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Abstract

To apply the Generalized Cross-Validation (GCV) as a stopping rule for an iterative
method, we must estimate the trace of the so-called influence matrix which appears
in the denominator of the GCV function. In the case of conjugate gradient, unlike
what happens with stationary iterative methods, the regularized solution has a
nonlinear dependence on the noise which affects the data of the problem. This fact
is often pointed out as a cause of poor performance of GCV. To overcome this
drawback, in this paper we propose a new method which linearizes the dependence
by computing the derivatives through iterative formulas along the lines of Perry and
Reeves (1994) and Bardsley (2008). We compare the proposed method with other
methods suggested in the literature by an extensive numerical experimentation both
on 1D and on 2D test problems.
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1 Introduction

Given a matrix A ∈ Rn×n and a vector b ∈ Rn, we consider the system

Ax = b. (1)

We assume that A is a large full rank matrix, having singular values which
gradually decay to zero, so that it is difficult to determine its numerical rank. In
many applications the available right-hand side of the system is contaminated
by a noise η accounting for both the measurement errors and the process
involved in the construction of the discrete model describing the underlying
continuous phenomenon, i.e.

b = b∗ + η.

The vectors b∗ and x∗, such that Ax∗ = b∗, are considered the exact right-
hand side and the exact solution of the system. Classical examples of this kind
of problems arise from the discretization of Fredholm integral equations of the
first kind, as for instance in the imaging deconvolution, where A represents an
imaging system, x∗ an object, b∗ the noise-free image of the object and b the
noisy image.

Due to the ill-conditioning of the matrix and the presence of the noise, the
solution x̃ = A−1b is often a poor approximation of x∗ even if the magnitude
of η is small, and the problem of finding a good approximation of x∗ turns out
to be a discrete ill-posed problem [7]. Special techniques called regularization
methods are required to deal with this kind of problems. Both direct methods
(as Tikhonov method) and iterative methods can be used to this aim. Itera-
tive methods are suggested for large matrices A without particular structure
properties. The iterative method has to enjoy the semi-convergence property,
i.e. in presence of the noise it reconstructs first the low-frequency components,
which correspond to the largest singular values of A. The iteration should be
stopped before the high-frequency components of the noise start to enter the
computed solution. In this sense the iteration number plays the role of the
regularization parameter.

Among the classical semi-convergent methods we consider here the conjugate
gradient method (CG). The regularizing properties of CG are well known (see
for example [14]). CG has in general a good convergence rate and finds quickly
an optimal vector xopt which minimizes the error with respect to x∗. This
behavior can be a disadvantage in the regularization context, because also the
high-frequency components enter quickly the computed solution and the error
increases sharply after the optimal number kopt of steps. As a matter of fact,
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the determination of kopt is very sensitive to the perturbation of the right-hand
side [3]. As a consequence, the regularizing efficiency of CG depends heavily
on the effectiveness of the stopping rule employed. In this paper we focus our
attention on the Generalized Cross-Validation rule (GCV) [7,16,17], which is
a widely used stopping technique and has the advantage over other popular
stopping rules like the discrepancy principle or the UPRE, of not requiring
information on the noise variance.

The stopping index is estimated through the minimum of the GCV function,
whose denominator requires the computation of the trace of the CG influence
matrix. GCV has been shown to be very effective when applied to iterative
methods whose influence matrix does not depend on the noise, i.e. when the
regularized solution depends linearly on the right-hand side of the system.
However, this is not the case of CG, and some techniques have been proposed
to overcome this drawback [4,6,7,15]. In order to approximate the denominator
of the GCV function, we propose a new method which linearizes the depen-
dence of the regularized solution on the noise as suggested in [15]. Instead of
approximating the required derivatives by finite differences, we compute them
by means of iterative formulas, along the lines of [1,13]. Our aim is to com-
pare the effectiveness of this method with other ones proposed in the literature
through an extensive numerical experimentation both on 1D and on 2D test
problems.

The outline of the paper is the following: preliminary definitions and the GCV
function are given in Section 2. In Section 3 the CG code is recalled in order
to derive the expressions used for computing the trace of the influence ma-
trix. Unless the matrix A has some special structure, the direct application of
these expressions is impracticable for large dimensions, so a stochastic imple-
mentation based on the trace lemma is given. The special case of a circulant
matrix A is examined in Section 4. The numerical experimentation, described
in Section 5, shows that the different approximations of the denominator of
the GCV function are in general not very critical in detecting an acceptable
stopping index. Anyway, a reasonable ranking of them can be obtained for the
examples we consider.

Throughout the paper, η is assumed to be an uncorrelated Gaussian white
noise, i.e. with distribution N (0, σ2I), and ‖v‖ denotes the Euclidean norm
of a vector v.

2 The regularized solution

Let A = UΣV T be the singular value decomposition of A, where U = [u1, . . . , un]
∈ Rn×n and V = [v1, . . . , vn] ∈ Rn×n have orthonormal columns, i.e. UT U =

3



V T V = I, and Σ = diag(σ1, . . . , σn), where the σi for i = 1, . . . , n are the
singular values of A, gradually decaying toward zero. In practice, the last ones
settle to values of the same magnitude of the machine precision.

The expansions of b∗ and η in the basis U are

b∗ =
∑

i
b∗i ui, η =

∑
i
ηi ui, where b∗i = uT

i b∗, ηi = uT
i η.

Then

x∗ = A−1b∗ =
∑

i
x∗i vi, where x∗i =

b∗i
σi

, (2)

and

x̃ = x∗ + A−1η = x∗ +
∑

i

ηi

σi

vi =
∑

i
x̃i vi, where x̃i = x∗i +

ηi

σi

. (3)

The coefficients ηi are typically of the same order for all i, with |ηi| ∼ ‖η‖/n.
If the last σi’s are much smaller than the corresponding |ηi|, the quantities
ηi/σi greatly increase with i. It follows that the low-frequency components of
x̃ and x∗ do not differ much, while the high-frequency components of x̃ are
disastrously dominated by the high-frequency components of the noise and x̃
can be affected by a large error with respect to x∗. The contribution of the
high-frequency components of the noise should be damped in the regularized
solution. Acceptable approximations can be obtained only if the |b∗i | decay to
zero with i faster than the corresponding σi (this condition is known as Picard
discrete condition), at least until the numerical levelling of the singular values.

The vector xk, computed at the kth step of the iterative method used to solve
(1), can be considered as a regularized solution with the index k acting as the
regularization parameter. We write the expansion of xk in the basis V in the
form

xk =
∑

i
ϕk,i x̃i vi, (4)

where the coefficients ϕk,i are called filter factors at the kth step. The solution
error of xk is

εk = x∗ − xk =
∑

i
((1− ϕk,i)

b∗i
σi

− ϕk,i
ηi

σi

) vi. (5)

Let kopt be the index which minimizes ‖εk‖. Ideally, the iteration should be
stopped at the koptth step, but the solution error is not directly computable.
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If the iteration is stopped after the koptth step, too many filter factors would
approach 1 and too many high-frequency components of the noise would enter,
with a quick raise of ‖εk‖. An approximation of kopt can be sought through
the minimum kπ of the predictive error

πk = Ax∗ − Axk =
∑

i
((1− ϕk,i) b∗i − ϕk,i ηi) ui. (6)

The main difference between minimizing the solution error and the predictive
error is that the increase of ‖πk‖ after the kπth step is very weak, because
in (6) the coefficients ηi are not divided by small σi. Figure 1 illustrates a
typical case. It is obtained by applying CG to a 1D problem taken from [8],
considered in the experimentation of Section 5. The right-hand side has been
contaminated by white Gaussian noise η with relative level ‖η‖/‖b∗‖ = 3.2%.
The log plot of the histories ‖εk‖ (solid line) and ‖πk‖ (dashed line) varying
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k

Fig. 1. Histories ‖εk‖ (solid line) and ‖πk‖ (dashed line).

k are plotted. The curve of ‖πk‖ displays a characteristic L-shape, with a
corner separating a nearly vertical part from a nearly horizontal part. The flat
behavior of this second part implies that the determination of the right index
through the minimum of ‖πk‖ may be subjected to numerical difficulties. An
exhaustive comparison between the behaviors of ‖εk‖ and ‖πk‖ will be made
in Section 5.

Naturally, also the predictive error is not directly computable. However, meth-
ods (like UPRE and GCV) have been suggested to estimate it stochastically
through the norm of the residual vector rk = b− Axk, which is an available
quantity. The Generalized Cross-Validation (GCV) approach, introduced in
[5,17], is a popular method for practical problems with discrete data and
stochastic noise. It derives from the ordinary cross-validation method, which
considers all the leave-one-out regularized solutions and chooses the parame-
ter that minimizes the average of the squared prediction errors in using each
solution to predict the missing data value. By applying a suitable weight-
ing, Wahba [17] derived the GCV method, which has the advantage of being
invariant under orthogonal transformations of the data.

Usually the vector xk is expressed through a regularization operator Rk in the
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form

xk = Rk(b).

In the original formulation [17], GCV has been defined for an operator Rk such
that Rk(b) = Rk b, with Rk not depending on b, i.e. when the regularized
solution depends linearly on the right-hand side of the system. The matrix
Ak = ARk is called influence matrix and describes how well the vector xk

predicts the right-hand side b, i.e. Axk = Akb. For this case the GCV function
is defined as

V (k) =
n‖rk‖2

(tr (I − Ak))
2 , (7)

and represents an estimate of the mean predictive error ‖πk‖2/n. The mini-
mizer of V (k) estimates kπ and can be used as an approximation of kopt. From
a statistical point of view the quantity tr (I − Ak) in the denominator of (7)
can be considered as the effective number of degrees of freedom.

Subsequently, GCV has been applied as a stopping rule also in connection with
iterative methods for which the regularized solution does not depend linearly
on the right-hand side, like the CG [4,6,7,15].

3 Approximating the trace of the influence matrix for CG

When A is not a symmetric positive definite matrix, CG is applied to the
normal equations

Mx = AT b, where M = AT A, (8)

and takes on the name CGLS, but for simplicity we continue to use here
the name CG. In its essential form, CG computes xk recursively, using two
auxiliary vectors pj (the search direction) and qj = AT b−Mxj (the residual
vector of xj in system (8)) and two scalars αj and βj for j = 1, . . . , k. At the
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jth step the algorithm computes

zj−1 = Apj−1,

αj−1 = ‖qj−1‖2/‖zj−1‖2,

xj = xj−1 + αj−1 pj−1,

rj = b− A xj,

qj = AT rj,

βj−1 = ‖qj‖2/‖qj−1‖2,

pj = qj + βj−1pj−1.

(9)

The initial positions are x0 = 0 and p0 = q0 = AT b. The recursive com-
putation of qj with qj = qj−1 − αj−1 Mpj−1 is often suggested for reducing
the computational cost, but we prefer to use here the original more stable
definition.

We examine now three different approaches to compute the trace of Ak re-
quired by the denominator of the GCV function (7).

The filter approach. CG is a projection method on the Krylov subspace

Kk(M, q0) = span(q0, M q0,M
2 q0, . . . , M

k−1 q0),

i.e. xk minimizes φ(x) = ‖b − Ax‖2 on Kk(M, q0) and qk is orthogonal to
Kk(M, q0). An orthonormal basis of Kk(M, q0) can be obtained by applying
k steps of the Lanczos tridiagonalization algorithm to the symmetric positive
definite matrix M . Starting with the vector w1 = q0/||q0||, the algorithm
produces the orthonormal sequence wj = (−1)j−1qj−1/‖qj−1‖ and the scalars
γj and δj, j = 1, . . . , k, such that the n × k matrix Wk = [w1, . . . , wk] and
the k× k symmetric matrix T = tridiag(δj, γj, δj+1) verify Tk = W T

k MWk. Tk

is viewed as the representation of M projected on Kk(M, q0). Its eigenvalues
θk,1, . . . , θk,k are called the Ritz values of M at the kth step and converge to
the singular values σi when k →∞. The filter factors of CG are shown [7] to
have the form

ϕk,i = 1−
k∏

j=1

(1− σ2
i

θk,j

).
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From (4) we have

xk = V ΦkΣ
−1UT b, where Φk = diag(ϕk,1, . . . , ϕk,n),

then

Ak = UΦkU
T and tr Ak =

n∑

i=1

ϕk,i. (10)

Formula (10) gives a theoretical means for computing the denominator of
(7), but is impracticable from a computational point of view when n is large
because it requires the knowledge of the singular values of A. For this reason,
formula (10) will not be taken into consideration in the experimentation of
Section 5.

The KA approach. Another theoretical expression for tr Ak is obtained by
recalling that

xk = Pk x̃,

where Pk = Wk(W
T
k MWk)

−1W T
k M is the projector on Kk(M, q0), orthogonal

with respect to the inner product < · , · >M . Then

xk = Wk(W
T
k MWk)

−1W T
k AT b. (11)

The influence matrix is

Ak = AWk(W
T
k AT AWk)

−1W T
k AT = AWk(AWk)

†.

Denoting by AWk = ÛΣ̂V̂ T the singular value decomposition of AWk, we have

Ak = ÛΣ̂Σ̂†ÛT . Then, since AWk has full rank,

tr Ak = k. (12)

For its simplicity, formula (12) is appealing. But the use of this formula,
which in Section 5 will be identified as KA approach, is arguable when kopt

is not small compared with n, because the vectors qj computed by CG in fi-
nite arithmetic loose their orthogonality properties after few steps, leading to
nonorthogonal bases Wk. Moreover, with increasing of k multiple approxima-
tions of the σi are generated. It follows that, even in the case that the Lanczos
process approximates the singular values in their natural order, the difference
between k and the number of the converged Ritz values increases with k and
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the quantity n − k in general cannot be considered as the correct degrees of
freedom for GCV.

The approach based on linearization. Since the influence matrix of CG depends
on b, in [15] it is suggested to replace Ak by Âk = AJ∗k , where J∗k = Jk(b

∗) is
the Jacobian matrix of Rk(b) respect to b, evaluated in b∗. A further approxi-
mation is required in practice: replace J∗k by Jk, the Jacobian matrix in b, that
is the matrix of the derivatives of the vector xk effectively computed by the
iterative method. We propose to evaluate tr Âk by an iterative technique along
the lines suggested in [1,13] for other iterative methods. Using the notations

Âj = A
[∂(xj)i

∂bh

]
, P̂j = A

[∂(pj)i

∂bh

]
, Q̂j = A

[∂(qj)i

∂bh

]
,

from (9) we have

Âj = Âj−1 + αj−1 P̂j−1 + zj−1ζ
T
j−1, where (ζj−1)h =

∂αj−1

∂bh

,

Q̂j = AAT (I − Âj),

P̂j = Q̂j + βj−1 P̂j−1 + zj−1ξ
T
j−1, where (ξj−1)h =

∂βj−1

∂bh

,

ζj = 2 αj

(
Q̂T

j

rj

‖qj‖2
− P̂ T

j

zj

‖zj‖2

)
,

ξj = 2 βj

(
Q̂T

j+1

rj+1

‖qj+1‖2
− Q̂T

j

rj

‖qj‖2

)
.

(13)

The initial positions are Â0 = O, P̂0 = Q̂0 = AAT . In the following this
“complete derivative” approach will be called CD approach.

The computation of formulas (13) cannot be restricted to the single traces of
the matrices, because the whole Âj is required to compute the trace of Q̂j. So,
the use of (13) for the direct computation of tr Âk is impracticable for large n
and we resort to a randomized approach which exploits the following

Trace Lemma: Given a matrix B of size n and a vector v of n independent
samples of a normal random variable with zero mean and variance σ2, then
σ2 tr B = E(vT Bv).

By applying this lemma to matrix Âk and to a vector v of n independent
samples of a normal random variable with zero mean and unit variance, we
have

tr Âk = E(vT x′k), where x′k = AJkv = Âkv. (14)
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The vector x′k can be computed recursively. Setting x′j = Âjv, p′j = P̂jv,

q′j = Q̂jv, ζ ′j = ζT
j v and ξ′j = ξT

j v, from (13) we have

x′j = x′j−1 + αj−1 p′j−1 + ζ ′j−1zj−1,

q′j = AAT (v − x′j),

p′j = q′j + βj−1 p′j−1 + ξ′j−1zj−1,

ζ ′j = 2 αj

( rT
j q′j

‖qj‖2
− zT

j p′j
‖zj‖2

)
,

ξ′j = 2 βj

(rT
j+1q

′
j+1

‖qj+1‖2
− rT

j q′j
‖qj‖2

)
.

(15)

The initial positions are x′0 = 0, p′0 = q′0 = AAT v. The computation is carried
out with the following procedure.

Procedure P1: m independent realizations of a vector v with distribution N =
N (0, I) are generated and the trace of Âk is approximated by averaging the
m values vT x′k obtained applying (15). In [4] it is shown that when n is large
enough and suitable hypotheses on the distribution of the eigenvalues of the
matrix are satisfied, only few vectors v are needed to get a reliable estimate.
In [10] it is shown that the variance of this estimate is minimized when the
components of v are generated independently and take on the values +1 and
−1 with equal probability 1/2. In the following we denote this distribution by
U .

The magnitudes of the vectors ζj and ξj for j = 1, . . . , k−1 measure how much
Ak depends on b. If these magnitudes are sufficiently small, we may assume
that the dependence of αj and βj on b is weak and enables us to ignore it.
In this “incomplete derivative” approach, which in the following will be called
ID approach, Ak is approximated by the matrix Âk, obtained setting in (13)
ζj and ξj to 0, i.e.

Âj = Âj−1 + αj−1 P̂j−1, Q̂j = AAT (I − Âj), P̂j = Q̂j + βj−1 P̂j−1,(16)

with initial positions Â0 = O, P̂0 = Q̂0 = AAT . The vector x′k required in (14)
is now computed by

x′j = x′j−1 + αj−1 p′j−1, q′j = AAT (v − x′j), p′j = q′j + βj−1 p′j−1. (17)

The computation is carried out according to
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Procedure P2: it works like P1 with relations (15) replaced by (17). Having
used in recurrences (17) the same αj and βj of (9), it is immediate to see that
the vector x′k so obtained is equal to Axk, where xk is the vector we would
obtain by applying CG to system (8) with right-hand side AT v. Then this
approach coincides with the Monte-Carlo gcv approach, suggested in [4].

We consider also a third procedure, proposed in [15], which computes x′k in
(14) by replacing the derivatives used in the Jacobian with finite difference
approximations.

Procedure P3: denoting by xk(b) the kth vector obtained by applying CG to
right-hand side AT b, we have

Jkv ∼ xk(b + δ v)− xk(b− δ v)

2δ
,

where δ is a small constant. At each step of CG the three vectors xj(b),
xj(b + δv) and xj(b − δv) are computed. The truncation error of a central
approximation is of the second order, but we must take into consideration also
the influence of the noise. Then it is not worthwhile to choose δ too small.
Moreover in [7] it is observed that this approach can be very sensitive to the
choice of δ.

Taking into account the computational cost, the two procedures P1 and P2

can be considered equivalent, in the sense that the computation of ζ ′j and ξ′j
which are present in (15) but not in (17) do not alter the cost, dominated
by the matrix-vector product for q′j. Procedure P3 doubles the computational
cost. Of course, the cost of the three procedures increases with the number m
of random vectors v. We expect that the larger m the better estimate of tr Âk,
but it remains to be established if this leads to a substantially improvement
in the reconstructed solution.

In Section 5, we will examine how much the use of GCV as a stopping rule
for CG is influenced by these different ways of approximating the trace in
the denominator of (7). As already noted, when n is large an effective imple-
mentation of formulas (13) and (16) is in general too demanding in terms of
computational cost. In Section 5 we will use them as a theoretical basis for
testing the effectiveness of procedures P1 − P3.
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4 The case of the circulant matrix

There are problems where a spectral decomposition of A is available at a low
cost also for large n. This is true, for example, in the case of the restoration of
images blurred by a shift-invariant PSF. In this case, setting suitable boundary
conditions, the matrix A has a 2D circulant structure and its eigenvalues can
be computed by the use of FFT, as we see presently.

Let v be a vector of size n and A the n × n circulant matrix whose first row
is aT . Circulant matrices of size n are diagonalized by the Fourier matrix F ,
whose elements are

fr,s =
1√
n

ωrs, r, s = 0, . . . , n− 1, with ω = exp(2πi/n),

i.e. A =
√

n F diag(F a) F∗. Then the product z = Av can be so computed

ã = Fa, ṽ = Fv, t = r̃ ¯ ṽ∗, z =
√

n F t,

where ¯ indicates the element-wise product of two vectors of the same size
and ṽ ∗ is the conjugate of ṽ. To obtain the product z = AT v it is sufficient
to take the first column of A as a or to replace ã by its conjugate ã ∗. The
multiplications by F and F∗ can be efficiently computed by calling two FFT
routines, with a computational cost of order O(n log n).

A substantial reduction of the cost when A is circulant is obtained by shifting
to the Fourier domain, i.e. by replacing the matrices and vectors involved in
the computation with their transformations in the Fourier basis. Let aT be
the first row of A, ã = Fa, b̃ = Fb, c̃ =

√
n ã ¯ b̃ and d̃ = n ã ∗ ¯ ã. The

CG algorithm becomes

z̃j−1 =
√

n ã¯ p̃j−1,

αj−1 = ‖q̃j−1‖2/‖z̃j−1‖2,

x̃j = x̃j−1 + αj−1 p̃j−1,

q̃j = c̃− d̃¯ x̃j,

βj−1 = ‖q̃j‖2/‖q̃j−1‖2,

p̃j = q̃j + βj−1p̃j−1.

(18)

The initial positions are x̃0 = 0 and p̃0 = q̃0 = c̃. At the end xk = F∗x̃k.
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The cost per iteration is now reduced to the order of O(n). If relations (16)
are used, the computation of trAk can be easily performed, because Âj, P̂j

and Q̂j still keep the circulant structure. Denoting ãj = F âj, p̃j = F p̂j and

q̃j = F q̂j where âT
j , p̂T

j and q̂T
j are the first rows of Âj, P̂j and Q̂j, we have

ãj = ãj−1 + αj−1p̃j−1, q̃j = ã ∗ − d̃¯ ãj, p̃j = q̃j + βj−1p̃j−1,

with initial positions ã0 = 0, p̃0 = q̃0 = ã¯ ã ∗ and tr Âk = n
∑

i (ãk)i. Then

V (k) =
n ‖r̃k‖2

(n− tr Âk)
2 , where r̃k = b̃k −

√
n ã ∗ ¯ x̃k.

Analogous formulas can be derived for the 2-level circulant matrices, which
frequently occur in 2D problems of image deconvolution.

Unfortunately, such a forward shifting to the Fourier domain does not hold
for relations (13), because zj−1ζ

T
j−1 and zj−1ξ

T
j−1 are not circulant.

5 Numerical experimentation

The numerical experimentation is carried out in Mathematica with machine-
epsilon 2−53 arithmetic both on 1D and on 2D test problems. For each problem
the matrix A and the solution x∗ are given, then the vector b∗ = Ax∗ is
computed and white Gaussian noises are generated, with relative magnitudes
‖η‖/‖b∗‖ ranging from 0.5% to 10%.

CG method is applied to each sample, i.e. a triple (A, b∗, η), and the optimum
index kopt is derived from the history ‖εk‖. For any k the ratio

E(k) =
‖εk‖ − ‖εkopt‖

‖εkopt‖
(19)

of the solution error (5) of xk with respect to the optimal error is consid-
ered. If taken as the regularized solution, xk is oversmoothed if k < kopt and
undersmoothed if k > kopt. Its level of smoothing is judged by comparing
E(k) with a preassigned value `. If E(k) ≤ ` then xk is called acceptable, if
` < E(k) ≤ 10 ` then xk is called mildly over- undersmoothed, if E(k) > 10 `
then xk is called severely over- undersmoothed. Since our aim is to evaluate
how the different procedures described in Section 3 for estimating trAk affect
the GCV efficiency, the chosen value of ` should allow to establish a clear
performance ranking of the procedures.
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For a deeper understanding of the numerical results, another parameter should
be taken into consideration, namely the difficulty of the various problems.
From a theoretical point of view, we expect this difficulty to depend on the
decay of the singular values of A and the spectral components of the vectors b
and η. But to measure it with specific regards to the regularization by means
of CG, we think that formula (19) may serve the purpose through the ratios
E(kopt − 1) and E(kopt + 1) which monitor the consequence of missing the
optimal index by only one.

Anyway, we recall that in practice finding the minimum of V (k) might fail to
detect a proper estimate of kopt because of the nearly flat behavior of V (k)
followed by multiple local minima due to the noise and the accumulation of
the rounding errors which can transform a slowly decreasing behavior into a
slowly increasing one or viceversa.

5.1 1D experimentation

The 1D experimentation concerns some problems of [8] at size n = 256, namely
baart, deriv2, foxgood, heat (with kappa= 1.1, 2, 3), ilaplace (the four
listed examples), phillips, shaw, wing. The problems, which are obtained
from the discretization of Fredholm integral equations of the first kind, have
in general severely ill-conditioned matrices, with more than half the singular
values below the machine precision. For these problems the acceptability level
` = 0.1 is chosen.

The aim of a first set of experiments is the comparison of the behaviors of εk

and πk. So we apply CG to each sample and find the index kπ of the minimum
of ‖πk‖. The first line of Table 1 shows the percentages of acceptable cases, of
severely or mildly oversmoothed cases and of severely or mildly undersmoothed
cases over the total number of samples, according to the ratio E(k) defined
in (19) with k = kπ. It appears that the probability of getting acceptable
reconstructions for our set of samples is sufficiently high when kopt is estimated
through kπ. The two following lines refer to the difficulty of the 1D problems,
showing that a large percentage of problems can be classified as difficult. The
last three lines of the table show the effect of the different approximations of
the GCV function in detecting the stopping index. The comparison is made in
a theoretical context using directly (12) (KA approach), (13) (CD approach),
or (16) (ID approach).

The CD and ID approaches share a common behavior. This suggests that
ignoring the dependence of Ak on b does not produce very serious effects. The
KA approach does not behave too badly for these problems, where kopt is in
general small. In fact, a small number of iterations does not leave enough room
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sev. over. mild over. acceptable mild under. sev. under.

kπ 0% 2.3% 86.0% 10.0% 1.7%

kopt − 1 19.0% 40.6% 40.4% 0% 0%

kopt + 1 0% 0% 40.8% 29.2% 30.0%

KA 3.9% 20.2% 49.0% 9.6% 17.3%

CD 4.1% 15.4% 64.4% 11.9% 4.2%

ID 4.8% 16.4% 61.5% 13.1% 4.2%
Table 1
1D problems: percentages of cases of over- undersmoothing for the predictive er-

ror and the different approaches to the approximation of the GCV function with
acceptability level ` = 0.1.

for revealing the inherent instability of the approach.

Next, procedures P1 and P2 are applied with m = 1 and m = 5 random vectors
v generated in both the normal and uniform distributions N and U . Table 2
lists the percentages of acceptable cases, of severely or mildly oversmoothed
cases and of severely or mildly undersmoothed cases.

m sev. over. mild over. acceptable mild under. sev. under.

1 5.0% 15.0% 61.6% 11.7% 6.7%
P1 N

5 3.5% 17.3% 67.9% 9.0% 2.3%

1 2.3% 16.2% 59.8% 10.0% 11.7%
P1 U

5 3.6% 14.8% 63.5% 11.0% 7.1%

1 5.4% 15.2% 61.3% 10.8% 7.3%
P2 N

5 3.1% 18.6% 65.4% 10.6% 2.3%

1 2.1% 17.9% 58.1% 10.6% 11.3%
P2 U

5 5.6% 14.2% 61.6% 12.1% 6.5%
Table 2
1D problems: percentages of cases of over- undersmoothing for procedures P1 and

P2 with acceptability level ` = 0.1.

We see that the two procedures P1 and P2 behave similarly, in confirmation
of what seen in the theoretical context, i.e. that ignoring the dependence of
Ak on b does not produce too serious effects. Anyway, taking into account
that the computational costs of the two procedures is the same, the slight
prevalence of P1 suggests its use against P2.

To evaluate the influence of the two distributions N and U , we consider the
figures in the acceptable column and the sum of the figures in the “sev. over.”
and “sev. under.” columns. Choosing the random vectors in the distribution
N produces better results.
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Finally, we evaluate the effects of choosing just one random vector v or a
larger number m of vectors v, used for estimating the trace through (14). It
is evident that the cheapest choice m = 1 cannot be suggested against the
more computational expensive choice m = 5, because of the larger risk of
undersmoothing.

Table 3 lists the analogous percentages for procedure P3. Three values are
given to δ, namely 0.1 (large), 0.01 (medium) and 0.001 (small). Also with
this procedure m = 1 and m = 5 random vectors v are generated in the
normal and uniform distributions N and U , but the table shows only the
results of N because of their appreciable superiority, in confirmation of what
seen for procedures P1 and P2. Also with procedure P3, the choice m = 1
gives the worst results. At first glance, it might seem that procedure P3 has
an overall performance comparable with that of procedure P1. However, due
to its irregular behavior varying δ and its larger computational cost, we do
not feel like suggesting P3 against P1.

δ m sev. over. mild over. acceptable mild under. sev. under.

1 4.8% 17.9% 61.3% 10.0% 6.0%
0.1

5 3.6% 20.6% 68.1% 5.4% 2.3%

1 5.4% 21.0% 59.6% 8.8% 5.2%
0.01

5 3.3% 21.9% 67.5% 5.4% 1.9%

1 5.0% 16.5% 63.1% 9.6% 5.8%
0.001

5 3.5% 19.6% 67.3% 6.9% 2.7%
Table 3
1D problems: percentages of cases of over- undersmoothing for procedure P3 with

acceptability level ` = 0.1.

5.2 2D experimentation

The 2D experimentation deals with two images of astronomical interest (the
spiral galaxy NGC 1288 [2] and an image of satellite [11]) and two of medical
interest (the synthetic Shepp-Logan phantom [18] and a Hoffman phantom
[9]), widely used in the literature for testing image deconvolution algorithms.
All the images have n = 2562 number of pixels. The matrix A which performs
the blur is a 2-level circulant matrix generated by a positive space invariant
bandlimited PSF with a bandwidth ν = 15, normalized in such a way that
the sum of the elements is equal to 1. We consider four exponential PSFs of
the following types.

(a) Gaussian PSFs represented by masks with entries mi,j = exp(−α i2 −
βj2), −ν ≤ i, j ≤ ν, where α = 0.3, β = 0.25 and α = 0.1, β = 0.1.
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(b) Motion-type PSFs represented by masks with entries
mi,j = exp(−α(i + j)2 − β(i − j)2), −ν ≤ i, j ≤ ν, where α = 0.02, β = 0.01
and α = 0.04, β = 0.02.

These 2D problems are less difficult than the 1D problems for what concerns
the regularization by means of CG. Actually, with the same level ` = 0.1 used
for the 1D case, almost the totality of the problems would give acceptable
results. Hence for these problems the lower acceptability level ` = 0.002 is
fixed. Due to the large dimension of the problems, CD approach is not applied
and ID approach is implemented as described in Section 4, i.e. by exploiting
the circulant structure. The results are shown in Table 4.

sev. over. mild over. acceptable mild under. sev. under.

kπ 0% 7.3% 90.8% 1.9% 0%

kopt − 1 6.7% 18.1% 75.2% 0% 0%

kopt + 1 0% 0% 78.0% 12.0% 10.0%

KA 0% 0% 1.3% 2.8% 95.9%

ID 0% 8.3% 91.1% 0.6% 0%
Table 4
2D problems: percentages of cases of over- undersmoothing for the predictive error
and the KA and ID approaches to the approximation of the GCV function with
acceptability level ` = 0.002.

The similarity of the percentages of the ID approach and those of kπ suggests
that also in the 2D case ignoring the dependence of Ak on b does not produce
very serious effects. On the contrary, here KA approach is not reliable, be-
cause in most cases the GCV function computed by setting trAk = k has no
minimum.

Table 5 lists the percentages of the different cases obtained by applying proce-
dures P1 and P2. The two procedures behave as with the 1D problems, except
that the choice of the two distributions N and U appears now to be less
significant.

Table 6 lists the analogous percentages for procedure P3. Also for this pro-
cedure the choice of the two distributions N and U appears to be irrelevant,
hence the table shows the results of N . Unlike the 1D case, the percentage of
acceptable cases increases for decreasing δ. Anyway, procedure P3 is always
outperformed by both P1 and P2.
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m sev. over. mild over. acceptable mild under. sev. under.

1 0% 9.7% 89.4% 0.9% 0%
P1 N

5 0% 8.5% 90.9% 0.6% 0%

1 0% 9.1% 90.1% 0.8% 0%
P1 U

5 0% 9.4% 90.1% 0.5% 0%

1 0% 9.8% 88.9% 1.3% 0%
P2 N

5 0% 8.8% 90.6% 0.6% 0%

1 0% 9.2% 90.0% 0.8% 0%
P2 U

5 0% 9.5% 90.0% 0.5% 0%
Table 5
2D problems: percentages of cases of over- undersmoothing for procedures P1 and

P2 with acceptability level ` = 0.002.

δ m sev. over. mild over. acceptable mild under. sev. under.

1 2.5% 23.7% 66.9% 6.9% 0%
0.1

5 2.5% 21.7% 71.3% 4.5% 0%

1 0% 23.1% 76.0% 0.9% 0%
0.01

5 0% 22.2% 77.3% 0.5% 0%

1 0% 21.7% 77.4% 0.9% 0%
0.001

5 0% 19.1% 80.3% 0.6% 0%
Table 6
2D problems: percentages of cases of over- undersmoothing for procedure P3 with

acceptability level ` = 0.002.

6 Conclusions

Various techniques have been considered to estimate the denominator of the
GCV function in connection with CG regularization. In the literature, the
following techniques are suggested: the simple KA approach, i.e. tr Ak = k;
the Monte-Carlo gcv approach [4]; the approach proposed in [15], which deals
with the dependance of the influence matrix on the noise by approximating the
Jacobian with finite differences. A new approach, denoted as procedure P1, has
been introduced which also deals with the dependance of the influence matrix
on the noise, but explicitly computes the Jacobian by means of recurrences. We
have also considered a procedure P2, obtained by simplifying the derivatives
of the recursions in P1, which actually coincides with the Monte-Carlo gcv
approach. The procedure based on [15] has been here called procedure P3.

The indicator E(k) has been introduced to measure the effectiveness of the
choice of xk as a regularized solution. On the basis of the experiments carried
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out on 1D and 2D test problems, we can draw some conclusions.

(1) Considering the results of the 2D experimentation (Table 4), we do not
feel like suggesting the KA approach.

(2) The sensitivity of procedure P3 to the choice of the parameter δ, its
irregular behavior on the 1D problems (Table 3), its poorer performance
with respect to procedures P1 and P2 in the 2D case (Tables 5, 6) and its
larger computational cost do not suggest its use.

(3) Procedures P1 and P2 behave similarly and share approximately the same
computational cost, but P1 is theoretically more accurate. Considering
the results of the 1D experimentation (Table 2), which are not contra-
dicted by the results of the 2D experimentation (Table 5), we suggest the
use of the new procedure P1 together with few independent realizations
of a vector v with distribution N (0, I).
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