considering the constraints on the columns of
switching matrices) the contribution of each row i to the
total waiting time is given at least by wtr(i), and for the
whole matrix by

∑N
i=1 wtr(i). A similar reasoning can be

done by considering the columns of the traffic matrix.
Then, the lower bound value LBW for the total waiting
time W is given by the maximum value between the two
sums.
This lower bound on the total waiting time is not tight,
namely there are traffic matrices for which it is not
achieved. Let us consider, for instance, the traffic matrix
shown in Figure 3. It is easy to see that LBW = 15 in
this case, but a schedule with W smaller than 18 does
not exist. Notice that the lower bound is smaller than
that shown in Figure 1 since in this case C = 3 and not
C = 2, like in that figure, even if the traffic matrix is
the same. In [17], some properties on the schedules for
the problem of minimizing the average packet waiting
time are given. In particular, it is established that op-
timal schedules are always of minimum length. This is
not necessarily true for the problem of minimizing the
average message waiting time, considered in this paper
(e.g., see Figure 3(b)).

By means of examples, we have shown in Figure 3 the
following two properties:

Property 2: A schedule can be optimal even if it is not
of minimum length - in Figure 3(b), an optimal schedule
is shown which is not of minimum length.

Property 3: A minimum length schedule can be not
optimal - in Figure 3(d), a minimum length schedule is
shown which is not optimal.
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As we can see, minimum length schedules can produce
very high values of total message waiting time. This
shows that our problem is different from that in [17],
in spite of its formal similarity.

5 PROBLEM COMPLEXITY

In this section, we show that the MMWT problem is
NP-complete, and in the next section we present some
fast heuristics which suboptimally solve the problem in
polynomial time. Finally, in Section 7 we show that the
outputs of the heuristics are close enough to the optimal
solution (on the average).

Before proving the NP-completeness of the MMWT
problem, we notice that the complexity of the minimum
packet waiting time problem is still open, namely, neither
a proof of NP-completeness is given for that problem,
nor a polynomial time optimal algorithm is known [17].

Theorem 4: MMWT problem is NP-complete.
Proof: Clearly, MMWT problem is in NP. To prove

the NP-completeness, it is sufficient to find a polynomial
time reduction of a known NP-complete problem to it.
Consider the following problem [21]:

Timetable Design: Given
1) a finite set H = {h1, ..., hp},
2) a collection {T1, ..., Tn} where Ti ⊆ H , 1 ≤ i ≤ n,
3) a collection {C1, ..., Cm} where Cj ⊆ H , 1 ≤ j ≤ m,
4) an n×m matrix R with nonnegative integer entries

rij .
Question: We ask for a function

f(Ti, Cj , hk) : {T1, ..., Tn} × {C1, ..., Cm} ×H → {0, 1}

such that
1) f(Ti, Cj , hk) = 1⇒ hk ∈ Ti ∩ Cj ;
2)

∑p
k=1 f(Ti, Cj , hk) = rij for all i and j, 1 ≤ i ≤ n,

1 ≤ j ≤ m;
3)

∑n
i=1 f(Ti, Cj , hk) ≤ 1 for all j and k, 1 ≤ j ≤ m,

k ≤ p;
4)

∑m
j=1 f(Ti, Cj , hk) ≤ 1 for all i and k, 1 ≤ i ≤ n,

k ≤ p.
This formulation of the timetable design models the
problem of scheduling the teaching program of a school,
where H is the set of teaching hours in a week, Ti is the
availability of the ith teacher, Cj is the availability of
the jth classroom, and rij is the number of hours the ith
teacher must spend in classroom j. The timetable design
problem is NP-complete even in the following restricted
case [21]:

Restricted Timetable Design (RTT):
1) p = 3
2) Cj = H , for all j, 1 ≤ j ≤ m
3) rij ∈ {0, 1}, for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ m
4) |Ti| =

∑m
j=1 rij , for all i, 1 ≤ i ≤ n

5) |Ti| ∈ {2, 3}.
We transform a generic instance of the restricted
timetable design problem into an instance of the MMWT
problem in the following way.

n = 5,m = 4 R =

1 1 1
1 1

1 1
1 1

1 1 1

T1 = {1, 2, 3}
T2 = {1, 3}
T3 = {1, 2}
T4 = {2, 3}
T5 = {1, 2, 3}

(a) RTT instance

1 2 3 4 y2 z2 x4 x4 + 1

1 2 2 2
2 2 2 1 1
3 2 2
4 2 2 1 1
5 2 2 2
a2 1 1
b2 1 1

(b) Matrix D, after trasformation

Fig. 4. Example of transformation

We build a traffic matrix D, where initially we have
one row for each teacher, and one column for each
classroom. The matrix is initially filled with zeroes. Then,
for each i and j, if rij = 1, we change the value of dij
to 2. Besides, for each teacher i, we add extra lines as
follows:

• if Ti = {2, 3}, then we add two extra columns
called column xi and column xi +1, and set di,xi =
di,xi+1 = 1;

• if Ti = {1, 3}, then we add two extra columns, say
yi, zi, and two extra rows, say ai and bi. Then, we
set dai,yi , dbi,yi , dai,zi , dbi,zi , and di,yi and di,zi to 1.
All other entries in extra rows and columns are set
to 0;

• if Ti = {1, 2} or Ti = {1, 2, 3}, then no line is added.
Let the number of teachers with availability set equal
to {v, w} be nvw, (v ∈ {1, 2, 3}, w ∈ {1, 2, 3} and v < w),
and those available in all three hours be n123. Obviously,
n12+n13+n23+n123 = n. The final traffic matrix D will
then have n+ 2n13 rows and m+ 2n13 + 2n23 columns.

In Figure 4, an example of the above transformation
is given.

We set the number of available channels in MMWT
at least equal to min(n+ 2n13;m+ 2n13 + 2n23). Notice
that in this proof the number of available channels
does not limit the possible simultaneous transmission of
different messages, which is only bound by the “same
line” constraint. We end the transformation by selecting
a target value W for the waiting time of matrix D:

W = 6n12 + 21n13 + 13n23 + 12n123.

Now, we show that the given restricted timetable
design problem instance has a solution if and only if the
MMWT instance obtained by the above transformation
has a schedule whose waiting time is not larger than W .
The idea behind the proof is to let the selected teaching
hour of teacher i in class j (when rij = 1) correspond
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to the scheduling of entry dij (i ≤ n, j ≤ m): if teacher
i is assigned to class j in the h-th hour, then dij (i ≤ n,
j ≤ m) will be scheduled in time slots 2h − 1 and 2h,
and vice versa.

Let us first present some properties of the way entries
in D will be scheduled.

If row i of D corresponds to a teacher such that
Ti = {1, 2}, then the only two non-zero entries in such
row, say dij and dik (d3,1 = d3,4 in Figure 4 (b)), will be
scheduled in this way:

slot number 1 2 3 4
entry scheduled dij dij dik dik

and this leads to a contribution to the waiting time of
2 + 4 = 6.

If Ti = {1, 3} (in Figure 4(b), entries are d2,2 = d2,3 = 2,
and da2,y2 = da2,z2 = db2,y2 = db2,z2 = d2,y2 = d2,z2 = 1),
then the scheduling will be as shown in Figure 5.

1 2 3 4 5 6
dij dij di,yi

di,zi dik dik

dai,yi dbi,yi

dbi,zi dai,zi

Fig. 5. Schedule for entries related to Ti = {1, 3}

which contributes 2 + 3+ 4+ 6+ 1+ 1+ 2+ 2 = 21 to
the waiting time.

If Ti = {2, 3} (d4,2 = d4,4 = 2, and d4,x4
= d4,x4+1 = 1

in Figure 4(b)), the scheduling will be
1 2 3 4 5 6
di,xi

di,xi+1 dij dij dik dik

with a contribution of 1+2+4+6 = 13 to the waiting
time.

Finally, when Ti = {1, 2, 3} (in our example of Figure
4 are the entries related to T1 and T5), we will schedule
the entries in this way:

1 2 3 4 5 6
dij dij dik dik dil dil

with a contribution of 2 + 4 + 6 = 12 to the waiting
time. Notice that the entries with value 2 (those in the
non-extra lines) can be swapped without altering the
schedule.

Let us assume now that the given instance of RTT has
a solution. Then, if teacher i is assigned to class j during
hour h, we schedule the corresponding entry dij in time
slots 2h− 1 and 2h whenever the case, we schedule the
entries in the extra rows or columns according to the
above schemata. For instance, if Ti = {1, 3}, then we
schedule dij (dik) in time slots 1 and 2, if f(Ti, Cj , 1) = 1
(f(Ti, Ck, 1) = 1), and we schedule it in slots 5 and 6 if
f(Ti, Cj , 3) = 1 (f(Ti, Ck, 3) = 1). In order for the above
scheduling to be legal, in each time slot we must have
at most one entry from the same line.

This is true for the extra lines, by construction, since, if
Ti = {2, 3}we have only one entry per extra column, and
if Ti = {1, 3}, the scheduling shown in Figure 5 meets the
above constraint, because di,yi , di,zi , dai,yi , dbi,yi , dai,zi ,
dbi,zi are the only non-zero entries in such extra lines.

The same holds for the entries not in extra lines,
also. In fact, entries in the same row are scheduled in
different time slots (see the above figures). If two entries
in the same column, say dij and dlj , are scheduled in
the same slots, then both teachers i and l would have
been assigned to class j during the same hour, and
so RTT would have not been solved, a contradiction.
The total waiting time of the above schedule is W =
6n12 + 21n13 + 13n23 + 12n123, as can be easily checked.

Let us assume now that the scheduling problem ob-
tained from the above transformation applied to the
given RTT problem instance, has a solution with a wait-
ing time not larger than W . Then, the only way of obtain-
ing a schedule of waiting time not larger than W is by
scheduling the entries according to the above schemata:
this is obvious for all the cases but for Ti = {1, 3}. For
such a case, the alternative schedules would schedule
the entries equal to 1 in row i earlier, or later. In the case
they are both scheduled earlier, or if one is scheduled
earlier and the other later, then the waiting time would
be at least 22 instead of 21 (see Figures 6 and 7).

1 2 3 4 5 6
di,yi

di,zi dij dij dik dik

dai,zi dbi,yi
dai,yi

dbi,zi

Fig. 6. Both earlier: waiting time contribution= 22.

1 2 3 4 5 6
di,yi

dij dij di,zi dik dik

dai,zi dai,yi dbi,yi

dbi,zi

Fig. 7. One earlier and one later: waiting time
contribution= 22.

It is easy to see that if we let dij correspond to rij ,
and if we assign teacher i to class j in hour h when dij
is scheduled in slots 2h − 1 and 2h, the RTT instance
has a solution. In fact, all the four constraints of RTT
are met: no teacher is assigned when not available, all
requirements rij are met, and at most one teacher is
assigned to a class in each hour.

The above NP-completeness result practically leaves
us with the choice between a slow (exponential time)
optimal algorithm, or fast but suboptimal heuristics.
In the next section, we present some simple heuristics
which bring to sub-optimal solutions.

6 HEURISTICS

In this section, we describe three simple heuristics which
solve the MMWT problem in polynomial time. Two of
them are of “greedy” type, while the third one is based
on maximum cardinality minimum weight matching
algorithm.
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5 3 1
1 1 4
2 2 1

(a) Traffic ma-
trix D

9 6 2
2 2 6
5 5 2

(b) Q matrix as-
sociated with D

Fig. 8. Example of Q matrix

6.1 Greedy (GRE)
This is a very simple heuristic. The schedule is built
in this way: all non-zero entries in the traffic matrix
are considered in non-decreasing order of their value.
A switching matrix is then progressively composed by
choosing the entry with minimum value among those
not inserted in the matrix yet, and that is in lines both
currently exposed (namely, with only zero entries) in
such matrix. Eventual ties are arbitrarily broken. After
completing the switching matrix, namely when no more
entries can be added to it, such a matrix is subtracted
from the traffic matrix, and the procedure is repeated
until the traffic matrix is empty (only zero entries).
Pseudocode of this heuristic is given in the supplemental
file.

About the time complexity of this algorithm, the main
loop runs at most r times, where r is the number of
non zero entries in the traffic matrix D, since at each
time at least one of them becomes zero. Given that each
computation in the main loop is O(N2), and r is at most
N2, the total time complexity of GRE heuristic is O(N4).

6.2 Dynamic greedy (DG)
This heuristic is similar to the previous greedy algorithm,
with the following difference: instead of considering the
non-zero entries for their value, we build a matrix Q
which represents the lower bound on the contribution
of each entry to the total waiting time. Specifically, each
non-zero entry dij is replaced with a value qij which is
obtained by choosing the maximum value between the
sum of entries with values lower or equal than dij in
row i, and the sum of entries with value lower or equal
than dij in column j.

An example of matrix Q is shown in Figure 8. Ma-
trix Q is then re-computed after each switching matrix
generation on the residual traffic matrix. The algorithm
description can be obtained by changing Step 3 and Step
5 of the previous greedy algorithm, as shown in the
supplemental file.

The time complexity of this heuristic is O(N4 logN),
since the computing of Q is minimized by first sorting
the entries of D′, and this requires O(N2 logN) time.

6.3 Max-Min Matching (MMM)
This heuristic follows a different approach with respect
to the previous ones. Instead of greedy selection of
entries, switching matrices are computed by applying
the maximum cardinality minimum weight matching

algorithm [22]. For keeping the total waiting time as low
as possible, it is needed to schedule small entries in the
traffic matrix before larger entries. This heuristic aims to
build the first switching matrices with the largest num-
ber of small entries. To do that, it recursively applies the
max-min matching algorithm to the traffic matrix, until
such a matrix is empty. Pseudocode of this algorithm is
shown in the supplemental file.

Max-min matching can be computed in O(N2.5) [23],
and it is performed at most O(N2) times. So, the time
complexity of this heuristic is O(N4.5), namely greater
than the previous greedy algorithms, but it achieves
better performance, as we shall see in the next section.

7 SIMULATIONS

In this section, we show the behaviour of the above
heuristics compared among them, with respect to an
exponential time optimal algorithm, and also with other
known heuristics. The lower bound presented in Section
4 will be used as touchstone: the performance of the
heuristics will be represented as percentage increase over
the lower bound.

We implemented the algorithms in C language, com-
piled with gcc on a linux machine with Fedora version
of the operating system. For each heuristic, we also
implemented a non-preemptive version, to evaluate their
behavior when used in those systems in which preemp-
tion has a high cost in terms of time [3], [4]. For that
case, we shall call them GRENP , DGNP , MMMNP , re-
spectively. Non-preemption is achieved in the following
way: when the first packet of an m packets message
is assigned to switching matrix Sk, all the subsequent
m− 1 packets of that message are assigned to switching
matrices Sk+i, 1 ≤ i ≤ m − 1. Consequently, for the
greedy heuristics GRENP and DGNP , Step 3 is modified
such that the kth D′ matrices have zero lines whenever
Sk has already covered lines. In Step 5, when a message
Dij has been selected, a packet is placed in each one
of the Dij subsequent switching matrices. And in Step
7, each scheduled message is removed from Dij . Below
are the details in pseudocode.

Step 3: variables setup
D′ ← D;
for (i = 1; i < N ; i++)

for (j = 1; j < N ; j ++)
if (Sk

ij ! = 0) then D′
ij = 0;

Step 5: entry selection for the kth switching matrix
find i, j such that D′

ij (or Qij) is minimum;
for(p = 0; p < D′

ij ; p++)
Sk+p
ij = 1;

Step 7: variables update
D ← D− messages scheduled in Step 5;
k ← k + 1;
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Similarly, for the heuristic based on max-min match-
ing.

For comparison purposes, besides an optimal algo-
rithm, we implemented also:

• the BCW algorithm [11], which always produces
minimum length schedules;

• the iSLIP algorithm [24];
• a heuristic which builds the schedule in a totally

random way.
In the following, we give some details about these
algorithms, and the optimal one.

7.1 Optimal algorithm (OPT)
For the sake of completeness, we describe here an
exponential-time algorithm to find an optimal MMWT
schedule. It is based on a branch-and-bound procedure,
where each node of the tree represents the residual
traffic matrix after the generation of a switching matrix.
The root is the initial traffic matrix, and each node
has a number of sons equal to the number of possible
switching matrices, namely N !. The algorithm starts with
a total waiting time value WS0 computed offline by a
heuristic (for instance, the previous greedy algorithm).
When a switching matrix is generated, we compute the
waiting time of the messages scheduled so far, and the
lower bound on the residual traffic matrix: if the sum of
these values is greater than WS0 , then that node becomes
a leaf, and that branch is pruned since of course the
schedules obtained from that branch will not be optimal.
Otherwise, the computation is continued on that branch
with the new value of WS0 .

Due to the exponential nature of this algorithm, it has
been evaluated only in those simulation tests for which
the switch size N is small.

7.2 BCW algorithm (BCW )
This algorithm [11] always produces minimum length
schedules. It has been implemented to show that, in this
problem, algorithms designed for producing minimum
length schedules can result in performances which are
significantly worse than specific greedy heuristics. This
algorithm is based on the Birkoff-Von Neumann theo-
rem which asserts that a quasi-double stochastic matrix
(namely, one in which the line sums are all equal to the
same value) is decomposable in permutation matrices,
which represent the switching matrices of a schedule.
The algorithm first adds some dummy traffic to the traf-
fix matrix for making it a quasi-doubly stochastic one.
This dummy traffic is then removed from the output.
Time complexity is O(N4.5). For more details on this
algorithm, see [11].

7.3 iSLIP
iSLIP (Iterative SLIP): this algorithm was proposed by
McKeown in [24] and it is an iterative version of the SLIP

algorithm. SLIP algorithm is similar to Round Robin
Matching algorithm, which is composed of three steps:

• Request: each unmatched input sends a request to
every output for which it has a queued packet;

• Grant: if an unmatched output receives any request,
it grants the request with highest priority in a fixed
round-robin (i.e. in turns) schedule;

• Accept: if an input receives grants, it accepts the
grant with highest priority.

So, grant/accept pointers are increased moduloN , N is
the number of inputs and outputs. Grant pointers are
increased (moduloN ) only if grants are accepted by the
inputs.

iSLIP iterates the previous three steps for a fixed
number of times, and at each iteration, only unmatched
inputs can join.

iSLIP behaves like SLIP, except for the pointers man-
agement: grant pointer to the highest priority entity
of the round-robin schedule is increased (moduloN ) to
one location beyond the granted input if and only if
the grant will be accepted in the first iteration. Accept
pointer to the highest priority entity of the round-robin
schedule is increased (moduloN ) to one location beyond
the accepted output only if the input was matched in the
first iteration. So pointers are updated only for matches
found in the first iteration.

Pseudocode for a sequential version of iSLIP algorithm
is reported in the supplemental file.

We remark that iSLIP algorithm has been developed
for online scheduling in input-queued switches. We im-
plemented here an offline framed version of this algo-
rithm, namely considering that a number of requests of
transmissions are first gathered and then processed.

7.4 Random algorithm (RAND)

This heuristic is the simplest algorithm that could be
implemented to solve our problem. Regardless of its
size, a non-zero entry in the traffic matrix is randomly
chosen and placed in the schedule, by meeting only the
constraints on the switching matrix lines.

Time complexity of this heuristic is equal to that one
of greedy algorithm, namely O(N4). This algorithm is
compared with the others to see if it is worthwhile the
effort of using some intelligence, or not.

8 SIMULATION RESULTS

The simulation tool has been developed to evaluate the
goodness of the proposed heuristics. No details about
the transmission environment nor the used protocol have
been included, since the goal is to study the behaviour
of the algorithms with respect to each other. The results
have been validated by means of the confidence inter-
vals, which resulted to be always well below the 3% of
the average waiting times values (see below), when N
is greater than 16; for smaller switch sizes, we obtained
larger ratios between the confidence intervals and the
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average values. We performed extensive simulations, by
tuning several problem parameters. In particular, we
tuned the following parameters:

• the size of the switch N ;
• the number of available transmission channels C,

C ≤ N ;
• the maximum number of messages K between any

input/output pair;
• the maximum length of the messages, M ;
• the traffic matrix sparsity, namely the percentage of

zero entries.
To make the results more readable, we show them by
means of efficiency E as performance metric, which is de-
fined as the ratio between the average message waiting
time WS of the schedule produced by a heuristic, and
the lower bound LBW given in Section 4, namely the
percentage increase in waiting time that the heuristic has
over the lower bound (on the average). So, the smaller
is the efficiency value, the better is the performance.

Traffic entries in D matrices have been generated
always following two distributions: the uniform one, or
the gaussian one. Since the distributions are countless,
we chose two particular ones, just to show whether the
algorithms are sensitive to this parameter or not. For
the uniform distribution, each traffic entry is given by
randomly generating a number between 1 and M , while
the number of non-zero entries is established according
to traffic matrix sparsity parameter. Also the non-zero
entries positions in the matrix are randomly generated.

For the gaussian distribution, we set the mean to M
and deviation 1; also in this case, the positions of non-
zero entries are randomly generated and the number of
zero entries follows the sparsity parameter for each test.

Each test ran 100 times and we show in the graphs
the average efficiency values. We computed also the 95%
confidence intervals. We show the values for one test
case in Table I in the supplemental file, together with all
figures referred below.

Is the message waiting time influenced by the switch
size? In Figures 1-4, we show the average behavior of the
heuristics by varying the switch size N , with uniform
distribution and traffic matrix sparsity is equal to 75%,
50%, 25% and 0%, respectively. The same in Figures 5-8,
for the gaussian distribution.

As we can see, with very sparse traffic matrices, the
algorithms efficiencies are worse than with very dense
traffic matrices. We notice also that the efficiency in-
creases with the increasing of the switch size.

Which is the fairer heuristic? In the same Figures, we
show also the fairness computed. As fairness metric, we
used the well known Jain’s index [26], that we report
below for the sake of completeness:

IJain =

∣∣∣∑N
i=1 xi

∣∣∣2
N

∑N
i=1 x

2
i

where each xi is computed as the sum of traffic values
in the ith row of matrix D, namely representing the total

amount of resource allocation for input user i for sending
all its messages. All algorithms produce high fairness
values, but the proposed Max-Min Matching heuristic
gives always the highest values, both in high and low
traffic conditions.

Does the channel availability influence the mes-
sage waiting time? In Figures 9 and 10, we show
the behaviour of the algorithms efficiency, by varying
the number of channels available for transmission. We
considered a switch of size N = 32, and we tuned the
number of channels C from 2 to 32. The heuristics are
not much sensitive to this parameter.

Is the message waiting time affected by the number
and the length of messages? In Figure 11, we plotted
only the three proposed heuristics, and their respective
non preemptive versions, with respect to the number
of messages between any pair of input/output. Notice
that the MMMNP heuristic is not much sensitive to this
parameter, and its performance is a little lower than the
MMM heuristic. For the greedy heuristic, instead, non
preemptive versions perform worse than preemptive
ones, with a loss of about 15% (in terms of efficiency).

In Figure 12, we show the efficiency values obtained
by changing the message size. Again, note that the
heuristics are not much sensitive to this parameter, too.

How the traffic matrix sparsity affects the message
waiting time? Figure 13 shows the behaviour of the effi-
ciency for four values of traffic matrix sparsity: 0%, 25%,
50% and 75%. Notice that for all the heuristics, efficiency
decreases with very sparse traffic matrices. This happens
because when the matrices are sparse it is most likely
that the few non-zero entries are in competing positions,
so the waiting times of some messages grow. On the
converse, when a matrix is totally filled, there is a greater
number of scheduling possibilities and then competing
entries can be placed in different switching matrices.

How good are the heuristics with respect to the
optimal algorithm? In Figures 14 and 15, we show
the behavior of the heuristics together with the optimal
algorithm, for small values of N . As we can see, the
efficiency of the MMM heuristic is very close to that
one of the optimal algorithm.

Finally, notice that the algorithms performances are
not significatively influenced by the distributions used
to generate the traffic matrices, in spite of their large
difference.

8.1 Other statistical data

In this section, we present other metrics that have been
evaluated in the simulations. We have computed, for
each heuristic, the following amounts:

• the number of schedules with optimal WS value
(Wopt);

• the maximum gap between the lower bound LBW

and the obtained total message waiting time WS

(MaxGapW);
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• the average gap between LBW and WS , expressed
in percentage (AveGapW);

• the number of schedules of minimum length (Lopt);
• the maximum gap between the minimum length

schedule and the length of obtained schedules (Max-
GapL);

• the average gap between LBL and the length of
obtained schedules, expressed in percentage (Ave-
GapL).

For the sake of conciseness, we summarize these results
in Tables II and III of the supplemental file. Notice
that MMM heuristic improves its performance with
high values of N , leading to less than 1% performance
degradation with respect to the lower bound, both in
terms of total waiting time values and of schedule
lengths. We recall that the AveGapW is computed on
the lower bound, and not on the optimal value, and
so the performance of the heuristics should be better
than the given values. A similar consideration holds for
MMMNP , which provides good schedules, even with
the non-preemption constraint. So, we conclude that
these heuristics give very good sub-optimal solutions to
the MMWT problem.

9 CONCLUSIONS

In this paper, we studied the problem of minimizing the
average message waiting time in a single-hop multichan-
nel system. We shown that this problem is NP-complete,
and we proposed and analyzed three fast heuristics. By
means of simulations, we obtained the performances of
the proposed heuristics, and compared them with other
known algorithms. Based on these, we can say that the
MMWT problem can be solved with algorithms which
produce schedules very close to the optimal one. In
particular, the MMM heuristic is the most suitable for
optimizing the efficiency both for the system and for
the users: for the system, since it produces schedules
very often of minimum length, and for the users, since
the average message waiting time is very close to the
optimal one.

Some problems are still open: for instance, the com-
plexity of minimizing the average packet waiting time
(studied in [17]) is unknown. A stimulating research is
the MMWT problem in a real-time setting, namely when
messages have deadlines to be met.
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