
Theoretical Computer Science 492 (2013) 88–116

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Efficient asymmetric inclusion of regular expressions with
interleaving and counting for XML type-checking✩

D. Colazzo a, G. Ghelli b, L. Pardini b, C. Sartiani c,∗
a Université Paris Sud - INRIA, UMR CNRS 8623, Orsay, F-91405, France
b Dipartimento di Informatica - Università di Pisa, Largo B. Pontecorvo 2 - Pisa, Italy
c Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Via dell’Ateneo Lucano, 10, Potenza, Italy

a r t i c l e i n f o

Article history:
Received 2 February 2011
Received in revised form 30 January 2013
Accepted 19 April 2013
Communicated by W. Fan

Keywords:
XML
Regular expressions
Subtyping
XML schema

a b s t r a c t

The inclusion of Regular Expressions (REs) is the kernel of any type-checking algorithm
for XML manipulation languages. XML applications would benefit from the extension of
REs with interleaving and counting, but this is not feasible in general, since inclusion is
EXPSPACE-complete for such extended REs. In Colazzo et al. (2009) [1] we introduced a
notion of ‘‘conflict-free REs’’, which are extended REswith excellent complexity behaviour,
including a polynomial inclusion algorithm [1] and linear membership (Ghelli et al.,
2008 [2]). Conflict-free REs have interleaving and counting, but the complexity is tamed by
the ‘‘conflict-free’’ limitations, which have been found to be satisfied by the vast majority
of the content models published on the Web.

However, a type-checking algorithm needs to compare machine-generated subtypes
against human-defined supertypes. The conflict-free restriction, while quite harmless for
the human-defined supertype, is far too restrictive for the subtype. We show here that
the PTIME inclusion algorithm can be actually extended to deal with totally unrestricted
REs with counting and interleaving in the subtype position, provided that the supertype is
conflict-free.

This is exactly the expressive power that we need in order to use subtyping inside type-
checking algorithms, and the cost of this generalized algorithm is only quadratic,which is as
good as the best algorithmwe have for the symmetric case (see [1]). The result is extremely
surprising, since we had previously found that symmetric inclusion becomes NP-hard as
soon as the candidate subtype is enriched with binary intersection, a generalization that
looked much more innocent than what we achieve here.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Different extensions of Regular Expressions (REs) with interleaving operators and counting are used to describe the
content models of XML in the major XML type languages, such as XML Schema and RELAX-NG [4,5]. This fact raised new
interest in the study of such extended REs, and, specifically, in the crucial problem of language inclusion. As pointed out
by Mayer and Stockmeyer [6] and by Gelade et al. [7], the problem is EXPSPACE-complete. This prevents any practical use
of unrestricted versions of regular expressions extended with interleaving and counting. However, in [1] we introduced a
class of ‘‘conflict-free’’ REs with interleaving and counting, whose inclusion problem is in PTIME. The class is characterized

✩ An extended abstract of this paper was presented at the 12th International Conference on Database Theory (Colazzo et al., 2009 [3]). This full version
contains full proofs, algorithms for the complete language considered – including the T ! constructor – and a report on experimental evaluation.
∗ Corresponding author. Tel.: +39 0971205862.

E-mail addresses: dario.colazzo@lri.fr (D. Colazzo), ghelli@di.unipi.it (G. Ghelli), pardini@di.unipi.it (L. Pardini), sartiani@gmail.com (C. Sartiani).

0304-3975/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.04.023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2013.04.023
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tcs.2013.04.023&domain=pdf
mailto:dario.colazzo@lri.fr
mailto:ghelli@di.unipi.it
mailto:pardini@di.unipi.it
mailto:sartiani@gmail.com
http://dx.doi.org/10.1016/j.tcs.2013.04.023

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 89

by the single occurrence of each symbol and the limitation of Kleene-star and counting to symbols. Hence, an expression
a∗& b∗, denoting the interleaving of a sequence of a’s and b’s, is conflict-free, while a · b · a and (a · b)∗ are not. These very
strict constraints have been repeatedly reported as being actually satisfied by the overwhelmingmajority of contentmodels
that are published on the Web,1 which makes that result very promising, and of immediate applicability to the problem of
comparing two different human-designed content models.

However, the main use of subtype-checking is in the context of type-checking, where computed types are checked for
inclusion into expected types. This happens in the following cases (in each case we use U for the human-defined expected
type, and E for the expression whose type is computed by the compiler):
(i) when a function, expecting a type U for its parameter, is applied to an expression E;
(ii) when the result of an expression E is used to update a variable, whose type U has been declared;
(iii) when the body E of a function is compared with the human-declared output type U of the function, in order to declare

it type-correct.

In all these cases, the expected type is defined by a programmer, hence we can restrict it to a conflict-free type with
little harm. However, the computed type reflects the structure of the code. Hence, the same symbol may appear in many
different positions, and Kleene star may appear everywhere. In this situation, the ability to compare two conflict-free types
is too limited, and we have to generalize it somehow. Consider, for instance, the following XQuery-like function.

function alpha($y : int∗) as (a∗& b∗) {
for $x in $y
return if ($x 6 0)

then a
else a, b, a

}

A type-checker would infer a type (a+ (a· b· a))∗ for the body of this function, a type that corresponds to the structure of
the code. This inferred type is not conflict-free, and must be compared for inclusion with the conflict-free declared output
type (a∗ & b∗).

Handling situations like this seemed very hard for a time. The result in [1] is based on an exact description of conflict-
free types through constraints. These constraints are properties of the words in a language. For example, the language
a· (b [3..5]+ (c · d)) satisfies the following constraints (among others): ‘‘a occurs in each word’’ (occurrence constraint), ‘‘if
c occurs, then d occurs’’ (co-occurrence constraints), ‘‘every a comes before any b’’ (order constraints), ‘‘if b occurs, it occurs
between 3 and 5 times’’ (cardinality constraints) and ‘‘no other symbol but a, b, c, dmay occur’’ (upper bound constraints).
In [1] we proved that conflict-free types are exactly characterized by the set of such constraints that they satisfy, and we
used this property to reduce type inclusion to constraint implication.

Unfortunately, even small generalizations of the conflict-free single-occurrence and Kleene-star limitations make types
impossible to be exactly described by our constraints, as detailed later in Proposition 2.15. This problem does not arise if
types are extended with intersection, since our constraints are closed by intersection. However, we showed in [1] that just
one outermost use of binary intersection in the subtypemakes inclusion NP-hard. As a consequence, our result seemed quite
hard to generalize to the types that are met during type checking.

Our contribution. In this paper we show that we can generalize the result of [1] without leaving PTIME if we embrace
asymmetry, and consider the asymmetric inclusion problem, i.e., the problem of verifying whether T is included in U , where
T and U belong to two different families of extended REs. In this case, we find a surprisingly good result: inclusion is still in
PTIME, provided that the supertype is conflict-free, even if no limit is imposed on the subtype, where interleaving, counting,
and Kleene-star can be freely used. Thismeans that a programmermust only declare conflict-free types, but the compiler can
use the whole power of extended REs to approximate the result of any expression. The key for this result is understanding
that, while the supertype has to be exactly described by the constraints, this is not necessary for the subtype.

To summarize, the main contributions of the present work are the following:

• we show that type inclusion can be reduced to constraint satisfaction if the constraint extraction function fully
characterizes the supertype, for any subtype, even if the subtype can not be described by our constraint language;
• for each of the different kinds of constraints that our constraint language can express, we provide a polynomial algorithm

to verify whether a generic type T , not necessarily conflict-free, satisfies that constraint;
• by combining the previous two contributions, we provide a quadratic algorithm to test whether T is included inU , where

T and U are extended REs with interleaving and counting, provided that U is conflict-free, with no limitations on T ;
• we provide an experimental evaluation, where we compare the performance of our quadratic algorithm with that of an

asymmetric algorithmbased on Brzozowski derivatives [11], which is ourmost direct competitor; this comparison shows
that the quadratic algorithm scales very well, and is orders of magnitude faster than the competitor, in our experimental
range.

1 Bex et al. [8] found that the 99% of the 819 DTDs and XSDs that they examined belong to the class of chain regular expressions (CHAREs), which are
less expressive than our conflict-free types; similar results, in the high range of 90%, have been reported by Barbosa et al. in [9] and by Choi et al. in [10].

90 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

Apart from the practical interest of a PTIME inclusion algorithm with no limitation on the subtype, this work also shows
that the constraint approach is able to deliver interesting results in situations where traditional automata-based techniques
are not easy to apply.

Paper outline. The paper is structured as follows. In Section 2 we introduce the type and constraint languages used here,
and discuss the properties of constraint extraction functions. In Section 3 we introduce our inclusion algorithm, prove its
correctness and completeness, and discuss its complexity. In Section 4 we experimentally analyze the performance of our
algorithm. In Sections 5 and 6, finally, we review some related work and draw our conclusions.

2. Types and constraints

Following the terminology of [1], according to the intended application of these results to the type-checking of XML-
based languages, we use the term ‘‘types’’ as a synonym for ‘‘extended regular expressions’’. Hence a ‘‘type’’ denotes a set
of words. A constraint is a simple word property expressed in the constraint language we introduce below, and denotes the
set of words that satisfy it. We say that a type T satisfies a constraint F when every word in T satisfies F , that is, when the
denotation of T is included in that of F . Hence, every type is over-approximated by the set of all constraints that it satisfies.
In [1] we introduced conflict-free types. For these types, this ‘‘approximation’’ is exact, meaning that a word belongs to a
conflict-free type if and only if it satisfies all of its associated constraints.

Our algorithm is based on translating the supertype into a corresponding set of constraints and verifying, in polynomial
time, that the subtype satisfies all of these constraints. In an asymmetric comparison, constraints provide an exact
characterization for the conflict-free supertype, but just an over-approximation for the subtype; we will prove below that
this does not affect the correctness or completeness of the algorithm.

In this paper we focus on the asymmetric inclusion of extended regular expressions. The results we propose can be lifted
to DTDs and Single-type Extended DTDs (EDTDst) by following the approach described by Martens et al. in [12] and by Gelade
et al. in [7]. In particular, the fact that the asymmetric inclusion is polynomial and that PTIME is a complexity class closed
under positive reductions implies that the asymmetric inclusion of two schemas e1 and e2, where e1 uses unrestricted regular
expressions and e2 uses conflict-free expressions, can be evaluated in polynomial time.

2.1. The type language

Our types denote sets of words over a finite alphabet Σ of symbols. We first define our notation for symbol extraction,
symbol counting, and a notion of subword.

Definition 2.1 (Word, w(i), ϵ, length(w), |w|a, Subword, Σ∗, Language). Given a set Σ , a word w over Σ is a function from

[1 . . . n] to Σ , where [1 . . . n]
def
= {i | 1 ≤ i ≤ n}. When n is zero, then [1 . . . n] is the empty set, and the only word over

this empty domain is denoted by ϵ.
When [1 . . . n] is the domain of w, we say that n is the length of w, and denote it with length(w).
For any i ∈ [1 . . . length(w)], we say that w(i) is the i-th symbol of w, or that w(i) occurs in w at the i-th position. We

use |w|a to indicate the number of positions of w where a occurs, that is, how many times a occurs in w.
When w′ can be obtained by deleting some symbol occurrences from w, we say that w′ is a subword of w. Formally, for

any w of lengthm, and for any monotone injective f : [1 . . . n] → [1 . . .m], the word w ◦ f , of length n, is a subword of w.
We use Σ∗ to denote the set of all words over Σ . Any subset of Σ∗ is a ‘‘language over Σ ’’, or simply a ‘‘language’’.

We adopt the usual definitions for words concatenation w1 · w2, and for the concatenation of two languages L1 · L2. The
shuffle, or interleaving, operator w1&w2 is also standard, and is defined as follows.2

Definition 2.2 (v&w, L1&L2). The shuffle set of two words v, w ∈ Σ∗, or two languages L1, L2 ⊆ Σ∗, is defined as follows;
notice that each vi or wi may be the empty word ϵ.

v&w
def
= {v1 · w1 · . . .· vn · wn | v1 · . . .· vn = v, w1 · . . .· wn = w, vi ∈ Σ∗, wi ∈ Σ∗, n > 0}

L1&L2
def
=


w1∈L1,w2∈L2

w1&w2

When v ∈ w1&w2, we say that v is a shuffle of w1 and w2; for example, w1 · w2 and w2 · w1 are shuffles of w1 and w2,
hence JT1&T2K ⊇ JT1 · T2K ∪ JT2 · T1K.

We consider the following type language for words over an alphabet Σ:

T ::= ϵ | a | T [m..n] | T + T | T · T | T&T | T !

2 In [7] an alternative but equivalent definition of interleaving has been given.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 91

where: a ∈ Σ ,m ∈ (N \{0}), n ∈ (N∗ \{0}), and n ≥ m (see Definition 2.4). The set N∗ is N∪ {∗}, where ∗ behaves as+∞,
i.e., for any n ∈ N∗, ∗ ≥ n.

The type ϵ is a singleton type that only contains the empty word ϵ. The type T ! denotes the set of T words minus ϵ. The
type T [m..n] denotes words that are formed by concatenating iwords from T , withm ≤ i ≤ n (Definition 2.5).

A type T is well-formed if it satisfies the numerical restrictions on T [m..n] and if, for each subterm T ′!, T ′ contains at
least an a subterm for some a ∈ Σ (Definition 2.4). Hereafter we always implicitly assume that every type we deal with is
well-formed.

Definition 2.3 (sym(w), sym(T)). For any word w, sym(w) is the range of w, that is, the set of all symbols in Σ appearing
in w. For any type T , sym(T) is the set of all symbols in Σ appearing in T .

Definition 2.4 (Well-formed Type). A type T is well-formed if it satisfies the following conditions:

1. for any subterm T ′ [m..n] of T , the following holds:m ∈ (N \{0}), n ∈ (N∗ \{0}),m ≤ n;
2. for any subterm T ′! of T , sym(T ′) ≠ ∅.

Note that expressions like T [0..n] are not allowed, but the type T [0..n] can be equivalently represented by T [1..n]+ ϵ.
The mandatory presence of an a subterm in T ! guarantees that T contains at least one word that is different from ϵ, hence
T ! is never empty (Lemma 2.8), which, in turn, implies that we have no empty types.

The semantics of types is inductively defined by the following equations.

Definition 2.5 (JT K).

JϵK
def
= {ϵ}

JaK
def
= {a}

JT1 + T2K
def
= JT1K ∪ JT2K

JT1 · T2K
def
= JT1K· JT2K

JT1&T2K
def
= JT1K&JT2K

JT !K
def
= JT K \ {ϵ}

JT [m..n]K
def
= {w | w = w1 · . . .· wj, ∀i ∈ 1..j. wi ∈ JT K,m ≤ j ≤ n}

Wewill use� to range over product operators · and &whenwe need to specify common properties, such as, for example:
JT � ϵK = Jϵ � T K = JT K. We will use � to range over ·, &, and+.

Types that contain the emptyword ϵ are called nullable and are characterized as follows. Observe thatN(T [m..n]) = N(T)
because m cannot be 0.

Definition 2.6. N(T) is a predicate on types, defined as follows:

N(ϵ)
def
= true

N(a)
def
= false

N(T !)
def
= false

N(T [m..n])
def
= N(T)

N(T + T ′)
def
= N(T) or N(T ′)

N(T � T ′)
def
= N(T) and N(T ′)

Property 2.7 (N(T)).

ϵ∈ JT K⇔ N(T)

In this system, no type is empty, and any symbol in sym(T) appears in some word of JT K.

Lemma 2.8. For any type T :

JT K ≠ ∅ (1)
a ∈ sym(T)⇔ ∃w ∈ JT K.a ∈ sym(w) (2)

Proof. Trivial. �

92 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

w |= F
def
⇔ w ∈ JFK

JA+K
def
= {w ∈ Σ∗ | sym(w) ∩ A ≠ ∅}

JA+ Z⇒ B+K
def
= {w ∈ Σ∗ | w ∉ JA+K ∨ w ∈ JB+K}

Ja?[m..n]K
def
= {w ∈ Σ∗ | m ≤ |w|a ≤ n ∨ |w|a = 0}

Jupper(A)K
def
= {w ∈ Σ∗ | sym(w) ⊆ A}

Ja ≺ bK
def
= {w ∈ Σ∗ | ∀i, j ∈ [1..length(w)]. (w(i) = a ∧ w(j) = b)⇒ i < j}

Fig. 1. Constraint semantics.

In the following we will use RE+(#,&) to denote this class of regular expressions.

2.2. Constraints

Constraints are expressed using the following logic, where a, b ∈ Σ , a ≠ b in a ≺ b, A ⊆ Σ , B ⊆ Σ , m ∈ (N \{0}),
n ∈ (N∗ \{0}), and n ≥ m:

F ::= A+ | A+ Z⇒ B+ | a?[m..n] | upper(A) | a ≺ b

We do not explicitly consider conjunctive constraints F ∧ F ′ since we will always associate types with sets of constraints,
whose conjunction the type has to satisfy. The semantics of constraints is defined in Fig. 1.

The following special cases are worth noticing.

ϵ |= a?[m..n] ϵ |= a ≺ b b |= a ≺ b aba |̸= a ≺ b

Observe that A+ is monotone with respect to the subword order, i.e., w |= A+ and w is a subword of w′ imply that
w′ |= A+. The constraint a ≺ b, instead, is anti-monotone, in the sense that, if w |= a ≺ b and w′ is a subword of w, then
w′ |= a ≺ b. The constraint upper(A) is anti-monotone as well.

As pointed out by the first equation of Fig. 1, a constraint F denotes the set of words that satisfy it; the following definition
states that a set of constraints F denotes the words that satisfy each F ∈ F .

Definition 2.9 (JF K). For set of constraints F :

JF K
def
=


F∈F

JFK

A type satisfies a constraint if all of its words do. The previous definition allows us to express this as set inclusion.

Definition 2.10 (W |= F , T |= F , T |= F). For any set of words W , type T , constraint F , and set of constraints F :

W |= F
def
⇔ W ⊆ JFK T |= F

def
⇔ JT K ⊆ JFK T |= F

def
⇔ JT K ⊆ JF K

2.3. Conflict-free types, constraints and subtyping

In [1] we introduced the following class of conflict-free types (hereafter we will use the meta-variable U for conflict-free
types).

Definition 2.11 (Conflict-free Type). A type U is conflict-free iff:

• no symbol appears twice in U , that is, for any subterm U1 � U2 of U , sym(U1) ∩ sym(U2) = ∅.
• counting is only applied to symbols, that is, for any subterm U ′ [m..n] of U , U ′ is a symbol a ∈ Σ .

The symbol-counting restriction means that, for example, types like (a · b)∗ cannot be expressed. However, it has been
found that DTDs and XSD schemas3 use repetition almost exclusively as aop or as (a+· · ·+z)op (where op ∈ {+, ∗}, see [8]),
which can be immediately translated to types that only count symbols, thanks to the U1&U2 and U ! operators. For instance,
(a+· · ·+ z)∗ can be expressed as (a∗& . . .&z∗), where a∗ is a shortcut for a [1..∗]+ ϵ, while (a+· · ·+ z)+ can be expressed
as (a∗& . . .&z∗)!.

In [1] we also defined an algorithm to check inclusion of conflict-free types, based on the existence of an exact
constraint extraction function for conflict-free types,where exactness is defined inDefinition 2.12, togetherwith twoweaker
properties, soundness and completeness, that we will need soon. The notion of completeness is relative to a constraint
language; for our aims, we can define a constraint language to be any set of sets of constraints. For example, the set of
all sets of constraints that have shape {a1 ≺ b1, . . . , aj ≺ bj} is a constraint language, ‘‘the language of order constraints’’.

3 An XSD schema is an XML schema written in the W3C XML Schema Definition Language [4]; this language is often called ‘‘XML Schema’’ or XSD.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 93

Definition 2.12 (Soundness, Completeness, Exactness of FT). Consider a constraint language F , a type T , and a set of
constraints FT ∈ F . We define three properties that FT may satisfy for T and F :

• soundness: FT is sound for T if T |= FT , that is, JT K ⊆ JFT K;
• F -completeness: a sound FT is complete for F and T if JFT K = J{F ∈ F | T |= F}K, that is, FT is the most precise

description of T that can be expressed through the constraint language F ;
• exactness: FT is exact for T if JT K = JFT K.

A function C mapping types to sets of constraints is called sound/F -complete/exact, if C(T) is, respectively, sound,
F -complete, or exact, for any T .

In short,FT is sound if it over-approximates T , is F -complete if is sound and cannot bemademore precise by adding any
more constraints from F , and is exact if its semantics coincides with JT K, which implies that it is also complete and sound.
When a type admits an exact constraint set, we say that the type is constraint-expressible.

Definition 2.13 (Constraint-expressible Type). A type T is constraint-expressible, with respect to a constraint language F , if
there exists a set of constraints FT ∈ F such that JT K = JFT K, that is, such that FT is exact for T . If no such set exists, we say
that T is constraint-inexpressible in F .

When we say that a type T is constraint-expressible, or inexpressible, with no explicit reference to a specific F , we are
implicitly referring to the constraint language that we define in this paper.

The algorithm defined in [1] is based on the following result, proved in the same paper.

Theorem 2.14. There exists an exact constraint extraction function for conflict-free types. That is, every conflict-free type is
constraint-expressible.

The proof of [1] is constructive, since we actually define a constraint extraction function C(U) satisfying ∀U : JUK =
JC(U)K.

The subtyping algorithm of [1] is based on our ability to exactly characterize conflict-free types through sets of
constraints. Unfortunately, conflict-free types, while adequate to express human-defined types, are too weak to capture
compile-inferred types. One would hence like to loosen the conflict-free restrictions, in order to enlarge the set of types
that we can manipulate. Unfortunately, any small loosening that we considered produces a set of types that includes some
constraint-inexpressible type.

For example, and without any pretence of completeness, one may first consider loosening the single-occurrence
restriction for U1 + U2, U1 · U2 or U1&U2, so that, in some of these three cases, one may have that sym(U1) ∩ sym(U2) is
not empty. One may also consider loosening the counting restriction, so that counting could be applied to a term U1 that is
not just one symbol, but is built using one of the three binary operators, or the counting operator.

We now show that each of the seven possibilities above would allow the enlarged type-language to express some
constraint-inexpressible types, already in situations when U1 and U2 are extremely simple.

Proposition 2.15. Each of the following seven types, corresponding to different ways of loosening the restrictions that define
conflict-free types, is constraint-inexpressible.

Loosening single-occurrence restriction
Loosened restriction Constraint-inexpressible

type
Allowing a ∈ sym(U1) ∩ sym(U2) in a subterm U1 + U2 (a· b)+ (b· a· c)
Allowing a ∈ sym(U1) ∩ sym(U2) in a subterm U1 · U2 a· (b· a)
Allowing a ∈ sym(U1) ∩ sym(U2) in a subterm U1&U2 a&(b· a)

Loosening counting restriction
Loosened restriction Constraint-inexpressible type
Allowing U [m..n] under counting a [1..2] [1..2]
Allowing U1 + U2 under counting (a+ b) [2..2]
Allowing U1 · U2 under counting (a· b) [2..2]
Allowing U1&U2 under counting (a&b) [1..2]

Proof. In Appendix. �

The intuition that allowed us to solve this problem is illustrated by the following proposition. The proposition shows that
we do not need an exact characterization for both compared types; we only need exactness for the right-hand side.

Proposition 2.16 (Asymmetric Subtyping). If C is exact for U,4 then:

JT K ⊆ JUK⇔ T |= C(U)

4 We use the letter U since we apply this proposition to conflict-free types only, but it actually holds for any type U that is exactly described by C(U).

94 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

Proof. T |= C(U)⇔ (by definition) JT K ⊆ JC(U)K⇔ (by exactness) JT K ⊆ JUK. �

This observation provides a way to generalize our previous results that is very interesting: rather than looking for
generalizations of the conflict-free family in the narrow precinct of those types that can be exactly described, we can aim
for the whole set of extended REs in the left-hand side of JT ′K ⊆ JT ′′K, if we stay modest with the right-hand side.

To exploit this observation, we need now to extend the exact constraint-extraction C(U) of [1] with a procedure to test
for T |= C(U).

In [1]we provided a quadratic algorithm for the casewhen T is conflict-free, whilewe proved that the problem is NP-hard
when T ranges over conflict-free types with intersection. We are going to give here a quadratic procedure when T ranges
over general types (with no intersection, of course).

3. Inclusion algorithm

In [1], we defined a constraint-extraction function that is exact for conflict-free types. For each type, this function
extracts five classes of constraints: co-occurrence constraints CC(U), order constraints OC(U), cardinality constraints
ZeroMinMax(U), lower-bound constraints SIf (U), and upper-bound constraints upperS(U), that is, the exact function that
we are going to use is defined as

C(U) = CC(U) ∪ OC(U) ∪ ZeroMinMax(U) ∪ SIf (U) ∪ upperS(U)

To apply Proposition 2.16, we now have to exhibit, for each component Ci(U) (where Ci(U) is one of CC(U), OC(U), etc.),
an algorithm to verify whether, for each F ∈ Ci(U), T |= F , where T is a general type. This will be done in the following
sections. In each section we will recall the definition of the corresponding component of C(U). The last two components
SIf (U) and upperS(U) will be dealt with together.

3.1. Co-occurrence constraints CC(U)

Overview
In this section we present an algorithm to verify, for each T and U , that T |= A+ Z⇒ B+ for each A+ Z⇒ B+ ∈ CC(U), in

time O(n2), where n = |T | + |U|. We first recall the definition of CC(U) from [1]. For each type U , the set CC(U) contains
O(n) constraints with shape A+ Z⇒ B+, and we will present an algorithm to verify T |= A+ Z⇒ B+, using time O(n) for each
constraint A+ Z⇒ B+.

To this aim we define a new auxiliary constraint B+?, denoting the set of all words in JB+K ∪ {ϵ}, and we prove that
T |= A+ Z⇒ B+ holds iff every occurrence of every symbol of A in T is included in a subterm T ′ of T such that T ′ |= B+?
(Theorem 3.6). This is the key technical result of this section.

We then define an algorithm that, given B and T , finds all subterms T ′ of T such that T ′ |= B+?, and marks all occurrences
of symbols of T that are included in at least one of these T ′ subterms, in linear time. Now, in time O(|T |), we can verify
whether every occurrence of any symbol of A in T has been marked, which, by the previous result, is equivalent to verifying
that T |= A+ Z⇒ B+.

Constraints extraction CC(U)

The first component CC(U) of C(U) extracts a set of co-occurrence constraints with shape A+ Z⇒ B+, and is defined,
in [1], as follows, where {F | ¬N(U)} denotes the singleton {F} when N(U) is false, and denotes the empty set otherwise.
Observe that CC(U) contains at most two constraints for each product node of U .

CC(U1 � U2)
def
= {sym(U1)

+ Z⇒ sym(U2)
+
| ¬N(U2)}

∪ {sym(U2)
+ Z⇒ sym(U1)

+
| ¬N(U1)}

∪ CC(U1) ∪ CC(U2)

CC(U1 + U2)
def
= CC(U1) ∪ CC(U2)

CC(U !)
def
= CC(U)

CC(ϵ)
def
= ∅

CC(a [m..n])
def
= ∅

CC(a)
def
= ∅

Soundness of CC(U) is a consequence of the single occurrence of symbols in U . Consider for example the rule for union
and a type U + a· b. The set CC(U + (a· b)) includes CC(a· b), that is a+ Z⇒ b+ and b+ Z⇒ a+, because every occurrence of
an a in a word w ∈ JU + (a· b)K implies that w belongs to Ja· bK, since a cannot appear in U , because of single occurrence. A
type a· b+ (a· c), which violates single occurrence, would not satisfy the conjunction of a+ Z⇒ b+ and a+ Z⇒ c+, but only
their disjunction.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 95

Example 3.1.

• CC(a [1..2]· (b [2..∗]+ c [1..∗]+ ϵ)) = {bc+ Z⇒ a+}
a+ Z⇒ bc+ is not in CC(a [1..2]· (b [2..∗]+ c [1..∗]+ ϵ)) because (b [2..∗]+ c [1..∗]+ ϵ) is nullable;
• CC(a [1..1]· (b [2..2]· c [3..3])) = {a+ Z⇒ bc+, bc+ Z⇒ a+, b+ Z⇒ c+, c+ Z⇒ b+}.

Formal treatment
We first observe that all symbols at the left-hand side of a co-occurrence constraint can be dealt with one at a time; this

is an immediate consequence of the definition of A+ Z⇒ B+.

Property 3.2 (Union). For any word w and constraint A+ Z⇒ B+:

w |= A+ Z⇒ B+ ⇔ ∀a ∈ A. w |= a+ Z⇒ B+

We now introduce an auxiliary constraint A+?, whose semantics is defined as follows.

Definition 3.3 (A+?).

JA+?K
def
= JA+K ∪ {ϵ}

The constraint A+? satisfies the following properties.

Property 3.4 (T |= A+? and T |= A+). For any type T , and set A ⊆ Σ , the following properties hold.

T |= A+? ⇔ ∀w∈ JT K. (w = ϵ ∨ (sym(w) ∩ A) ≠ ∅) (1)

T |= A+? ⇔ T ! |= A+ (2)

T |= A+ ⇔ T |= A+? ∧ ¬N(T) (3)

We are now ready for the main theorem, relating A+ Z⇒ B+ to B+?. The theorem specifies that, for any constraint
a+ Z⇒ B+ with a ∉ B, the constraint holds in T iff, for every occurrence of a in T , there exists a product subterm T ′ of T
that contains that instance and such that T ′ |= B+?. This subterm may be proper or may be T itself. For example, consider
T ′ = a [1..1]· (b [2..2] &a [3..3]) and T = c + T ′. The product type T ′ satisfies b+? (any word of JT ′K contains b), and it
contains both occurrences of a inside T , hence T |= a+ Z⇒ b+, and the same would hold for a type T ′′ = c&T ′. If we consider
T ′′′ = a+T ′, however, the first occurrence of a is not included in any product type, hence this type does not satisfy a+ Z⇒ b+;
indeed, the word a ∈ JT ′′′K violates this constraint.

We first introduce a crucial lemma, then we prove the theorem.

Lemma 3.5. For any type T1 � T2:

T1 � T2 |= a+ Z⇒ A+ ⇒ (T1 |= a+ Z⇒ A+ ∧ T2 |= a+ Z⇒ A+) ∨ T1 � T2 |= A+?

Proof. We prove the following, equivalent, proposition:

(T1 � T2 |= a+ Z⇒ A+ ∧ T1 � T2 |̸= A+?)⇒ (T1 |= a+ Z⇒ A+ ∧ T2 |= a+ Z⇒ A+)

By T1 � T2 |̸= A+?, there is at least a non-empty word w ∈ JT1 � T2K containing no A symbol. This implies that there exist
two words w1 ∈ JT1K and w2 ∈ JT2K containing no A symbol, and such that w = w1 · w2 if � =·, and w ∈ w1&w2 if � = &.
We have now to prove that, for any w′1:

w′1∈ JT1K ∧ w′1 |= a+ ⇒ w′1 |= A+

Consider anyw′1∈ JT1K withw′1 |= a+. We have thatw′1·w2∈ JT1 � T2K, which by hypothesis impliesw′1·w2 |= a+ Z⇒ A+,
hence w′1 · w2 |= A+, hence w′1 |= A+, since w2 |̸= A+. We prove T2 |= a+ Z⇒ A+ in the same way. �

Theorem 3.6 (T |= a+ Z⇒ B+ from T ′ |= B+?). For any type T , any B ⊆ Σ , any a ∈ (Σ \ B), the following sentences are
equivalent.

1. T |= a+ Z⇒ B+;
2. for each occurrence of a inside T , there exists a subterm T ′ of T such that all the following properties hold:
• T ′ includes the occurrence of a;
• T ′ |= B+?;
• T ′ is a product type, that is, there exist T1 and T2 such that T ′ = T1 � T2.

Proof. (1) ⇒ (2). Assume T |= a+ Z⇒ B+. We prove the thesis by induction and by cases on the shape of T . We omit
obvious cases.

T = b ≠ a and T = ϵ. a does not occur inside T , hence the thesis holds trivially.
T = a. This case is impossible, since a |= a+ Z⇒ B+ would imply a |= B+, that contradicts the hypothesis a ∈ (Σ \ B).
T = T1 + T2. Hence, T1 |= a+ Z⇒ B+ and T2 |= a+ Z⇒ B+. By induction, each occurrence of a subterm a in T1 and in T2 is

part of a product T ′ with T ′ |= B+?, as required.

96 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

T = T1 � T2. By Lemma 3.5, either T1 |= a+ Z⇒ B+ and T2 |= a+ Z⇒ B+, or T1 � T2 |= B+?. In the first case, by induction,
each occurrence of a subterm a in T1 and in T2 is part of a product T ′ with T ′ |= B+?, as required. In the second case,
T itself is the product subterm with T ′ |= B+?.

(2)⇒ (1). Assume that, for each occurrence of a inside T , the occurrence is part of a product subterm T ′ of T such that
T ′ |= B+?. We want to prove that T |= a+ Z⇒ B+.

We reason by induction and by cases. We omit obvious cases.

T = b ≠ a and T = ϵ. In both cases, T |= a+ Z⇒ B+ holds trivially.
T = a. This case is excluded by the hypothesis, because we have an occurrence of a but no product inside T .
T1 + T2. Each of T1 and T2 satisfies the theorem hypothesis, hence, by induction, each of them satisfies Ti |= a+ Z⇒ B+,

hence T |= a+ Z⇒ B+.
T = T1 � T2. We consider two cases, either T1 � T2 |= B+? or T1 � T2 |̸= B+?. If T1 � T2 |= B+?, by definition

T1 � T2 |= a+ Z⇒ B+, hence we are done. If T1 � T2 |̸= B+?, we show that both T1 and T2 satisfy the theorem
hypothesis, and proceed by induction. To this aim, consider an occurrence of a that is in T1. By hypothesis, that
occurrence is included in a product subterm T ′ of T that satisfies B+?. Since T1 � T2 |̸= B+?, then T ′ is inside T1,
hence, T1 satisfies the theorem hypothesis. Hence, by induction, T1 |= a+ Z⇒ B+. In the same way we prove
T2 |= a+ Z⇒ B+. Now consider any word w ∈ JT1 � T2K, so that w ∈ w1&w2 with w1 ∈ JT1K and w2 ∈ JT2K.
If w |= a+, then either w1 |= a+ or w2 |= a+, hence either w1 |= B+ or w2 |= B+, hence w |= B+, hence
T1 � T2 |= a+ Z⇒ B+. �

We need now to find an algorithm to prove T |= A+?. The structure of the algorithm is described by the following
lemma.

Lemma 3.7 (T |= A+?). For any type T , T1, and T2:

(1) ϵ |= A+?

(2) a |= A+? ⇔ a ∈ A
(3) T [m..n] |= A+? ⇔ T |= A+?

(4) T1 � T2 |= A+? ⇔ (T1 |= A+? ∧ ¬N(T1)) ∨ (T2 |= A+? ∧ ¬N(T2)) ∨ (T1 |= A+? ∧ T2 |= A+?)
(5) T1 + T2 |= A+? ⇔ T1 |= A+? ∧ T2 |= A+?

(6) T ! |= A+? ⇔ T |= A+?

Proof. We prove each case directly.

(1 & 2) Trivial.
(3) (⇒): Assume that T [m..n] |= A+?. Consider w ∈ JT K; by this assumption, wm (w repeated m times) satisfies A+?,

hence either wm is empty or sym(wm) ∩ A ≠ ∅. As a consequence, either w is empty or sym(w) ∩ A ≠ ∅, hence
w |= A+?.
(⇐): Assume that any non-empty w ∈ JT K satisfies sym(w) ∩ A ≠ ∅. Then, any non-empty word obtained by
concatenating words from JT K satisfies the same property.

(4) (⇒): Assume (a) T1 � T2 |= A+?, (b) ¬(T1 |= A+? ∧ ¬N(T1)) and (c) ¬(T2 |= A+? ∧ ¬N(T2)); we want to prove
that T1 |= A+? and T2 |= A+?. By Property 3.4(3), we rewrite (b) and (c) as (b′) T1 |̸= A+ and (c ′) T2 |̸= A+. Let
w1 ∈ JT1K: by (c ′), ∃w2 ∈ JT2K such that w2 |̸= A+. By (a), w1 · w2 |= A+?. If w1 · w2 is not empty, then w2 |̸= A+
implies that w1 |= A+, hence w1 |= A+?. If w1 · w2 is empty, then w1 is empty, hence w1 |= A+?. Hence, we have
proved that T1 |= A+?. We can prove T2 |= A+? in the same way.
(⇐): Assume (T1 |= A+? ∧¬N(T1)) ∨ (T2 |= A+? ∧¬N(T2)) ∨ (T1 |= A+? ∧ T2 |= A+?). Consider any non-empty
w ∈ JT1 � T2K. If the first disjunct holds, then ¬N(T1) implies that w contains a non-empty subword from T1, and
T1 |= A+? implies w |= A+?. If the second disjunct holds, then w contains a non-empty subword from T2, and
T2 |= A+? implies w |= A+?. When the third disjunct holds w, being non-empty, contains a non-empty subword
either from T1 or from T2, and that subword satisfies A+?. Hence, in any of the three cases,w contains a non-empty
subword that satisfies A+?, hence we conclude that w |= A+?.

(5) T1 + T2 |= A+? iff JT1K ∪ JT2K ⊆ JA+?K, iff JT1K ⊆ JA+?K and JT2K ⊆ JA+?K, iff T1 |= A+? and T2 |= A+?.
(6) T ! |= A+? ⇔ T |= A+? holds because T ′ |= A+? only depends on the non-empty words of T ′, and T ! has the same

non-empty words as T . �

Case (4) of the lemma is the most interesting: while in case (5) we need both T1 |= A+? and T2 |= A+? in order to prove
T1 + T2 |= A+?, case (4) states that, for product types, non-nullability of T1 would compensate the fact that T2 does not
satisfy A+?, and vice versa. Case (6) is also quite important. Most of the results that we illustrate in this section would hold
unchanged if we used A+ rather than A+?, apart from the inductive computation of T ! |= A+, where we would have had
to go through the computation of T |= A+?. Case (6) shows that the inductive computation of T ! |= A+? is, instead, trivial.
Hence, case (6) is the main reason why we base our algorithm on the auxiliary constraint A+? rather than on A+.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 97

CoImplies(Markable Type T , Type U) - - Markable Type T : T is an object with two
- - writable bits T.Non-nullable and T .Marked

Array NodesOfSymbol; - - Array mapping symbols to lists of nodes of T
Prepare(T ,NodesOfSymbol); - - For each a ∈ sym(T), initializes NodesOfSymbol[a]with

- - pointers to all subterms Ti of T such that Ti = a
- - and, for each subterm Ti of T , initializes Ti.Non-nullable

CCU = CC(U); - - Quadratic time computation of CC(U)
return (every A+ Z⇒ B+ in CCU satisfy CoCheck(T ,NodesOfSymbol, A, B))

CoCheck(Markable Type T , Array NodesOfSymbol, Set A, Set B)
- - Next line unmarks each node of T
for T ′ in nodes-of(T) do T ′.Marked = false;
- - Postcondition forMarkBP(B, T): for any ai in T , ai.Marked = true iff ai satisfies
- - the second condition of Theorem 3.6, i.e., ai is inside a product that satisfies B+?
MarkBP(T , B);
- - Check whether every occurrence in T of each a in A is marked
return (every a in A, Ta in NodesOfSymbol[a] satisfy Ta.Marked)

MarkBP(Type T , Set B)
- - Returns true iff T |= B+?

- - and marks all nodes of T included in a product subterm T ′ such that T ′ |= B+?
Boolean result;
case T when T1 [m..n] or T1! : result = MarkBP(T1, B);

when T1 � T2: BPP1 = MarkBP(T1, B);
BPP2 = MarkBP(T2, B);
result = (BPP1 ∧ T1.Non-nullable)
∨ (BPP2 ∧ T2.Non-nullable)
∨ (BPP1 ∧ BPP2);
if result then {MarkAll(T1);MarkAll(T2); }

when T1 + T2: result = MarkBP(T1, B) ∧MarkBP(T2, B);
when ϵ: result = true;
when a: result = a ∈ B;

T .Marked = result;
return result;

MarkAll(Type T)
T .Marked = true;
case T when T1! or T = T1 [m..n]: if not T1.Marked then MarkAll(T1);

when T1 + T2 or T1 � T2: if not T1.Marked thenMarkAll(T1);
if not T2.Marked thenMarkAll(T2);

when ϵ or a: return;

Fig. 2. Algorithm for implication of co-occurrence constraints.

The algorithm
We can now use the previous results to define an algorithm CoImplies to verify that T |= A+ Z⇒ B+ holds for each

A+ Z⇒ B+ ∈ CC(U) in time O(n2), where n = |T | + |U|.
In our complexity analysis we assume that every symbol appearing in T and U can be manipulated in constant time, and

that symbols can be used as indexes for arrays, that is, for structures that can be accessed in constant time. This reflects
the fact that subtyping is typically computed by a compiler, which represents symbols as fixed-size pointers to entries of a
symbol table. This approach provides both constant time manipulation of symbols and constant time indexing by symbols.
In a more abstract setting, assuming the RAM machine model, this corresponds to assuming that symbols of T and U come
from a set of size k × n, that is k · (|T | + |U|), for some fixed k, so that any symbol only occupies O(log(n)) bits, which,
in the RAM model, yields the desired constant-time operations. As previously stated, this assumption mirrors the typical
implementation. In any case, it could be easily removed by adding a preprocessing phase where symbols are normalized
to integers in the range 1 . . . n, normalization that can be easily performed in time O(n · log(n)), dominated by the O(n2)
complexity of the whole algorithm.

Our algorithm, listed in Fig. 2, for each constraint A+ Z⇒ B+ ∈ CC(U), first marks every leaf of T that is included in a
product subterm T ′ of T such that T ′ |= B+? — this operation is performed by MarkBP, using the procedure specified by

98 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

Lemma 3.7. By Property 3.2 and Theorem 3.6, T |= A+ Z⇒ B+ holds if each occurrence of each a in A has been marked — this
condition is verified by CoCheck.

In greater detail, CoImplies first calls Prepare(T), which performs some linear-time preprocessing. Specifically, Prepare(T)
prepares a array NodesOfSymbol that associates every symbol a of sym(T) with the list of all leaves in T that contain an
occurrence of the symbol a, and decorates each node T ′ of T with a nullability bit that specifies whether N(T ′) holds, so
that the nullability tests of MarkBP will only need constant time. This procedure runs in time O(|T |), hence O(n), and is not
presented in Fig. 2. Then CoImplies initializes the list CCU with CC(U). The list of constraints CCU represents each constraint
A+ Z⇒ B+ of CC(U) as a list A and a bit array for B, so that A can be scanned in linear time and tests b ∈ B in MarkBP can be
run in constant time. Function CC(U) directly executes the definition of CC(U), hence it only requires one scan of U and,
for each product node of U , time O(|A| + |B|) to build the data structure representing A+ Z⇒ B+, hence CC(U) needs time
O(|U| × (|A| + |B|)). Since |A| + |B| ≤ |sym(U)|, then CC(U) runs in time O(|U| × |U|), that is, O(n2).

Finally, the algorithm invokes CoCheck(T , A, B) once for each constraint A+ Z⇒ B+ in CC(U) in order to prove that
T |= A+ Z⇒ B+ holds for all of them. CoCheck(T , A, B) is invoked O(n) times, and we are going to show that it runs in
time O(n), hence concluding the proof that CoImplies runs in time O(n2).

CoCheck(T , A, B) performs the following three operations:

• it unmarks all the nodes of T , in time O(T);
• it calls MarkBP(T , B) in order to mark all the nodes contained in each subtree T ′ such that T ′ |= B+?. This phase is

performed by a bottom-up visit of T , as specified by Lemma 3.7, and we discuss its run-time cost later on;
• for each a ∈ A, each node corresponding to an occurrence ai of a in the syntax tree of T is checked to verify whether it

has been marked by the previous step; this check only needs time O(|T |). Thanks to Property 3.2 and Theorem 3.6, the
algorithm concludes that T |= A+ Z⇒ B+ if, and only if, this step succeeds.

We show now that the auxiliary function MarkBP(T , B) can be executed in O(|T |) time. MarkBP is called once for each
node of T and, for each node, performs some constant-time operations plus two calls, at most, to functionMarkAll, hence the
total cost ofMarkBP is in O(|T |) plus the total cost ofMarkAll.MarkAll is either invoked byMarkBP or, recursively, byMarkAll
itself, it only performs constant time operations apart from its recursive calls, and is never invoked twice on the same node,
hence its total cost is in O(|T |). Therefore MarkBP can be computed in O(|T |) time, hence the whole algorithm runs in time
O(n2).

Remark 3.8. Although C(U) is F -complete for a conflict-free type U , CC(U) is not complete for U with respect to
constraints with shape A+ Z⇒ B+. For example, CC(a) is the empty set, which denotes the whole Σ∗, and it could be
made more precise by adding any non-trivial constraint A+ Z⇒ B+ sound for a, such as, for example, b+ Z⇒ c+, which is
sound since b is disjoint from a, and excludes words such as b.

C(U) is F -complete because it completesCC(U)with the constraint upper(sym(U)). For example, in this case, upper(a)
makes b+ Z⇒ c+ redundant.

A similar remark holds for the order constraints that we define in the next section: OC(U) is complete for order con-
straints that only use symbols in sym(U), but is not complete for every possible order constraint. However, Proposition 2.16
(asymmetric subtyping) does not require that every component of C(U) is complete on its class of constraints, but only that
the whole of C(U) is F -complete.

3.2. Order constraints OC(U)

Overview
In this section we present a polynomial algorithm to verify that T |= a ≺ b for each a ≺ b ∈ OC(U), where U is a

conflict-free type while T is an arbitrary extended RE. Our approach is a direct generalization of the algorithm presented in
[1]. In that paper we proved that, for any conflict-free type U and any {a, b} ⊆ sym(U), one can decide whether U |= a ≺ b
by inspecting the Least Common Ancestor of the only occurrence of a and the only occurrence of b in U . Here, we show that,
for any arbitrary type T , one can decide whether T |= a ≺ b by inspecting the Least Common Ancestor of each pair (ai, bi),
where ai is an occurrence of a in l(T) – a labelled version of T – and bi is an occurrence of b in l(T). We also show that this
test can be completed, for all constraints in OC(U), in time O(|T |2 + |U|), hence in time O(n2), where n = (|T | + |U|).

To this end, we will first define p(T) ⊆ (sym(T)× sym(T)) as the set of all ordered pairs of symbols (a, b) such that an a
comes before a b in one word of T , so that T |= a ≺ b iff (b, a) ∉ p(T). We then define labelled types l(T). These are types
where each occurrence of a symbol a is labelled with a unique index, and each occurrence of a binary operator is labelled
with a bit that specifies whether that occurrence is in the scope of a counting operator _ [m..n]. We finally show how to
deduce whether (a, b) ∈ p(T) from the Least Common Ancestor of the occurrences of a and b in l(T).

Constraints extraction OC(U)

The second component OC(U) of C(U) extracts a set of order constraints with shape a ≺ b, and is defined, in [1], as
follows. The notation sym(U) ≺ sym(U ′) stands for {a ≺ b | a ∈ sym(U), b ∈ sym(U ′)}.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 99

OC(U1 · U2)
def
= sym(U1) ≺ sym(U2) ∪ OC(U1) ∪ OC(U2)

OC(U1&U2)
def
= OC(U1) ∪ OC(U2)

OC(U1 + U2)
def
= sym(U1) ≺ sym(U2) ∪ sym(U2) ≺ sym(U1) ∪ OC(U1) ∪ OC(U2)

OC(U !)
def
= OC(U)

OC(ϵ)
def
= ∅

OC(a)
def
= ∅

OC(a [m..n])
def
= ∅

Observe that, for union types U1 + U2, the conjunction of the two order constraints sym(U1) ≺ sym(U2) and sym(U2) ≺
sym(U1) cannot be satisfied by any word that includes a symbol from sym(U1) and a symbol from sym(U2). The type U1+U2
satisfies this conjunction since it is conflict-free, hence sym(U1) and sym(U2) are disjoint, and since no counting operator
may be applied to this sum. For example, a type (a· b) + (b· a) or a type (a + b) [1..2] would not satisfy these constraints.
Similar considerations apply to the constraints sym(U1) ≺ sym(U2) associated with U1·U2: they also depend on disjointness
and lack of external counting.

Since OC(U) is a subset of {a ≺ b | a ∈ sym(U), b ∈ sym(U)}, its size is less than |U|2. An inductive computation
based on the definition would also take O(n2) time, since no pair is ever generated twice, hence each union operator in the
definition can be implemented as list concatenation.

The following example illustrates the definition.

Example 3.9.

• OC(a [1..2]· (b [2..∗]+ c [1..∗])) = {a ≺ b, a ≺ c, b ≺ c, c ≺ b}.

Formal treatment
Let us define p(T) as the set of all pairs of different symbols (a, b) such that there exists a word in JT K where an a comes

before a b.

Definition 3.10 (p(T)).

p(T)
def
= {(a, b) | a ≠ b, ∃w1, w2, w3. w1 · a · w2 · b · w3 ∈ JT K}

Order constraints specify which pairs cannot appear in a word, hence p(T) is related to order constraints as follows.

Property 3.11. For all a ∈ Σ , b ∈ Σ , such that a ≠ b:

T |= a ≺ b⇔ (b, a) ∉ p(T)

Our algorithm verifies whether T |= a ≺ b by checking whether (b, a) ∈ p(T). We verify whether (b, a) is in p(T) by
testing, for each occurrence of a and b in T , their Least Common Ancestor (LCA) in the syntax tree of T . For example, in
(b · c) + a, the LCA of the only occurrences of a and b is an occurrence of ‘+’ (hereafter, we will just say: the LCA is ‘+’),
and from this fact we will be able to deduce that (b, a) ∉ p(T). In (b&a) + a, however, we have to analyze two different
occurrences of a. To this aim, we will consider a decorated version of T — l(T) — such that each leaf of l(T) is decorated with
a distinct index i (Definition 3.14).

However, (b, a) ∈ p(T) does not only depend on the LCA of a and b in T , but also on the presence, or absence, of a
counting operator (different from T [1..1]) in any higher position of the syntax tree. For example, (b, a) ∉ p(a + b) but
(b, a) ∈ p((a+ b) [1..2]), since ba ∈ J(a+ b) [1..2]K.

For this reason, in l(T), we also mark each occurrence of a binary operator � as �r if it is into the scope of any counting
operator (where r stands for repeated), and as �s (where s stands for single) otherwise; this is formalized in Definition 3.14.

Definition 3.12 (Labelled Types). A labelled type L over an alphabetΣ is a term generated by the following grammar, where
ai ∈ (Σ × N), α ∈ {s, r},

L ::= ϵ | ai | L [m..n] | L +α L | L ·α L | L &α L | L!

A labelled type L is well-formed if:

• L satisfies the well-formedness conditions of Definition 2.4;
• L satisfies single-occurrence, that is, no pair ai appears twice in L.

Observe that the single-occurrence restriction regards the symbol-integer pair ai: the same symbol a may occur many
times in a well-formed labelled type, provided that the index is different in any occurrence.

The semantics of a labelled type L is a set of words formed by labelled symbols, that is: JLK ⊆ (Σ ×N)∗, and is defined in
the obvious way.

100 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

Definition 3.13 (JLK).

JϵK
def
= {ϵ}

JaiK
def
= {ai}

JL1 +α L2K
def
= JL1K ∪ JL2K

JL1 ·α L2K
def
= JL1K· JL2K

JL1 &α L2K
def
= JL1K&JL2K

JL!K
def
= JLK \ {ϵ}

JL [m..n]K
def
= {w | w = w1 · . . .· wj, ∀i ∈ 1..j. wi ∈ JLK, m ≤ j ≤ n}

We can now define the function l(_), that maps every type T into a well-formed labelled type l(T). To this aimwe define
an auxiliary recursive function lαi (T) with two parameters α and i. The integer i is the next index that is available to mark a
leaf, while α ∈ {s, r} is r if the current subtree is inside a non-trivial counting operator, and is s otherwise. The function l(_)
satisfies a strong form of single-occurrence, since it uses a different index for each different non-ϵ leaf; this strong form of
single-occurrence is just an irrelevant consequence of the simple indexing technique that we adopt here.

Definition 3.14 (l(T)). l(T) abbreviates ls1(T), where lαi (T) is defined as follows, for any α ∈ {s, r} and i ∈ N:

lαi (ϵ)
def
= ϵ

lαi (a)
def
= ai

lαi (T1 � T2)
def
= lαi (T1) �α lαm+1(T2) where m = max{ j | aj ∈ sym(lαi (T1)) }

lαi (T !)
def
= (lαi (T))!

lαi (T [1..1])
def
= (lαi (T)) [1..1]

lαi (T [m..n])
def
= (lri (T)) [m..n] n > 1

In a type a· b, order is relevant: (a, b) ∈ p(T) but (b, a) ∉ p(T). We express this fact by extending the usual definition of
LCAl(T)[ai, bj], so that it returns a pair�d, where the direction d is→ if the leaf ai comes before bj in T , and is← otherwise;we
ignore the direction when � ≠ ·s (see Definition 3.15 and Example 3.19). For our aims, we only need to define LCAl(T)[_, _]
for pairs of leaves which are distinct and which are both indexed symbols.

Definition 3.15 (LCAl(T)[ai, bj]). Let ai and bj be two different non-ϵ leaves of l(T). Then, the lowest common ancestor of ai
and bj in l(T) is inductively defined as follows.

LCAL![ai, bj]
def
= LCAL[ai, bj]

LCAL[m..n][ai, bj]
def
= LCAL[ai, bj]

LCAL1�αL2 [ai, bj]
def
=


LCAL1 [ai, bj] if ai and bj are leaves of L1
LCAL2 [ai, bj] if ai and bj are leaves of L2
�→α if ai is in L1, bj is in L2, and �α= ·s

�←α if ai is in L2, bj is in L1, and �α= ·s

�α otherwise

Note that, in each use of LCAL′ [ai, bj] at the right-hand side of the definition, ai and bj are still two different leaves of L′.

We now need to introduce the notion of non-repetitive context, with some of its properties. We will use C to denote a
context, that is a labelled type where exactly one leaf is the special symbol _, and C[L] to denote the labelled type obtained
by substituting _ with L in C . Hence, contexts are generated by the following grammar:

C ::= _ | L �α C | C �α L | C ! | C [m..n]

We say that a context is non-repetitive when is generated by the following grammar, that differs from the full grammar in
the last case. When a context can only be generated by the full grammar, we say that it is repetitive.

Cs ::= _ | L �α Cs | Cs �α L | Cs! | Cs [1..1]

Hence, a context is repetitive if, and only if, the hole _ is in the scope of a non-trivial counting operator.
Repetitive and non-repetitive contexts enjoy the following properties (whose proofs are reported in the Appendix).

Lemma 3.16. Let Cs be a non-repetitive labelled context and L a labelled type such that Cs[L] is well-formed, then:
w ∈ JCs[L]K ∧ (sym(w) ∩ sym(L)) ≠ ∅ ⇒ ∃w1 ∈ JLK, w2 ∈ sym(Cs)

∗
: w ∈ w1&w2

Property 3.17. Let Cs be a non-repetitive labelled context and L a labelled type such that Cs[L] is well-formed, then:
{ai, bj} ⊆ sym(L) ∧ (ai, bj) ∉ p(L)⇒ (ai, bj) ∉ p(Cs[L]) (1)

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 101

If C is any labelled context and L a labelled type such that C[L] is well-formed, then:
p(L) ⊆ p(C[L]) (2)

If Cr is a repetitive labelled context and L a labelled type such that Cr [L] is well-formed, then:
{ai, bj} ⊆ sym(L)⇒ (ai, bj) ∈ p(Cr [L]) (3)

We can finally prove the fundamental result of this section, that is the basis of our algorithm.
Property 3.18 (p(T) and T |= a ≺ b). For any type T and a ≠ b:

(1) (ai, bj) ∈ p(l(T)) ⇔ LCAl(T)[ai, bj] ∈ {�r ,&s, ·
→
s }

(2) (a, b) ∈ p(T) ⇔ ∃ai, bj ∈ sym(l(T)). LCAl(T)[ai, bj] ∈ {�r ,&s, ·
→
s }

(3) (b, a) ∉ p(T) ⇔ ∀ai, bj ∈ sym(l(T)). LCAl(T)[ai, bj] ∈ {+s, ·
→
s }

(4) T |= a ≺ b ⇔ ∀ai, bj ∈ sym(l(T)). LCAl(T)[ai, bj] ∈ {+s, ·
→
s }

Proof. (1)⇒: we observe that the complement of {�r ,&s, ·
→
s } is {+s, ·

←
s }, and show that LCAl(T)[ai, bj] ∈ {+s, ·

←
s } ⇒

(ai, bj) ∉ p(l(T)).
If LCAl(T)[ai, bj] = +s, then l(T) = Cs[L1 + L2], where Cs is a non-repetitive context, and where ai only appears in L1 and

bj only appears in L2, or vice versa (exchanging 1 with 2). In both cases, no single word of L1+ L2 may contain both ai and bj,
hence (ai, bj) ∉ p(L1+ L2), hence (ai, bj) ∉ p(Cs[L1+ L2]), by Property 3.17(1). The case for LCAl(T)[ai, bj] = ·←s is analogous,
with the only difference that l(T) = Cs[L2 · L1] where ai only appears in L1 and bj only appears in L2, which implies that
(ai, bj) ∉ p(Cs[L2 · L1]).

(1) ⇐: assume LCAl(T)[ai, bj] ∈ {�r ,&s, ·
→
s }. In the first case, the LCA of ai and bj is in a repetitive context, hence

(ai, bj) ∈ p(l(T)) follows from Property 3.17(3). If LCAl(T)[ai, bj] = &s, then l(T) = C[L1&L2] with ai ∈ sym(L1) and
bj ∈ sym(L2) or vice versa, hence, by Lemma 2.8(2) and the definition of p(_), (a, b) ∈ p(L1&L2), and the result follows
because p(L1&L2) ⊆ p(C[L1&L2]) (Property 3.17(2)). In case LCAl(T)[ai, bj] = ·→s we reason in the same way.

(2) (a, b) ∈ p(T)⇔ ∃i, j. ai, bj ∈ p(l(T)), hence (2) follows from (1).
(3) follows from (2) by negating the two sides and exchanging awith b.
(4) follows from (3) since T |= a ≺ b iff (b, a) ∉ p(T). �

Observe that, if any of a and b is not in sym(T), then T |= a ≺ b holds trivially. This is expressed by the universal
quantification found in Property 3.18(4): if, for example, no leaf of T is b, then no bj belongs to sym(l(T)), hence the condition
∀ai, bj ∈ sym(l(T)) : LCAl(T)[ai, bj] ∈ {+s, ·

→
s } is trivially satisfied.

Example 3.19 (LCAl(T)[ai, bj]). If T = a· ((b+ a) [1..3]), then l(T) = a1 · s((b2 +r a3) [1..3]), and LCAl(T)[ai, bj] is defined as
in the following table.

a1 b2 a3
a1 − ·

→
s ·

→
s

b2 ·
←
s − +r

a3 ·
←
s +r −

Hence, we have (b, a) ∈ p(T) because LCAl(T)[b2, a3] = +r , and (a, b) ∈ p(T) because LCAl(T)[a1, b2] =·→s , but also because
LCAl(T)[a3, b2] = +r . Hence, T |̸= a ≺ b and T |̸= b ≺ a.

The algorithm
Our algorithm to verify whether ∀F ∈ OC(U) : T |= F is based on Property 3.18 and is shown in Fig. 3. It first decorates

T and builds, for both l(T) and U , a data structure to compute the LCA of any two leaves in constant time. This preprocessing
phase is done in linear time using the algorithm described by Bender and Farach-Colton in [13].5 The lists Leavesl(T) and
SymbolsT contain the leaves of l(T) and the symbols of T , the array LeafOfSymbolU maps each symbol in sym(U) to the only
corresponding leaf in U , and SymbolOfNodel(T) maps each leaf node ai in l(T) to the corresponding symbol a.

The algorithm first prepares a data structure OCT such that OCT [a][b] = true iff T |= a ≺ b. OCT [a][b] is first initialized
as true everywhere, then every pair of leaves ai, bj in Leavesl(T) with a ≠ b is analyzed and the corresponding value
OCT [a][b] is set to false if the LCA of ai, bj is not in {+s, ·

→
s }, according to Property 3.18. Then, in order to check whether

∀(a ≺ b) ∈ OC(U) : T |= a ≺ b, we scan each pair of symbols (a, b) in T such that a ≺ b ∈ OC(U), and use OCT to
verify whether T |= a ≺ b. In this way, we check the implication (a ≺ b) ∈ OC(U) ⇒ T |= a ≺ b for all the constraints
(a ≺ b) ∈ OC(U) where both symbols are in sym(T). We can safely ignore the constraints (a ≺ b) ∈ OC(U) where a, b, or
both, are in sym(U) \ sym(T), since these constraints trivially hold in T .

The preprocessing phase of OrderImplies (lines 1–2) has complexity O(|T | + |U|). The definition and initialization of OCT
(lines 3–7) requires two different loops and takes time O(|T |2), since we only require a constant time for any pair of leaves
of T .

The main loop of the algorithm (lines 8–12) only needs O(|sym(T)|2) time, since we only have constant time operations
for each pair of symbols in T , hence the total complexity of the three phases is O(|T |2 + |U|). Hence, also in this case, the
extension from conflict-free inclusion to asymmetric inclusion adds no time complexity to the algorithm.

5 In this case, LCAi is not really a bidimensional array, it is a linear-space object with a constant time access.

102 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

OrderImplies(Type T , Type U): - - we assume that sym(T) ⊆ sym(U)
- - Lines 1 and 2: Linear time preprocessing to build all data structures
- - needed to compute LCAl(T)[n1, n2] and LCAU [n1, n2] in constant time
- - and to scan the symbols and leaves of T and U
1 LCAl(T), Leavesl(T), SymbolsT , SymbolOfNodel(T) = PreprocessGeneralType(T);
2 LCAU , LeafOfSymbolU = PreprocessCFType(U);
- - OCT [a][b]will contain false iff (a, b) ∈ (SymbolsT × SymbolsT) and T |̸= a ≺ b
3 for each (a, b) in SymbolsT × SymbolsT where a ≠ b: OCT [a][b] = true
4 for each n1 in Leavesl(T), n2 in Leavesl(T):
5 a = SymbolOfNodel(T)[n1]

6 b = SymbolOfNodel(T)[n2]

7 if a ≠ b then OCT [a][b] = OCT [a][b] ∧ (LCAl(T)[n1, n2] ∈ {+s, ·
→
s })

- - the main loop looks for an F ∈ OC(U) such that T |̸= F
8 for each (a, b) in SymbolsT × SymbolsT where a ≠ b:
9 if (LCAU [LeafOfSymbolU(a), LeafOfSymbolU(b)] in {+s, ·

→
s })

10 and not OCT [a][b]
11 then return false
12 return true

Fig. 3. Algorithm for implication of order constraints.

3.3. Cardinality constraints ZeroMinMax(U)

Overview
In this section we present a polynomial algorithm to check T |= a?[m..n] for each a?[m..n] ∈ ZeroMinMax(U). In the

constraint a?[m..n], valuesm and n denote, respectively, theminimumand themaximumvalues of |w|a for thosewordsw of
U where a actually appears. Our basic idea is to compute the same quantities for any type T . We denote these asMinapp(T , a)
and Max(T , a) respectively, and we verify T |= a?[m..n] by checking thatm 6 Minapp(T , a) and Max(T , a) 6 n.

Evaluating the minimal value of |w|a over the words of T where a appears is not immediate, because of symbol
repetition and generalized counting. Consider, for example, the type a [2..∗] · a [3..∗]: it clearly satisfies a?[5..∗]; here,
Minapp(T1 · T2, a) = Minapp(T1, a) + Minapp(T2, a). However, the type (a [2..∗] + ϵ) · (a [3..∗] + ϵ) only satisfies a?[2..∗]:
since a is optional on both sides, we consider here min(Minapp(T1, a),Minapp(T2, a)) rather than their summation. Finally,
(a [m..∗]+ ϵ)· (a [n..∗]) satisfies a?[n..∗]: since a is optional in the first subterm only, the result corresponds to n, that is, to
Minapp(T2, a). In the same way, while a [3..∗] [4..∗] satisfies a?[12..∗], a non-empty word of (a [3..∗] + ϵ) [4..∗] may have
as few as 3 a’s, hence (a [3..∗] + ϵ) [4..∗] only satisfies a?[3..∗]: also in this case, Minapp(T [m..n] , a) is not a function of
Minapp(T , a) only.

We solve this problem by the mutually inductive computation of three different functions Min(T , a) ≤ Min!(T , a) ≤
Minapp(T , a), where Min(T , a) computes the minimal value of |w|a over the whole T , Min!(T , a) computes the minimal
value of |w|a over T !, and Minapp(T , a) computes the minimal value of |w|a over the words of T where a appears.

The inductive computation of Min(T , a) is quite easy, apart from the case for Min(T !, a), where Min!(T , a) comes handy
(Lemma 3.22). The inductive computation of Minapp(T , a) is now also easy, even in the tricky cases of T1 � T2 and T [m..n],
through a combined use of Min(T , a) and Minapp(T , a), as follows.

In the case of T1 � T2, observe that any word of T1 � T2 that contains a is built by combining either a word of T1 that
contains awith any word of T2, or by combining a word of T2 that contains awith any word of T1. This gives us the following
equation, that shows the correct way of combining summation and minimization when computing Minapp(T1 � T2, a).

Minapp(T1 � T2, a) = min(Minapp(T1, a)+Min(T2, a),Min(T1, a)+Minapp(T2, a))
In the case of T [m..n], any word of T [m..n] that contains a is built by combining one word of T that contains a with at

leastm− 1 words of T . This gives us the following equation.
Minapp(T [m..n] , a) = Minapp(T , a)+ (m− 1) ·Min(T , a)

The function Min!(_ , a) can be inductively computed from Min(_ , a) and Min!(_ , a) in a similar way.
In this section, we define these three functions and show that they can be computed together with a single linear scan

of the parse tree of T . The same property holds for Max(T , a), with no need of auxiliary functions.

Constraints extraction ZeroMinMax(U)

The third component ZeroMinMax(U) of C(U) extracts a set of cardinality constraints with shape a?[m..n]. For each
a [m..n] that appears in U , it extracts the corresponding constraint a?[m..n]; a symbol a that is not subject to a counting
operator is treated as a [1..1]. ZeroMinMax(U) is defined as follows [1].

ZeroMinMax(U) = {a?[m..n] | a [m..n] is subterm of U}
∪ {a?[1..1] | a ∈ sym(U) and a [_.._] is not a subterm of U}

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 103

Soundness of ZeroMinMax(U) depends on both the single-occurrence and the symbol-counting restrictions of conflict-
free types. Consider a conflict-free U that contains a subterm a [m..n]: every a appearing in a word w of JUK is generated by
that subterm, because of single-occurrence, and that subterm cannot be subject to any further counting operator, hence a
will occur in w betweenm and n times. In the same way, if a subterm a appears in U and that a is not immediately included
into a subterm a [m..n], then no other counting operator may enclose that a, hence no word in JUK may contain more than
one occurrence of a (for a formal proof see [1]).

Formal treatment
We begin with a formal definition of Min(T , a), Min!(T , a) and Minapp(T , a). We first give a semantic definition of these

functions (Definition 3.20), and will then show how to compute them (Lemma 3.22).
The semantics of the three functions is based on a common function MinOrStar(W , a), that corresponds to minw∈W |w|a

whenW is not empty, but yields+∞, which we denote here as ∗, whenW is empty. This usage of+∞ to deal with empty
sets is quite standard, since it ensures natural properties such as:

MinOrStar(W ∪W ′, a) = min(MinOrStar(W , a),MinOrStar(W ′, a))

Definition 3.20 (Min(T , a), Min!(T , a), Minapp(T , a)). Let a be a symbol, W a set of words, and T a type. The functions
MinOrStar(W , a), Min(T , a), Min!(T , a), Minapp(T , a) are defined as follows.

MinOrStar(W , a)
def
= minw∈W |w|a ifW ≠ ∅

MinOrStar(W , a)
def
= ∗ ifW = ∅

Min(T , a)
def
= MinOrStar(JT K, a)

Min!(T , a)
def
= MinOrStar((JT K \ {ϵ}), a)

Minapp(T , a)
def
= MinOrStar({w | w∈ JT K ∧ w |= a+}, a)

Observe that Min(T , a) can never be ∗, since JT K is never empty. On the other side, Minapp(T , a) can never be 0, since it
only considers the words of T where a appears.

Proposition 3.21. For any T , a, the following holds:

Min(T , a) ≠ ∗ (1)
Min!(T , a) = ∗ ⇔ sym(T) = ∅ (2)
Minapp(T , a) = ∗ ⇔ a ∉ sym(T) (3)
Minapp(T , a) ≥ 1 (4)

We can now show how these three functions can be computed by mutual induction. Note that, by our convention about
∗, all of n+ ∗, ∗ + n, n× ∗, ∗ × n denote here ∗.

Lemma 3.22.
Min(ϵ, a) = 0
Min(a, a) = 1
Min(b, a) = 0 if b ≠ a
Min(T1 + T2, a) = min(Min(T1, a),Min(T2, a))
Min(T1 � T2, a) = Min(T1, a)+Min(T2, a)
Min(T [m..n] , a) = m ·Min(T , a)
Min(T !, a) = Min!(T , a)

Min!(ϵ, a) = ∗

Min!(a, a) = 1
Min!(b, a) = 0 if b ≠ a
Min!(T1 + T2, a) = min(Min!(T1, a),Min!(T2, a))
Min!(T1 � T2, a) = min(Min!(T1, a)+Min(T2, a), Min(T1, a)+Min!(T2, a))
Min!(T [m..n] , a) = Min!(T , a)+ (m− 1) ·Min(T , a)
Min!(T !, a) = Min!(T , a)
Minapp(ϵ, a) = ∗

Minapp(a, a) = 1
Minapp(b, a) = ∗ if b ≠ a
Minapp(T1 + T2, a) = min(Minapp(T1, a),Minapp(T2, a))
Minapp(T1 � T2, a) = min(Minapp(T1, a)+Min(T2, a), Min(T1, a)+Minapp(T2, a))
Minapp(T [m..n] , a) = Minapp(T , a)+ (m− 1) ·Min(T , a)
Minapp(T !, a) = Minapp(T , a)

104 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

CardImplies(Type T , Type U):
every a [m..n] in U satisfy let (_, _,MinA, Max)=MinBangAppMax(T , a);

inMinA ≥ m ∧Max ≤ n
and every a in U where a [m..n] not in U

satisfy let (_, _, _,Max)=MinBangAppMax(T , a);
inMax ≤ 1

MinBangAppMax(Type T , Symbol a):
case T
when T1 � T2: let (M1, B1, A1, Max1)=MinBangAppMax(T1, a);

let (M2, B2, A2, Max2)=MinBangAppMax(T2, a);
return(M1 +M2,

min(B1 +M2,M1 + B2),
min(A1 +M2,M1 + A2),
max(Max1,Max2));

when T1 + T2: let (M1, B1, A1, Max1)=MinBangAppMax(T1, a);
let (M2, B2, A2, Max2)=MinBangAppMax(T2, a);
return(min(M1,M2), min(B1, B2), min(A1, A2),

max(Max1,Max2));
when T1 [m..n]: let (M1, B1, A1, Max1)=MinBangAppMax(T1, a);

return(m ·M1, B1 + (m− 1) ·M1, A1 + (m− 1) ·M1, n ·Max1);
when T1!: let (_ , B1, A1,Max1)=MinBangAppMax(T1, a);

return(B1, B1, A1, Max1);
when ϵ: return(0, *, *, 0)
when a: return(1, 1, 1, 1)
when b ≠ a: return(0, 0, *, 0)

Fig. 4. Algorithm for implication of cardinality constraints.

Proof. See Appendix. �

The upper bound is much easier, and is defined and computed as follows.

Definition 3.23 (Max(T , a)).

Max(T , a)
def
= maxw∈JTK |w|a if (maxw∈JTK |w|a) ∈ N

Max(T , a)
def
= ∗ if ∀n∈N. ∃w∈ JT K. |w|a > n

Lemma 3.24.

Max(ϵ, a) = 0
Max(a, a) = 1
Max(b, a) = 0 if b ≠ a
Max(T1 + T2, a) = max(Max(T1, a),Max(T2, a))
Max(T1 � T2, a) = Max(T1, a)+Max(T2, a)
Max(T [m..n] , a) = n ·Max(T , a)
Max(T !, a) = Max(T , a)

By the definition of Minapp(T , a) and Max(T , a), cardinality constraint satisfaction can be decided as follows.

Corollary 3.25.

T |= a?[m..n] ⇔ m ≤ Minapp(T , a) ∧ Max(T , a) ≤ n

The algorithm
We can now introduce the algorithm that we use to verify that a general type T satisfies every F in ZeroMinMax(U). It is

listed in Fig. 4; the function MinBangAppMax computes, in one pass, and in linear time, the values of Min(T , a), Min!(T , a),
Minapp(T , a) and Max(T , a). The values of Minapp(T , a) and Max(T , a) are then used to verify the constraint satisfaction.

MinBangAppMax(T , a) can be computed in time O(|T |), since it performs constant-time operations for each node of T .
CardImplies invokes it on T once for each symbol of U , hence CardImplies can be computed in time O(|U| × |T |).

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 105

3.4. Lower bounds and upper bounds — upperS(U) and SIf (U)

The two last components ofC(U) are the lower bound and upper bound components, called SIf (U) and upperS(U), which
are defined, in [1], as follows.

Lower-bound: SIf (U)
def
= if ¬N(U) then {sym(U)+} else ∅

Upper-bound: upperS(U)
def
= {upper(sym(U))}

Notice that the problem of constraint verification is simplified by verifying the implication of lower and upper bounds
at the same time: by restricting ourselves to the case when T |= upperS(U), we do not need to check whether T |= SIf (U),
but we only have to check that N(T)⇒ N(U), as proved below.

Theorem 3.26 (Implication of SIf (T2) and upperS(T2)). For any two types T1 and T2:

T1 |= SIf (T2) ∪ upperS(T2) ⇔ (N(T1)⇒ N(T2)) ∧ sym(T1) ⊆ sym(T2)

Proof. (⇒) T1 |= upperS(T2) means that

¬∃a, w. (a ∈ sym(w) ∧ w ∈ JT1K ∧ a ∉ sym(T2))

hence

∀a, w. (a ∈ sym(w) ∧ w ∈ JT1K)⇒ a ∈ sym(T2)

hence

∀a. (∃w. a ∈ sym(w) ∧ w ∈ JT1K)⇒ a ∈ sym(T2)

hence, by Lemma 2.8(2),

∀a. a ∈ sym(T1)⇒ a ∈ sym(T2)

We prove now that ¬N(T2) ⇒ ¬N(T1). Assume ¬N(T2); then T1 |= SIf (T2) means T1 |= sym(T2)+, hence ϵ ∉ JT1K, hence
¬N(T1).

(⇐) By Lemma 2.8(2), direction ⇐, and by definition of upperS(_), we have that T1 |= upperS(T1), from which the
implication sym(T1) ⊆ sym(T2) ⇒ T1 |= upperS(T2) follows. If N(T2) is true, then T1 |= SIf (T2) holds trivially. If ¬N(T2),
then, by N(T1)⇒ N(T2), N(T1) is false as well, hence every word of T1 contains a symbol from sym(T1), hence a symbol from
sym(T2). �

Hence, the function UpperLowerImplies(T ,U) that verifies whether T |= SIf (U) ∪ upperS(U) will just check whether
(N(T)⇒ N(U))∧ sym(T) ⊆ sym(U), which can be trivially done in time O(|T |+ |U|). The algorithm is quite obvious, hence
we provide no pseudocode.

3.5. Summing up

We have recalled each of the five components of the constraint-extraction function C(U) defined in [1] and, for each
component Ci, we defined a function that verifies, for any general T , whether T |= Ci(U). Since the union of these five
components is exact for conflict-free types [1], the following theorem holds.

Theorem 3.27. For any type T , for any conflict-free typeU, JT K ⊆ JUK iff all of CoImplies(T , U), OrderImplies(T , U), CardImplies(T ,
U), and UpperLowerImplies(T , U) return true.

CoImplies, OrderImplies, and CardImplies have quadratic time-complexity, while UpperLowerImplies, which checks both
lower and upper constraints, is linear, hence the algorithm is quadratic.

The algorithm that we described in [1], for the much simpler case when the subtype is conflict-free, is also quadratic.
Quite surprisingly, despite the much higher expressive power of general extended REs with respect to conflict-free types,
the only case whose complexity is affected by the presence of general types in the subtype position is that of cardinality
constraints. Satisfaction of cardinality constraints can be checked in linear time when two conflict-free types are compared,
while here the presence of multiple occurrences of a symbol and the nesting of T [m..n] operators both concur in making
the problem slightly harder to solve, forcing us to adopt a quadratic algorithm for the CardImplies case.

4. Experimental evaluation

To validate our claim of efficiency we present here an experimental evaluation of our algorithm. In particular, we first
study its scalability properties, and then compare its performance with that of a subtyping algorithm based on Brzozowski’s
derivatives [11]. Our experiments have been performed on a random sample of subtype–supertype pairs, hence we also
discuss here the problem of generating significant test samples.

106 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

Fig. 5. Distribution of subtype and supertype sizes.

4.1. Experimental setup

We implemented the algorithms being tested in Java 1.6, and evaluated their performance on a 2.53 GHz Intel Core 2
Duo machine with 4 GB of main memory and running Mac OSX 10.6.8. To avoid the perturbations introduced by system
activity, we ran each experiment ten times, discarded the best and the worst performance, and computed the average of the
remaining times.

4.2. Sample generation

We perform our experiments on randomly generated type pairs. The problem of generating random samples for
subtyping is not trivial: when a random pair of types is generated, even if they share the same alphabet, the probability that
one of the two types is a subtype of the other is extremely low. Hence, a set of random pairs wouldmostly test the algorithm
behaviour in the negative case. However, when a compiler checks a piece of code, the vastmajority of the input pairs satisfies
the subtype relation, hence the positive case is the one we would really like to measure. (The problem of generating a pair
that is subtype-related is similar but complementary to those studied by Antonopoulos et al. in [14], where the focus is on
generating, counting, and sampling regular tree languages.)

In our analysis we explored and used two different schemes in order to generate random samples of subtype-related
pairs. The first approach we consider here is the simplest one:

(i) generating a random conflict-free type U;
(ii) generating a random type T in RE(#,&) (the class of unrestricted REs with interleaving and counting), forcing its

alphabet to be included in that of U;
(iii) discarding the pair if the two types are not related by subtyping.

To implement this approach, we developed two random generators, which receive in input the expected depth of the
type being generated and the probability distribution of operators (we used in both cases the uniform distribution). At each
step, the generators choose a type operator and, when the actual depth of the generated type reaches the expected depth,
they generate leaf nodes only.

This approach proved to be totally unsatisfactory regarding both the quality and the quantity of subtype-related pairs.
We report here the results of a generation experiment, where we generate 1,000,000 pairs. In this collection, only 279 pairs
are in the subtype–supertype relation (0.0279%). Furthermore, as shown in Fig. 5, the generated subtypes are very small
with respect to the supertype: indeed, the size of all of the 279 subtypes is less than 10 nodes, while supertype sizes have a
much better distribution. Given these results, we used this approach for generating samples for negative tests only.

The second scheme we analyze is more complex and is specifically designed for generating pairs satisfying the inclusion
relation. In order to better exploit the algebraic properties of the binary operators, our generators represent types in n-ary
form rather than in binary form; hence, T1 ~ · · ·~ Tn is used to represent (((T1 ~ T2) ~ · · ·~ Tn). Furthermore, T [0..∗] is also
used by the generator, and it denotes T [1..∗]+ ϵ.

We first observe that the pairs of types that are examined by a compiler are not really random pairs, since the subtype
corresponds to an expression that is written by a programmer who is aware of the expected supertype, and aims to write
an expression that matches that type. As a consequence, it will often be the case that the subtype bears some syntactic
relationship, loose or strict, with the supertype, rather than being a random type expression that luckily happens to denote
a subset of the supertype.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 107

This observation inspires the following algorithm:we first randomly generate a conflict-free supertypeU , and then apply
a set of probabilistic rewriting rules that output a type T such that T ≤ U . Our rewrite rules, unfortunately, produce a type
T where counting is only applied to its leaves, which is hardly acceptable. For this reason, we add a third step, where we
apply a further transformation to T that lifts counting operators from the leaves to the intermediate nodes, hence returning
a subtype T ′ ≤ T ≤ U . The pair (T ′,U) is the result of our subtype generation algorithm.

In detail, the type rewriter applies the following rules:

1. if U = U1 + · · · + Un, each Ui is recursively transformed into a union Ti1 + · · · + Timi , where each Tij is generated from
the corresponding Ui (each set {Tij}j∈1..mi may be empty); a random permutation is applied to the result; since any Ui
generates a set of Tij, any symbol from Ui may be repeated many times in the generated subtype, or may not appear in
the subtype at all; observe that, when the set ∪i∈1..n{Tij}j∈1..mi is a singleton, then the subtype of the union type U may
not be a union type; in general, our rewrite rules may always generate a subtype whose outermost operator is not the
same as that of the supertype;

2. if U = U1 · . . .· Un and U is not nullable, we generate a product type T = T1 · . . .· Tn, where Ti ≤ Ui; if Ui is nullable, Ti
may be ϵ;

3. if U = U1· . . .·Un and U is nullable, we either generate a product type T = T1· . . .·Tn, as for the previous rule, or transform
U into U1 + · · · + Un and recursively apply the first rule;

4. as in the previous two cases, ifU = U1& . . .&Un is not nullable, we generate a product subtype, while, whenU is nullable,
we generate either a product subtype or a sum subtype. In both cases, when the generated subtype is a product, we
randomly choose between a subtype T = T1& . . .&Tn and a subtype T = T1 · . . .· Tn; in all cases, a random permutation
is applied to the result;

5. if U = a [m..n], we return T = a [p..q], where p and q are randomly generated, so that m ≤ p ≤ q ≤ n; in the special
case when both p = 0 and q = 0, the resulting type U = a [0..0] is just ϵ. In greater detail, we proceed as follows:
• if U = a [m..n] with n ≠ ∗, we randomly generate two numbers r and s uniformly distributed in [m..n], and return

a [min(r, s)..max(r, s)];
• if U = a [m..∗], we first randomly decide whether we will generate an open interval T = a [r..∗] or a closed interval

T = a [r..s]. In the first case,we generate anoffset iusing a Poissondistributionwith averagem, and return a [m+ i..∗].
In the second case, we generate i with the same Poisson distribution, we randomly generate two numbers r and s
uniformly distributed in [m..m+ i], and return a [min(r, s)..max(r, s)].

After the type rewriting phase, we get a type T ≤ U , where labels may be repeated, thanks to rewritings of cases (1), (3)
and (4), but counting is still confined in the leaf nodes of T , as it was in U . To overcome this issue, we add a third step, that
recursively applies the rewriting rule T1 [m1..n1] &T2 [m2..n2]→ (T1&T2)


m′..n′


, where [m′..n′] = [m1..n1] ∩ [m2..n2]; if

[m1..n1] and [m2..n2] have empty intersection, the rule is not applied.
This approach has the advantage of producing couples of types that are in the subtype relation and whose sizes are

comparable. This approach generates T starting from U , hence T is not only a subtype of U , but it also bears a structural
relation with U , although this relation is not very strong, given the extensive set of rewriting rules that we apply. The
existence of this structural relation does not affect the behaviour of our algorithm, since it works on the constraints that
are extracted from the two types, without taking any shortcut in cases of high similarity.

4.3. Derivative-based algorithm

We would have liked to compare our algorithm with some established competitor, but no other algorithm for inclusion
of regular expressions with interleaving and counting has been experimentally evaluated, to our knowledge. Hence we
decided to choose the most promising alternative algorithm among those presented in the literature (see Section 5), and to
implement it ourselves. We did not consider the classical algorithm based on automata complement and intersection, since
the automata that have been studied for interleaving and counting do not behave well under complement and intersection
[7,15], and no such automaton has been defined to take advantage of the specific limitations of conflict-free types. We use
instead the algorithmic scheme described by Chen and Chen in [16]. The scheme is based on Brzozowski derivatives, which
are very well behaved for deterministic types, so that the technique is well suited to work with conflict-free supertypes.
While the worst-time complexity of this algorithm is still very high, as happens with all algorithms that have been defined
for subtype inclusion in presence of interleaving and counting, the average behaviour of this scheme seems interesting.

The notion of Brzozowski’s derivative is standard, and is defined as follows (see [17]).

Definition 4.1 (Derivative). T1 is a derivative of T according to a iff {a}· JT1K = JT K.

The algorithmic scheme is reported in Fig. 6. In this figure, da(T), defined in Definition 4.5, is a Brzozowski’s derivative
of a type T by a symbol a ∈ Σ , and first(T) is the set of the first symbols of all words accepted by T .

The algorithm checks that all derivatives of T are included in those of U and stores inM the pairs that have already been
met. It first verifies that ϵ ∈ T implies ϵ ∈ U and that first(T) ⊆ first(U). If this is the case, the current pair is added toM , the
global data structure that contains all the already-met pairs, which is initially empty and grows at each call of DerivInclude.
At this point, DerivInclude recursively verifies that, for every symbol a that is accepted by T , its derivative is included in the

108 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

global Set M := ∅;
DerivInclude(Type T , Type U):

if (N(T) and not N(U)) then return false
if (first(T) ⊈ first(U)) then return false
M := M ∪ {(T ,U)}
for each a ∈ first(T) do

T1 = da(T)
U1 = da(U)
if(T1,U1) ∉ M
then if DerivInclude(T1,U1)= false

then return false
od
return true

Fig. 6. Skeleton of the derivative-based inclusion algorithm.

corresponding derivative of U . When the same pair is met for the second time, it is ignored. The algorithm is quite natural;
for a proof of correctness, see [16].

This algorithm was originally designed for the symmetric inclusion of 1-unambiguous regular expressions without
interleaving and counting. To adapt this algorithm to our context, we extended Brzozowski’s derivatives to conflict-free
types and unrestricted regular expressions with interleaving and counting (see also [18]). To this aim, we first extend our
type language with the empty expression ∅. Moreover, we relax the well-formation constraints of Definition 2.4: we allow
0 to appear in both the m and n positions of T [m..n], with the obvious semantics (specifically, JT [0..0]K = JϵK), and we
allow expressions T ! where sym(T) = ∅: the semantics of these expressions, according to Definition 2.5, is just an empty
set. Hereafter we will use RE(#,&, 0) to denote the class RE(#,&) extended with empty types, 0 bounds and unrestricted
use of _ !, and cf-RE(#,&, 0) for the class of conflict-free expressions, extended in the same way. We use this wider class
since it greatly simplifies the definition of derivatives, and a subtyping algorithm for this wider class can of course be used
for RE(#,&) and cf-RE(#,&).

Definition 4.2 (Empty Expression). ∅ denotes the empty regular expression, that is, J∅K
def
= ∅.

Proposition 4.3 (Empty Expression Properties). ∅ satisfies the following properties:

T + ∅ = ∅ + T = T
T · ∅ = ∅· T = ∅

T&∅ = ∅&T = ∅

We can now give a function that returns a derivative for a conflict-free expression in cf-RE(#,&, 0).

Notation 4.4 (m−, ∗ − 1). In the following definitions, we usem− to denote max(m− 1, 0), and assume that ∗ − 1 = ∗.

Definition 4.5 (da(U)). The function da(U), where U is in cf-RE(#,&, 0) and a is a symbol, is defined as follows:

da(ϵ)
def
= ∅

da(∅)
def
= ∅

da(T !)
def
= da(T)

da(b [m..n])
def
=


∅ if a ≠ b or n ≤ 1
b

m−..n− 1


otherwise

da(U1 + U2)
def
=


da(U1) if a ∈ first(U1)

da(U2) if a ∈ first(U2)

∅ otherwise

da(U1 · U2)
def
=


da(U1)· U2 if a ∈ first(U1)

da(U2) if a ∈ first(U2) and N(U1)

∅ otherwise

da(U1&U2)
def
=


da(U1)&U2 if a ∈ sym(U1)

da(U2)&U1 if a ∈ sym(U2)

∅ otherwise

The function da(U) can be lifted to words in the following way: dϵ(U) = U , daw(U) = dw(da(U)).
It is easy to see that da(U) is a Brzozowski’s derivative, and that such derivative of a conflict-free expression is still a

conflict-free expression.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 109

WeuseD(U) to denote the set of all derivatives ofU:D(U)
def
= {dw(U) | w ∈ Σ∗}. As it can be easily observed,D(U [m..n])

has a size that grows linearly with m, hence is exponential in |U [m..n] |, although each element of D(U) is smaller than U .
The derivatives of general expressions are even lesswell-behaved, as Brzozowski’s derivation for non strongly-deterministic
types may generate exponentially larger derivatives, as shown by the following definition.

Definition 4.6 (Derivation for RE(#,&, 0)). da(T), where T is an unrestricted regular expression in RE(#,&, 0) and a is a
symbol, is defined as follows:

da(ϵ)
def
= ∅

da(∅)
def
= ∅

da(b)
def
=


ϵ if a = b
∅ otherwise

da(T !)
def
= da(T)

da(T [m..n])
def
=



∅ if n = 0
da(T)· T


m−..n− 1


if (not N(T) and n > 0)
or (m = 0 and n = ∗)

da(T)· T

m−..n− 1


+ da


T


m−..n− 1


otherwise

da(T1 + T2)
def
= da(T1)+ da(T2)

da(T1 · T2)
def
=


da(T1)· T2 + da(T2) if N(T1)
da(T1)· T2 otherwise

da(T1&T2)
def
= da(T1)&T2 + T1&da(T2)

The algorithm tests T ≤ U by generating up to |D(T)| · |D(U)| pairs, which gives this algorithm a worst-case exponential
complexity.

To ensure the termination of the derivation process for non-deterministic regular expressions, our derivation algorithm
works modulo associativity and commutativity of union. In detail, derivation is implemented as follows:

• by memoizing the derivation process, as some types can be derived many times by the algorithm;
• by flattening memoized derivatives, so to make the order and the associativity of addenda irrelevant;
• and by systematically simplifying derivatives through the following rules: T + T → T , T +∅ → T , T · ϵ → T , T · ∅ → ∅.

This strategy not only ensures the termination of the derivation process, but also brings great benefits to the overall
behaviour of our implementation of this algorithm.

4.4. Experimental results

In our first experiment we evaluate the scalability of our quadratic algorithm on a sample of 50,000 positive randomly
generated subtype–supertype pairs. We use as input size the sum of the number of nodes of both the supertype and the
subtype, and measure the time required for completing the inclusion checking. The results we obtained, for input sizes up
to 1000 nodes and up to 2500 nodes, are shown in Figs. 7 and 8.

As it can be observed, the points in the graphs lay between two quadratic curves, corresponding to the best and theworst
cases. Even in the worst cases, the algorithm is quite fast and efficiently processes large input types.

In our second experiment battery we compare the performance of our algorithm with that of the derivative-based
algorithm on both a positive and a negative sample.

The results of the experiment on the positive sample are shown in Figs. 9 and 10. We use here a smaller sample
consisting of 20,000 pairs with maximum size about 250, as the derivative-based algorithm proved to be very slow on
types exceeding this size threshold. Fig. 9 shows that the quadratic algorithm always outperforms the derivative-based one.
This is even better illustrated in Fig. 10, where we used a logarithmic scale for the y-axis; this graph clearly shows that, in
our experimental range, our algorithm is several orders of magnitude faster than the derivative-based one.

It can also be noted that the derivative-based algorithm is very sensitive to the structure of the types being compared,
which, instead, has little influence on the constraint-based one. Hence, the performance of the derivative-based algorithm
is quite erratic and unstable, while the performance of our algorithm is very stable and predictable.

The results of our experiment on a negative sample are shown in Fig. 11. As in the previous experiment, we considered
here a sample of 20,000 pairs with maximum size around 250 nodes. In this case, the performances of the algorithms are
much closer, as the derivative-based algorithm tries to detect failure conditions as soon as possible. The derivative-based

110 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

Fig. 7. Scalability of the quadratic inclusion algorithm: input size 61000.

Fig. 8. Scalability of the quadratic inclusion algorithm: input size 6 2500.

Fig. 9. Positive sample experiment.

algorithm has a worst performance on very small types, which is counterintuitive. This happens because the derivative-
based algorithm performs, in a sense, a breadth-first exploration of the two compared types, looking for a reason to fail that
is easy to spot, and smaller types tend to have a smaller amount of such ‘‘fast exits’’.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 111

Fig. 10. Positive sample experiment: logarithmic scale.

Fig. 11. Negative sample experiment: logarithmic scale.

Weperformed this negative-case test just to verifywhether these algorithms have an acceptable performance also in this
situation, which is actually true for both of them. Apart from this, the negative-case comparison has little practical interest,
since positive checks are largely dominant in a typical typechecking workload.

To summarize, these experiments show that our quadratic algorithm behaves much better than its most direct
competitor. They also show that it is reliably fast on sizeable types, hence it represents a viable option for the construction
of a practical use typechecker in a language with interleaving and counting.

5. Related work

5.1. Some flavours of determinism

Membership testing for full REs with interleaving and counting is NP-hard [6], hence extended languages meant for
practical use are usually endowed with some restrictions, aimed to reduce membership complexity. These restrictions are
typically designed to allow for the efficient construction of a compact deterministic automaton, and we introduce them
here, since we need these notions in order to discuss the literature about RE inclusion.

A typical restriction is 1-unambiguity, that means (informally) that, when a string is analyzed, any analyzed character can
be matched against one specific character in the regular expression, that is determined by the part of string that has been
read so far. For example, (a · b)+a is 1-unambiguous, but (a?b)∗a is not: while reading ba . . ., we do not know whether a
should be matched against the first a or the second one.

The single-occurrence restriction, meaning that no character occurs twice in an expression, trivially implies 1-
unambiguity.

Strong determinism is another constraint stronger than 1-unambiguity, having to do with Kleene-star and with counting.
Consider the expression (a [1..2]) [2..3]. While reading aa . . ., we do not know whether the second a matches the second
repetition of a in a [1..2], or whether we should match the whole a [1..2] with the first a, and the second a with the first
character of the second repetition of a [1..2]. Strong determinism means, very informally, that the part of string that has

112 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

already been read and the current character determine both the next leaf to match and which counting operator (or Kleene
star) is affected (see [19] for a formal definition).

Single-occurrence and strong determinism both imply 1-unambiguity, but none is stronger than the other one. Conflict-
freedom, as defined in this paper, implies both. It implies single-occurrence by definition. It also implies strong determinism:
since in a conflict-free type the content of a counting operator is just one character, there is no ambiguity about the effect
of each character on the only counting operator that may contain it.

Conflict-freedom is very restrictive, but is trivial to define and check. The precise definition and automated checking of
1-unambiguity and strong determinism are a bit less trivial. In [19], cubic time algorithms to test for 1-unambiguity and
strong determinism are presented. In [20], Kilpeläinen presents aO(n2/log(n)) algorithm to test whether a REwith counting
is 1-unambiguous, and describes how some well-known studies and implementations of the same notion are actually
incorrect.

5.2. Inclusion of regular expressions with interleaving and counting

The problem of inclusion of regular expressions with interleaving has been studied in many papers, but none of them
provides PTIME inclusion algorithms for languages with interleaving, counting, and an expressive power that is acceptable
for our intended application.

In [6], Mayer and Stockmeyer studied the complexity of membership, inclusion, and inequality for several classes of
regular expressions with interleaving and intersection. In particular, interleaving is proved to make inclusion EXPSPACE-
complete.

Starting from the results of [6], Gelade et al. [7] studied the complexity of decision problems for DTDs, single-type EDTDs,
and EDTDs with interleaving and counting. By considering several classes of regular expressions with interleaving and
counting, they showed that their inclusion is almost invariably EXPSPACE-complete, even when counting is restricted to
terminal symbols only; they also showed how these results extend to various kinds of schemas for XML documents. We
did not discuss here how to extend our results from REs to XML schema languages because the problem is indeed solved
in [7], where it is shown how an inclusion algorithm for REs can be lifted to schema languages that use that class of REs
without changing the complexity class. In [21,22] Kilpeläinen and Tuhkanen proved that inclusion is coNP-hard for regular
expressions with counting even if attention is restricted to 1-unambiguous REs and without interleaving.

The properties of a commutative type language for XML data have been discussed by Foster et al. in [23]. Here, the
authors essentially described the techniques they used while implementing a type-checker for commutative XML types.
Their type language resembles our language of conflict-free types, as repetition types can be applied to element types only,
and interleaving is supported. The paper is focused on heuristics that improve scalability, but do not affect computational
complexity.

In [1], previously published as [24], we defined a polynomial time algorithm for inclusion of conflict-free types, but we
were not able to extend the result to reach any more general class. In that paper, we specified the constraint extraction
procedure that we use here, and we proved that it is exact for conflict-free types. The specific contribution of this paper is
the extension of those techniques from the case when the subtype is conflict-free to the general, asymmetric, case when the
subtype is any RE with interleaving and counting.

None of these papers presents a viable algorithm to test inclusion of regular expressions with interleaving and counting.
However, in [16], Chen and Chen describe an algorithm for the symmetric inclusion of 1-unambiguous regular expressions
without interleaving and counting, based on Brzozowski derivatives, which can be easily extended to our problem, and,
despite being exponential in the worst case, gives reasons to hope in an acceptable behaviour in practice. For these reasons,
we choose this algorithm for our comparison in Section 4.

5.3. Inclusion of XML types

XML Schema [4] and RELAX-NG [5] are two well-known type languages that allow some form of interleaving and
counting.

XML Schema is based on REs with counting, plus an extremely limited form of interleaving: the all group, that only
allows symbols to be interleaved. XML Schema adopts a constraint known as Unique Particle Attribution (UPA) ([25], Section
3.6.6). There is some debate about the actual meaning of that constraint, but it is usually interpreted as a way to require
1-unambiguity [22,19].6 The coNP-hard problem presented for 1-unambiguous REs with counting in [21,22] can be easily
expressed by a 1-unambiguous XML Schema, hence XML Schema inclusion is coNP-hard.

RELAX-NG [5] is based onREs extendedwith interleaving. RELAX-NGdoes not impose any formof unambiguity in general,
with the only exception of interleaving: in any occurrence of E1& . . .&En, the first characters recognized by the Ei expressions
must be all mutually disjoint. RELAX-NG restricts the use of interleaving ([5], Section 7.4) and has no counting. However, it
does not restrict the expressions that use no interleaving, hence inclusion for RELAX-NG is PSPACE-hard [26].

6 This constraint serves the purpose of implementing linear time membership algorithms that do not require lookahead or backtracking.

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 113

All the works we discussed up to now deal with symmetric inclusion. Asymmetric inclusion of REs or of XML types has
also been studied elsewhere in the recent past. We discuss some of these papers here, but they are not very relevant to our
problem since they dealwith languageswithout interleaving andwithout counting. In [27] Colazzo and Sartiani showed that
complexity of RE inclusion can be lowered from EXPSPACE to EXPTIME when a weaker form of conflict-freedom is satisfied
by the supertype. In [28], by using automata-based encodings of types, Champavère et al. provide polynomial algorithms
to check inclusion among EDTDs, with the restriction that the supertype is 1-unambiguous. In [29] Hovland provides an
efficient algorithm to check inclusion of standard REs. The algorithm runs in polynomial time. It is sound and complete
when the supertype is 1-unambiguous, otherwise the algorithmmay either terminate with a definite answer or may signal
its inability to answer because the supertype is not 1-unambiguous. The algorithm is defined via an inference system driven
by the REs syntax, hence avoiding possibly expensive automata construction.

6. Conclusions

In [24]we introduced the idea of representing REswith interleaving and counting as sets of constraints, and the use of this
representation for inclusion checking. Inclusion of such extended REs has EXPSPACE complexity in general, hence very far
from what is usually regarded as ‘feasible’, while our approach produced a cubic algorithm, later reduced to O(n2) (in [1]),
for the important subclass of conflict-free types. Unfortunately, while conflict-free types fit well the common practice of
XML schema definitions, they are far too restrictive to capture the types that are typically inferred by a compiler. Subtype-
checking during type checking is arguably themost important application of type inclusion, and is the onewhere efficiency is
most important, hence thiswas a serious limitation for our approach. However, anyminimal attempt to relax the constraints
of conflict-free types seems to immediately bring us into the NP class, or out of the expressive power of the constraint
language.

In this paper we have described a way out of this impasse. Through the lateral step of asymmetric inclusion, we have
been able to widen our approach up to the point where all limitations are removed from the subtype, whichmakes it perfect
for the typical use of inclusion checking by the type-checking algorithm of a compiler. The resulting algorithm retains the
quadratic complexity of the pure case, and our experiments show that it runs very fast in practice, even on types that are
quite large, which makes it viable for practical use.

Appendix. Proofs

In this appendix we report the proofs we omitted in the body for the sake of readability. For each of the proofs we recall
the property statement.

Proposition 3.17. Each of the following seven types, corresponding to different ways of loosening the restrictions that define
conflict-free types, is constraint-inexpressible.

Loosening counting restriction
Allowing U [m..n] under counting a [1..2] [1..2]
Allowing U1 + U2 under counting (a+ b) [2..2]
Allowing U1 · U2 under counting (a· b) [2..2]
Allowing U1&U2 under counting (a&b) [1..2]

Loosening single-occurrence restriction
Allowing a ∈ sym(U1) ∩ sym(U2) in a subterm U1 + U2 (a· b)+ (b· a· c)
Allowing a ∈ sym(U1) ∩ sym(U2) in a subterm U1 · U2 a· (b· a)
Allowing a ∈ sym(U1) ∩ sym(U2) in a subterm U1&U2 a&(b· a)

Proof. For each type T above we exhibit a word wT ∉ JT K such that, for any single constraint F , we have that:

T |= F ⇒ wT |= F (∗)

Existence of such a wT ∉ JT K implies that T is constraint-inexpressible, as follows: consider any constraint set F such that
T |= F , hence ∀F ∈ F . T |= F , hence, by (∗):

∀F ∈ F .wT |= F

Hence, T |= F ⇒ wT |= F , hence no constraint set F can be exact for T .
For each T and F , the proof that wT |= F will rely on the following facts, that are direct consequence of the definition of

constraints (Fig. 1):

(i) Assume F is not a counting constraint. If w and w′ only differ in the length of some substring of consecutive equal
symbols, then w |= F ⇔ w′ |= F . Formally, for any sequencem1, . . . ,mk, n1, . . . , nk of integers strictly greater than 0,
we have a1n1 . . . aknk |= F ⇔ a1m1 . . . akmk |= F , where an is a sequence of n consecutive a’s.

114 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

(ii) Assume F is not an order constraint, and w′ a permutation of w. Then w |= F ⇔ w′ |= F .
(iii) Assume F is a counting constraint, andw andw′ such that sym(w)∩sym(w′) = ∅. Ifw |= F andw′ |= F thenw·w′ |= F

(recall that a counting constraint counts only one symbol).

We now present the proofs for each of the seven types in the statement.

• T = a [1..2] [1..2], wT = aaa. From T |= F we have aa |= F and aaaa |= F . If F is not a counting constraint, then by (i)
and aa |= F we have aaa |= F . If it is a counting constraint, then aa |= F and aaaa |= F imply that either F = b?[n..m]
with a ≠ b, or F = a?[n′..m′]with n′ ≤ 2 and m′ ≥ 4. In both cases we have aaa |= F .
• T = (a+ b) [2..2], wT = aabb. From T |= F we have aa |= F , bb |= F , and ab |= F . If F is a counting constraint, then by

(iii) aa |= F and bb |= F imply aabb |= F . If F is not a counting constraint, then by (i) and ab |= F we have aabb |= F .
• T = (a· b) [2..2],wT = aabb. From T |= F we have abab |= F . If F is not an order constraint, then by (ii) and abab |= F we

have aabb |= F . If F is in an order constraint, then abab |= F implies aabb |= F , because abab only satisfies trivial order
constraint, i.e. constraints c ≺ d where either c ∉ {ab} or d ∉ {ab}.
• T = (a&b) [1..2], wT = aab. From T |= F we have ab |= F and abab |= F . If F is not a counting constraint, then (i) and

ab |= F imply aab |= F . If F is a counting constraint, then ab |= F and abab |= F imply that it is satisfied by any word
with either 1 or 2 a’s and either 1 or 2 b’s, hence aab |= F .
• T = (a·b)+ (b·a· c),wT = abc. From T |= F we have bac |= F . If F is not an order constraint, then (ii) and bac |= F imply

abc |= F . If F is in an order constraint that includes symbols out of {a, b, c}, then abc |= F holds trivially. The only order
constraints that can be expressed with {a, b, c} and that hold for both ab and bac are a ≺ c and b ≺ c , and abc satisfies
both.
• T = a&(b · a), wT = aab. From T |= F we have aba |= F . If F is not an order constraint, then (ii) and aba |= F imply

aab |= F . If F is an order constraint, then aba |= F implies aab |= F , because aba only satisfies trivial order constraints,
i.e., constraints c ≺ dwhere either c ∉ {ab} or d ∉ {ab}.
• T = a&(b· a), wT = aab. From T |= F we have aba |= F . As in the previous case, aba |= F implies aab |= F . �

Lemma 3.16. Let Cs be a non-repetitive labelled context and L a labelled type such that Cs[L] is well-formed, then:

w ∈ JCs[L]K ∧ (sym(w) ∩ sym(L)) ≠ ∅ ⇒ ∃w1 ∈ JLK, w2 ∈ sym(Cs)
∗
: w ∈ w1&w2

Proof. By induction on Cs, and by cases. In all cases, we exploit the fact that a well-formed labelled type satisfies the single-
occurrence property, that is, no labelled symbol ai appears twice in Cs[L].

Case Cs = _: in this case Cs[L] = L; the thesis follows by taking w1 = w and w2 = ϵ.
Case Cs = L′ + C ′s: since Cs[L] is single-occurrence, from w ∈ J(L′ + C ′s)[L]K and (sym(w) ∩ sym(L)) ≠ ∅we deduce that

w ∈ JC ′s[L]K, and the thesis follows by induction.
Case Cs = L′ � C ′s: w ∈ J(L′ � C ′s)[L]K implies that w ∈ w′&w′′ with w′ ∈ JL′K and w′′ ∈ JC ′s[L]K. Since Cs[L] is single-

occurrence, we have that (sym(w) ∩ sym(L)) = (sym(w′′) ∩ sym(L)), hence (sym(w′′) ∩ sym(L)) ≠ ∅. By induction,
∃w′′1 ∈ JLK, w′′2 ∈ sym(C ′s)

∗
: w′′ ∈ w′′1&w′′2 , and the thesis follows: w1 = w′′1 and w2 is a shuffle of w′ and w′′2 . Since

w′ ∈ sym(L′)∗ and w′′2 ∈ sym(C ′s)
∗, then w2 ∈ (sym(L′) ∪ sym(C ′s))

∗
= sym(Cs)

∗.
Cases Cs = C ′s � L′: similar to the previous two cases.
Case Cs = C ′s!: w ∈ J(C ′s!)[L]K = JC ′s[L]!K implies w ∈ JC ′s[L]K, hence, by induction, ∃w1 ∈ JLK, w2 : w ∈ w1&w2.
Case Cs = C ′s [1..1]: w ∈ J(C ′s [1..1])[L]K = J(C ′s[L]) [1..1]K implies w ∈ JC ′s[L]K, hence, by induction, ∃w1 ∈ JLK, w2 : w ∈

w1&w2. �

Property 3.17. Let Cs be a non-repetitive labelled context and L a labelled type such that Cs[L] is well-formed, then:

{ai, bj} ⊆ sym(L) ∧ (ai, bj) ∉ p(L)⇒ (ai, bj) ∉ p(Cs[L]) (1)

If C is any labelled context and L a labelled type such that C[L] is well-formed, then:

p(L) ⊆ p(C[L]) (2)

If Cr is a repetitive labelled context and L a labelled type such that Cr [L] is well-formed, then:

{ai, bj} ⊆ sym(L)⇒ (ai, bj) ∈ p(Cr [L]) (3)

Proof. (1) We prove that {ai, bj} ⊆ sym(L) ∧ (ai, bj) ∈ p(Cs[L]) ⇒ (ai, bj) ∈ p(L), which is equivalent to (1).
Assume {ai, bj} ⊆ sym(L) and (ai, bj) ∈ p(Cs[L]). Then, there exists w ∈ JCs[L]K such that w = w′ · ai ·w′′ · bj ·w′′′. Hence,

by Lemma 3.16, ∃w1 ∈ JLK, w2 ∈ sym(Cs)
∗
: w ∈ w1&w2. Since Cs[L]meets the single-occurrence property, ai and bj do not

appear in w2, hence they appear, in that order, inside w1, hence (ai, bj) ∈ p(L).
(2) We prove that for any w ∈ JLK exists w′ ∈ (Σ × N)∗ andW ∈ JC[L]K such thatW ∈ w&w′, by induction on C and by

cases, exploiting the fact that no type is empty (Lemma 2.8(1)). The thesis follows immediately.
(3) Since Cr is repetitive, there exist contexts C and C ′ such that Cr = C[(C ′ [m..n])], with n > 1. We want to prove that

{ai, bj} ⊆ sym(L) implies (ai, bj) ∈ p(Cr [L]). By Lemma 2.8(2), we have two words Wa and Wb with {Wa,Wb} ⊆ JC ′[L]K,
ai ∈ sym(Wa) and bj ∈ sym(Wb). Hence, Wa · (Wb)

n−1
∈ J(C ′[L]) [m..n]K, hence (a, b) ∈ p((C ′[L]) [m..n]), hence

(a, b) ∈ p(C[(C ′[L]) [m..n]]) = p(Cr [L]), by Property (2). �

D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116 115

Lemma 3.22
Min(ϵ, a) = 0
Min(a, a) = 1
Min(b, a) = 0 if b ≠ a
Min(T1 + T2, a) = min(Min(T1, a),Min(T2, a))
Min(T1 � T2, a) = Min(T1, a)+Min(T2, a)
Min(T [m..n] , a) = m ·Min(T , a)
Min(T !, a) = Min!(T , a)

Min!(ϵ, a) = ∗

Min!(a, a) = 1
Min!(b, a) = 0 if b ≠ a
Min!(T1 + T2, a) = min(Min!(T1, a),Min!(T2, a))
Min!(T1 � T2, a) = min(Min!(T1, a)+Min(T2, a), Min(T1, a)+Min!(T2, a))
Min!(T [m..n] , a) = Min!(T , a)+ (m− 1) ·Min(T , a)
Min!(T !, a) = Min!(T , a)
Minapp(ϵ, a) = ∗

Minapp(a, a) = 1
Minapp(b, a) = ∗ if b ≠ a
Minapp(T1 + T2, a) = min(Minapp(T1, a),Minapp(T2, a))
Minapp(T1 � T2, a) = min(Minapp(T1, a)+Min(T2, a), Min(T1, a)+Minapp(T2, a))
Minapp(T [m..n] , a) = Minapp(T , a)+ (m− 1) ·Min(T , a)
Minapp(T !, a) = Minapp(T , a)

Proof. All cases for Min(T , a) are obvious.
For Min!(T , a), the only non-obvious cases are Min!(T1 � T2, a) and Min!(T [m..n] , a), and we discuss them here.

Min!(T1 � T2, a) = min(Min!(T1, a)+Min(T2, a), Min(T1, a)+Min!(T2, a))
If sym(T1) = ∅, then JT1K = {ϵ} (Lemma 2.8) hence JT1 � T2K = JT2K, hence Min!(T1 � T2, a) = Min!(T2, a).
Since sym(T1) = ∅, then Min!(T1, a) = ∗ and Min(T1, a) = 0, hence min(Min!(T1, a) +Min(T2, a), Min(T1, a) +
Min!(T2, a)) = min(∗ +Min(T2, a), 0+Min!(T2, a)) =Min!(T2, a).

If sym(T2) = ∅, we reason in the same way.
We are left with the case when sym(T1) ≠ ∅ and sym(T2) ≠ ∅, which implies that Min!(T , a) ≠ ∗ for T1, T2 and

T1 � T2.
For this case, we first prove that

Min!(T1 � T2, a) ≤ min(Min!(T1, a)+Min(T2, a), Min(T1, a)+Min!(T2, a))

Let m = Min!(T1 � T2, a), and consider two words w1 ∈ JT1K and w′1 ∈ JT1K with w′1 ≠ ϵ, such that
|w1|a = Min(T1, a) and |w′1|a = Min!(T1, a), and two words w2 ∈ JT2K and w′2 ∈ JT2K with w′2 ≠ ϵ, such
that |w2|a = Min(T2, a) and |w′2|a = Min!(T2, a). Both words w1 · w

′

2 and w′1 · w2 belong to JT1 � T2K and differ
from ϵ, hence |w′1 · w2|a ≥ Min!(T1 � T2, a) and |w1 · w

′

2|a ≥ Min!(T1 � T2, a), hence Min!(T1, a) + Min(T2, a) ≥
Min!(T1a � T2, a) and Min(T1, a) + Min!(T2, a) ≥ Min!(T1 � T2, a), hence Min!(T1 � T2, a) ≤ min(Min!(T1, a) +
Min(T2, a), Min(T1, a)+Min!(T2, a)).

For the other inequality, consider any word w ∈ JT1 � T2K with w ≠ ϵ such that |w|a = m. By w ∈ JT1 � T2K,
there exist w1 ∈ JT1K and w2 ∈ JT2K such that w ∈ w1&w2 hence |w|a = |w1|a + |w2|a. Since w ≠ ϵ,
either w1 ≠ ϵ or w2 ≠ ϵ. In the first case, we have that |w1|a ≥ Min!(T1, a) and |w2|a ≥ Min(T2, a), hence
m = |w|a ≥ Min!(T1, a) + Min(T2, a), in the second case we have m ≥ Min(T1, a) + Min!(T2, a), hence
m ≥ min(Min!(T1, a)+Min(T2, a), Min(T1, a)+Min!(T2, a)).

Min!(T [m..n] , a) = Min!(T , a)+ (m− 1) ·Min(T , a)
If sym(T) = ∅, then sym(T [m..n]) = ∅, hence both sides of the equation are equal to ∗. Otherwise, both
Min!(T [m..n] , a) and Min!(T , a) differ from ∗.

In the case when sym(T) ≠ ∅, we first prove that Min!(T [m..n] , a) ≥ Min!(T , a) + (m − 1) · Min(T , a).
Consider a word w ∈ JT [m..n]K such that w ≠ ϵ and |w|a = Min!(T [m..n] , a). Since w ∈ JT [m..n]K, we
have l words w1, . . . , wl in JT K, with m ≤ l ≤ n, such that w = w1 · . . . · wl. For each wi we have that
|wi|a ≥ Min(T , a), and at least one of them, say wj, has wj ≠ ϵ, hence |wj|a ≥ Min!(T , a); as a consequence,
|w1 · . . .· wl|a ≥ Min!(T , a) + (l − 1) · Min(T , a). Since |w1 · . . .· wl|a = Min!(T [m..n] , a) by construction, we
conclude that Min!(T [m..n] , a) ≥ Min!(T , a)+ (l− 1) ·Min(T , a) ≥ Min!(T , a)+ (m− 1) ·Min(T , a).

For the other inequality, consider two words w ∈ JT K and w′ ∈ JT K with w′ ≠ ϵ, such that |w|a = Min(T , a)
and |w′|a = Min!(T , a). ThewordW = w′·w·. . .·w, wherew is repeatedm−1 times, belongs to JT [m..n]K, and, by
construction, |W |a = Min!(T , a)+ (m−1) ·Min(T , a), henceMin!(T [m..n] , a) ≤ Min!(T , a)+ (m−1) ·Min(T , a).

116 D. Colazzo et al. / Theoretical Computer Science 492 (2013) 88–116

The same proof holds for the corresponding cases for Minapp(T , a), if we substitute sym(T) = ∅ with a ∉ sym(T), and
w ≠ ϵ with ‘‘a appears in w’’. �

References

[1] D. Colazzo, G. Ghelli, C. Sartiani, Efficient inclusion for a class of XML types with interleaving and counting, Inf. Syst. 34 (2009) 643–656.
[2] G. Ghelli, D. Colazzo, C. Sartiani, Linear time membership in a class of regular expressions with interleaving and counting, in: J.G. Shanahan, S. Amer-

Yahia, I. Manolescu, Y. Zhang, D.A. Evans, A. Kolcz, K.-S. Choi, A. Chowdhury (Eds.), CIKM, ACM, 2008, pp. 389–398.
[3] D. Colazzo, G. Ghelli, C. Sartiani, Efficient asymmetric inclusion between regular expression types, in: R. Fagin (Ed.), ICDT, in: ACM International

Conference Proceeding Series, vol. 36, ACM, 2009, pp. 174–182.
[4] D.C. Fallside, P. Walmsley, XML Schema Part 0: Primer – second ed., 2004. W3C Recommendation.
[5] RELAX NG specification, The Organization for the Advancement of Structured Information Standards [OASIS], 2001. Committee Specification 3

December 2001.
[6] A.J. Mayer, L.J. Stockmeyer, Word problems — this time with interleaving, Inform. and Comput. 115 (1994) 293–311.
[7] W. Gelade, W. Martens, F. Neven, Optimizing schema languages for XML: numerical constraints and interleaving, in: T. Schwentick, D. Suciu (Eds.),

Proceedings of the 11th International Conference on Database Theory – ICDT 2007, Barcelona, Spain, January 10–12, 2007, in: Lecture Notes in
Computer Science, vol. 4353, Springer, 2007, pp. 269–283.

[8] G.J. Bex, F. Neven, T. Schwentick, K. Tuyls, Inference of concise DTDs from XML data, in: U. Dayal, K.-Y. Whang, D.B. Lomet, G. Alonso, G.M. Lohman,
M.L. Kersten, S.K. Cha, Y.-K. Kim (Eds.), Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12–15,
2006, ACM, 2006, pp. 115–126.

[9] D. Barbosa, G. Leighton, A. Smith, Efficient incremental validation of XML documents after composite updates, in: XSym, in: LNCS, vol. 4156, Springer,
2006, pp. 107–121.

[10] B. Choi, What are real DTDs like?, in: Proceedings of the Fifth International Workshop on the Web and Databases, WebDB 2002, Madison, Wisconsin,
USA, June 6–7, 2002, in conjunction with ACM PODS/SIGMOD 2002, pp. 43–48.

[11] J.A. Brzozowski, Derivatives of regular expressions, J. ACM 11 (1964) 481–494.
[12] W. Martens, F. Neven, T. Schwentick, Complexity of decision problems for XML schemas and chain regular expressions, SIAM J. Comput. 39 (2009)

1486–1530.
[13] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: G.H. Gonnet, D. Panario, A. Viola (Eds.), LATIN, in: Lecture Notes in Computer Science,

vol. 1776, Springer, 2000, pp. 88–94.
[14] T. Antonopoulos, F. Geerts, W. Martens, F. Neven, Generating, sampling and counting subclasses of regular tree languages, in: T. Milo (Ed.), ICDT, ACM,

2011, pp. 30–41.
[15] J. Jedrzejowicz, A. Szepietowski, Shuffle languages are in P, Theoret. Comput. Sci. 250 (2001) 31–53.
[16] H. Chen, L. Chen, Inclusion test algorithms for one-unambiguous regular expressions, in: J.S. Fitzgerald, A.E. Haxthausen, H. Yenigün (Eds.), ICTAC,

in: Lecture Notes in Computer Science, vol. 5160, Springer, 2008, pp. 96–110.
[17] A. Brüggemann-Klein, D. Wood, One-unambiguous regular languages, Inform. and Comput. 142 (1998) 182–206.
[18] C.M. Sperberg-McQueen, Applications of Brzozowski derivatives to XML Schema processing, in: Proceedings of the Extreme Markup Languages 2005

Conference, 1–5 August 2005, Montréal, Quebec, Canada.
[19] W. Gelade, M. Gyssens, W. Martens, Regular expressions with counting: weak versus strong determinism, in: R. Královic, D. Niwinski (Eds.), MFCS,

in: Lecture Notes in Computer Science, vol. 5734, Springer, 2009, pp. 369–381.
[20] P. Kilpeläinen, Checking determinism of XML Schema content models in optimal time, Inf. Syst. 36 (2011) 596–617.
[21] P. Kilpeläinen, R. Tuhkanen, Regular expressions with numerical occurrence indicators — preliminary results, in: P. Kilpeläinen, N. Päivinen (Eds.),

SPLST, University of Kuopio, Department of Computer Science, 2003, pp. 163–173.
[22] P. Kilpeläinen, R. Tuhkanen, One-unambiguity of regular expressions with numeric occurrence indicators, Inform. and Comput. 205 (2007) 890–916.
[23] J.N. Foster, B.C. Pierce, A. Schmitt, A logic your typechecker can count on: unordered tree types in practice, in: PLAN-X 2007, Programming Language

Technologies for XML, An ACM SIGPLANWorkshop colocated with POPL 2007, Nice, France, January 20, 2007, pp. 80–90.
[24] G. Ghelli, D. Colazzo, C. Sartiani, Efficient inclusion for a class of XML types with interleaving and counting, in: M. Arenas, M.I. Schwartzbach (Eds.),

Proceedings of the 11th International Symposium on Database Programming Languages, DBPL 2007, in: Lecture Notes in Computer Science, vol. 4797,
Springer, 2007, pp. 231–245.

[25] H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML Schema Part 1: structures second ed., Technical Report, World Wide Web Consortium,
W3C Recommendation, 2004.

[26] D. Kozen, Lower bounds for natural proof systems, in: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October–1 November 1977, IEEE Computer Society, 1977, pp. 254–266.

[27] D. Colazzo, C. Sartiani, Efficient Subtyping for Unordered XML Types, Technical Report, Dipartimento di Informatica – Università di Pisa, 2007.
[28] J. Champavère, R. Gilleron, A. Lemay, J. Niehren, Efficient inclusion checking for deterministic tree automata and XML schemas, Inform. and Comput.

207 (2009) 1181–1208.
[29] D. Hovland, The inclusion problem for regular expressions, in: A.H. Dediu, H. Fernau, C. Martín-Vide (Eds.), LATA, in: Lecture Notes in Computer

Science, vol. 6031, Springer, 2010, pp. 309–320.

http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref1
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref2
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref3
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref6
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref7
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref8
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref9
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref11
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref12
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref13
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref14
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref15
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref16
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref17
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref19
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref20
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref21
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref22
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref24
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref25
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref26
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref27
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref28
http://refhub.elsevier.com/S0304-3975(13)00331-9/sbref29

	Efficient asymmetric inclusion of regular expressions with interleaving and counting for XML type-checking
	Introduction
	Types and constraints
	The type language
	Constraints
	Conflict-free types, constraints and subtyping

	Inclusion algorithm
	Co-occurrence constraints CC(U)
	Order constraints OC(U)
	Cardinality constraints ZeroMinMax(U)
	Lower bounds and upper bounds --- upperS(U) and SIf(U)
	Summing up

	Experimental evaluation
	Experimental setup
	Sample generation
	Derivative-based algorithm
	Experimental results

	Related work
	Some flavours of determinism
	Inclusion of regular expressions with interleaving and counting
	Inclusion of XML types

	Conclusions
	Proofs
	References

