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Stability analysis of the Toeplitz-like matrix by

vector product (via FFT)

P. Favati G. Lotti O. Menchi

Abstract

In this paper the numerical stability of the Toeplitz-like matrix by
vector product, performed via FFT, is analyzed. The error appears to
depend on the magnitude of the generators of the matrix. The numerical
experimentation confirms the theoretical result.

1 Introduction

The fast Fourier transform (FFT) was first discussed by Cooley and Tukey in
1965 [2], although Gauss had already described the critical factorization step
as early as 1805. It is one of the most important numerical algorithms and
has a wide range of applications, for example in the digital signal processing,
in solving partial differential equations, in the number theory, in the quick
multiplication of large integers. This ubiquitous fortune is principally due to its
low computational cost: computing the discrete Fourier transform of a sequence
of length n according to the definition, takes O(n2) arithmetical operations,
while using FFT takes only O(n log2 n) operations.

When finite-precision floating-point arithmetic is used, FFT algorithms give
results affected by error, but this error is typically quite small, in fact most
FFT algorithms (like CooleyTukey we consider here), enjoy excellent numerical
stability (see [1, 4]). We are interested in investigating the stability of FFT used
for multiplying a Toeplitz-like matrix by a vector. The paper is so organized:
in Section 2 a brief description of Toeplitz-like matrices is given, then in Section
3 the function prod for computing the product is sketched. The analysis of the
stability occupies Section 4, and finally in Section 5 the results of the numer-
ical experiments are shown, confirming the relevance of the magnitude of the
generators of the Toeplitz-like matrix.

2 Toeplitz-like matrices

The definition of Toeplitz-like structure is based on the concept of displacement
rank [5, 6], which measures how close a matrix is to a Toeplitz matrix. Given
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an n× n matrix A, we consider the displacement operator

∇(A) = A− ZAZT , (1)

where Z is the n× n down-shift matrix

Z =


0
1 0

. . .
. . .

1 0

 .
The matrix A is said to be Toeplitz-like if the quantity rdisp(A) = rank∇(A)
(called displacement rank) is small with respect to n (more formally rdisp(A) =
O(1) for n → ∞). The set of Toeplitz-like matrices, unlike the set of Toeplitz
matrices, is closed under the operations of multiplication and inversion. Let
rdisp(A) = ρ, then

∇(A) = C DT , (2)

for suitable n×ρ matrices C and D, called generators of A. Denoting by ci and
di the columns of C and D respectively, then

∇(A) =

ρ∑
i=1

cid
T
i . (3)

with di = ci or di = −ci in the symmetric case.

For a Toeplitz matrix A of elements ai,j with a1,1 ̸= 0 we have

∇(A) = c1 e
T
1 + e1 d

T
2 , with c1 = A e1, d2 = ATe1 − a11e1,

i.e. c1 is the first column of A and dT
2 is the first row of A without the first

component. In general, the displacement rank of a Toeplitz matrix is ρ = 2,
except in some special case where ρ = 1.

The decomposition (2) of ∇(A), and consequently the representation of A
by means of the generators, is not unique. An important representation is the
orthogonal one [7], obtained by computing the SVD decomposition ∇(A) =
UWV T , where W is the ρ × ρ diagonal matrix of the nonzero singular values
w1 ≥ . . . ≥ wρ > 0 and U and V are n × ρ matrices with orthogonal columns.
Now (2) is given by

∇(A) = C DT , where C = UW 1/2, D = VW 1/2.

The generators enable us to represent a Toeplitz-like matrix as the sum of
products of lower and upper triangular Toeplitz factors. Denoting by L(s) the
lower triangular Toeplitz matrix whose first column is s and by LT (s) the upper
triangular Toeplitz matrix whose first row is s, then

A =

ρ∑
i=1

L(ci)L
T (di). (4)
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From (1) it follows that

∥∇(A)∥2 ≤ ∥A∥2 + ∥ZAZT ∥2 ≤
(
1 + ∥Z∥22

)
∥A∥2 ≤ 2 ∥A∥2.

In [3] the stability of a method for solving a linear system, whose Toeplitz-like
matrix A is not explicitly given but only represented through its generators, is
recognized depending on how large the generators, given in (2), are with respect
to the magnitude of A. So, when stability is analyzed, we suggest to consider
the function

ψ2(C,D) =

ρ∑
i=1

∥ci dT
i ∥2 =

ρ∑
i=1

∥ci∥2 ∥di∥2, (5)

which verifies ∥∇(A)∥2 ≤ ψ2(C,D). In general it is not possible to give a
bound of the ratio ψ2(C,D)/∥A∥2 depending only on n and ρ. However, if the
decomposition (2) is orthogonal, then

∥∇(A)∥2 = w1 = ∥C∥2 ∥D∥2,
ψ2(C,D) = w1 + . . .+ wρ ≤ ρ∥∇(A)∥2 ≤ 2ρ∥A∥2.

(6)

3 Product of Toeplitz-like matrices

To compute the product of a Toeplitz-like matrix A by a vector v we exploit
formula (4), so the product can be computed by multiplying first upper and
then lower triangular Toeplitz matrices by vectors. If n is large, it is worthwhile
to compute these products at low cost using FFT.

We consider first the upper triangular case. Given two vectors vT = [v1, . . . , vn]
and rT = [r1, . . . , rn], let L

T (r) be the n× n upper triangular Toeplitz matrix
whose first row is rT and let the vector u = LT (r)v to be computed. We note
that if the last p components of v are zero, also u has the last p components
equal to zero and the size of the computation can be reduced by deleting the
last p columns of LT (r). For this reason we assume without loss of generality
that vn ̸= 0.

The vectors v and r are embedded in vectors v̂ and r̂ of double size and the
matrix LT (r) is embedded in a circulant matrix M whose first row is r̂T

v̂ =

[
v
0n

]
, r̂ =

[
r
0n

]
, M =

[
LT (r) L(r′)
L(r′) LT (r)

]
,

where 0n is the zero vector of length n and L(r′) the n × n lower triangular
Toeplitz matrix whose first column is r′ = [0, rn, . . . , r2]

T . The vector u is found
in the first half of the vector

m =M v̂ =

[
LT (r)v
L(r′)v

]
.
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A circulant matrix of order 2n is diagonalized by the Fourier matrix F , whose
elements are

fij =
1√
2n

ωij , i, j = 0, . . . , 2n− 1, with ω = exp(πi/n).

Since M =
√
2n F diag(F r̂) F∗, it holds

m =
√
2n F diag(F r̂) F∗ v̂.

Then the product u can be computed by the function

function u = uppert (n, r,v)

s = F r̂; t = F∗v̂; q = s⊙ t; m =
√
2n Fq; u = take(m);

where ⊙ indicates the element-wise product of two vectors of the same size, and
take is a function that takes the first half of a vector. The multiplications by
F and F∗ can be efficiently computed by calling FFT.

Moreover, since MT =
√
2n F diag

(
F r̂

)
F∗, where the overline indicates

the conjugate, we can compute y = L(r)v as follows

function y = lowert (n, r,v)

s = F r̂; t = F∗v̂; q = s⊙ t; m =
√
2n Fq; y = take(m);

Let now A be a Toeplitz-like matrix with generators C and D and displacement
rank ρ. Then by (4) it is

Av =

ρ∑
i=1

L(ci)L
T (di)v, (7)

and we can compute Av by the following function, where
{
A
}
denotes the set

{n, ρ, C,D}.

function u = prod (
{
A
}
,v)

% A has displacement rank ρ and generators C and D

% C and D have columns ci and di

for i = 1 : ρ

hi = uppert (n,di,v); gi = lowert (n, ci,hi);

end

u =
ρ∑

i=1

gi;

A saving of the cost can be achieved by skipping the last FFT call of lowert
and exploiting the linearity of F in the final sum. A simplified version of prod
can be used to reconstruct a single column of A or the whole A according to
(4).
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The function prod(
{
A
}
, V ) to multiply A by the matrix V can be easily

derived from the function prod(
{
A
}
,v) given above. Obviously, when a same

matrix A has to be multiplied by several different vectors, the transformation
of the generators is performed only once.

4 Stability of the function prod

For the stability analysis we assume that the computations are carried out in
a floating point arithmetic with unit roundoff ϵ. The computed value of a
variable (scalar, vector or matrix) v will be denoted by ṽ or by “fl(v)”. We
assume also that the quantities which appear in the bounds are not so large to
invalidate a first order error analysis. For simplicity the term ”+O(ϵ2)”, which
appears in the thesis of the theorems, is omitted in the proofs. Consequently,
any expression of the form x ỹ, where x = O(ϵ) and ỹ − y = O(ϵ), is replaced
by x y.

The following bounds are used:

• Given a vector x, a vector ϵ whose components are bounded in modulus by
ϵ exists such that

x = x̃− x̃⊙ ϵ+O(ϵ2). (8)

• Given two vectors x and y, with x̃ = x+ δx and ỹ = y + δy, then

fl
(
x̃⊙ ỹ

)
= x⊙ y + ω +O(ϵ2), (9)

where
ω = x⊙ δy + δx ⊙ y + ϵ ⊙ x⊙ y,

and ϵ is a vector whose components are bounded in modulus by ϵ.

• Given ρ scalars αi and ρ vectors xi, i = 1, . . . , ρ, then ρ vectors χi, i =
1, . . . , ρ, with entries bounded in modulus by ρ ϵ, exist such that

fl
( ρ∑

i=1

αi xi

)
=

ρ∑
i=1

αi

(
xi + xi ⊙ χi

)
+O(ϵ2). (10)

The following stability result applies to FFT [1]:

• Given a (2n)-vector x, let y = Fx and ỹ = fl
(
Fx

)
, then a matrix Φ exists

such that

ỹ = y + Φy +O(ϵ2), with ∥Φ∥2 ≤ 10.7 ϵ log2(2n). (11)

An analogous bound holds for F∗, with Φ replaced by a matrix Φ∗, which
satisfies the same bound.

The first theorem shows how the computed product of a triangular Toeplitz
matrix by a vector can be regarded as the exact product of a slightly perturbed
matrix by the vector.
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Theorem 1 Given the n-vectors r and v, let u = LT (r)v and let

ũ = fl
(
uppert(n, r,v)

)
.

Then a matrix H(r) exists such that

ũ = u+H(r)v +O(ϵ2),

where
∥H(r)∥2 ≤ ϵ γ ′ ∥r∥2, γ ′ = 42

√
n log2(2n). (12)

Proof. Applying algorithm uppert we get

s̃ = fl
(
F r̂

)
, t̃ = fl

(
F∗v̂

)
, g̃ = fl

(
s̃⊙ t̃

)
, m̃ = fl

(√
2nF g̃

)
.

The vector ũ is found in the first half of m̃. Using (9) and (11) we have

s̃ = s+ Φ s, t̃ = t+ Φ∗ t, g̃ = s⊙ t+ ω, m̃ =
√
2nF g̃ + Φm,

where
ω =

(
Φ s

)
⊙ t+ s⊙

(
Φ∗ t

)
+ ϵ⊙ s⊙ t = Ω t,

with
Ω = diag

(
Φ s

)
+ diag

(
s
)
Φ∗ + diag

(
ϵ⊙ s

)
.

Then
m̃ =

√
2nFg +

√
2nFω + Φm = m+

√
2nF Ω t+ Φm.

Denoting by E the upper half of the identity matrix of order 2n, we have

ũ = u+ z,

where

z = H(r)v, with H(r) =
√
2nE F Ω F∗ET + E Φ

[
LT (r)
L(r′)

]
.

Using (11) we get

∥H(r)∥2 ≤
√
2n ∥Ω∥2 + ∥Φ∥2 ∥r∥1

≤
√
2n

(
∥Φ∥2 + ∥Φ∗∥2 + ϵ

)
∥r∥2 +

√
n∥Φ∥2 ∥r∥2

≤ ϵ
√
n
(
10.7(2

√
2 + 1) log2(2n) + 1) ∥r∥2

≤ 42 ϵ
√
n log2(2n) ∥r∥2. 2

An analogous result holds for the product of a lower triangular Toeplitz
matrix by a vector computed by applying algorithm lowert.

The second theorem shows how the product, computed by the function prod

of Section 3 of a Toeplitz-like matrix by a vector can be regarded as the exact
product of a slightly perturbed Toeplitz-like matrix by the vector.
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Theorem 2 Given an n× n Toeplitz-like matrix A with ∇(A) = C DT and an
n-vector v, let u = Av and let ũ = fl

(
prod(

{
A
}
,v)

)
be the computed product.

Then a matrix ΘA exists such that

ũ = u+ΘA v +O(ϵ2) with ∥ΘA∥2 ≤ ϵ γ ′′ ψ2(C,D). (13)

where γ ′′ = cn log2 n, c not depending on n.

Proof. From (7) we have

u =

ρ∑
i=1

gi, where gi = L(ci)hi, hi = LT (di)v, for i = 1, . . . , ρ.

The following quantities are effectively computed

h̃i = fl
(
uppert (n,di,v)

)
, g̃i = fl

(
lowert (n, ci, h̃i

)
, ũ = fl

( ρ∑
i=1

g̃i

)
.

By Theorem 1 we have

h̃i = hi +H(di)v, where ∥H(di)∥2 ≤ ϵ γ ′ ∥di∥2,

and
g̃i = L(ci) h̃i +H(ci)hi, where ∥H(ci)∥2 ≤ ϵ γ ′ ∥ci∥2,

then
g̃i = gi + δi v, where δi = L(ci)H(di) +H(ci)L

T (di).

Since ∥L(ci)∥1 = ∥L(ci)∥∞ = ∥ci∥1, we have

∥L(ci)∥2 ≤
√

∥L(ci)∥1 ∥L(ci)∥∞ = ∥ci∥1 ≤
√
n ∥ci∥2

and

∥δi∥2 ≤ ∥L(ci)∥2 ∥H(di)∥2 + ∥H(ci)∥2 ∥LT (di)∥2 ≤ 2ϵ
√
nγ ′ ∥ci∥2 ∥di∥2.

Summing for i = 1 , . . . , ρ and applying (10) we get

ũ = fl
( ρ∑

i=1

g̃i

)
=

ρ∑
i=1

gi +

ρ∑
i=1

(
δi v + gi ⊙ χi

)
= u+ΘA v,

where the entries of χi are bounded in modulus by ϵ ρ and

ΘA =

ρ∑
i=1

(
δi + diag(χi)L(ci)L

T (di)
)
.

Then, since ρ = O(1) for n→ ∞,

∥ΘA∥ ≤ ϵ
(
2
√
nγ ′ + ρn

) ρ∑
i=1

∥ci∥2 ∥di∥2 ≤ ϵ γ ′′ψ2(C,D). 2

If the decomposition of ∇(A) is orthogonal, then from (6) it follows

∥ΘA∥ ≤ ϵ γ ′′ρ ∥∇(A)∥2 ≤ 2 ϵ γ ′′ρ ∥A∥2.
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5 Numerical experiments

The experiments, which have been conducted on an Intel Core Duo @ 3 GHz,
2GB RAM, using double precision arithmetic, have been carried out on Toeplitz-
like matrices of growing size n and different displacement rank ρ.

Two sets of numerical experiments are performed, in order to validate the
upper bound given in Theorem 2 by investigating the behaviour of the relative
error produced in the computation of prod (

{
n, ρ, C,D

}
,v).

(i) The matrices for the first set of experiments have been generated for differ-
ent values of the displacement rank and growing values of n in the range [23, 29].
For each size n and fixed values of ρ, ten triples {C, D, v} with entries uni-
formly distributed in [−10, 10] are randomly generated. The arithmetic mean
µn of the relative errors ∥ũ − u∥/∥v∥ is plotted versus n in Figure 1 (for the
case ρ = 5, no significant differences occur for other values of ρ), together with
the upper bound τn = ϵ γ ′′ψ2(C,D) of Theorem 2.

100 200 300 400 500

-12

-11

-10

-9

-8

-7

-6

Figure 1: Log plot of µn(dashed line) and τn (solid line) as functions of n.

(ii) For the second set of experiments we fix n = 29 and ρ = 5 and generate
matrices C and D as in the previous case, except for the fact that different pairs
of generators corresponding to the same matrix A are obtained by allowing the
columns of C and D to depend on a parameter β. In this way, very different
values of the function ψ2(Cβ , Dβ) occur, which increase with β. Table 1 shows
that also the relative errors eβ = ∥ũ − u∥/∥v∥ increase with β. However by
using the orthogonal representation Cort, Dort of A, the function ψ2(Cort, Dort)
can be bounded by ∥A∥2 (in this example ∥A∥2 = 355) and consequently the
relative error is reduced according to the bound of Theorem 2 (see last row of
Table 1).

6 Conclusions

The numerical stability of the Toeplitz-like matrix by vector product, performed
via FFT, has been analyzed. The analysis has pointed out that the error greatly
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β ψ2(Cβ , Dβ) eβ

101 260 5.5 10−11

102 391 6.5 10−11

103 1.7 103 6.1 10−10

104 1.5 104 6.7 10−8

105 1.5 105 7.4 10−6

106 1.5 106 5.6 10−5

107 1.5 107 9.1 10−2

108 1.5 108 5.4 100

ort 247 1.2 10−10

Table 1: Values of ψ2(Cβ , Dβ) and of eβ varying β. Last row shows the corre-
sponding values for the orthogonal representation.

depends on the magnitude of the generators of the matrix. The numerical exper-
imentation confirms this result, suggesting that the magnitude of the generators
should be monitored, and the generators should be replaced by orthogonal ones
when they becomes too large with respect to the magnitude of the associated
matrix.

References

[1] M. Arioli, H. Munthe-Kaas, L. Valdettaro, Componentwise error analysis
for FFT’s with applications to fast Helmholtz solvers, Numer. Algorithms,
12, (1996), pp. 65-88.

[2] J. W. Cooley and O. W. Tukey, “An Algorithm for the Machine Calculation
of Complex Fourier Series”, Math. Comput., 19, pp. 297-301, 1965.

[3] P. Favati, G. Lotti and O. Menchi, “Stability of the Levinson algorithm for
Toeplitz-like systems”, SIAM Journal on Matrix Analysis and Applications,
31, pp. 2531-2552, 2010.

[4] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, PA, 1996.

[5] T. Kailath, S.-Y. Kung and M. Morf, “Displacement ranks of matrices and
linear equations”, J. Math. Anal. Appl., 68, pp. 395-407, 1979.

[6] T. Kailath and A. H. Sayed, “Displacement structure: theory and applica-
tions”, SIAM Rev., 37, pp. 297-386, 1995.

[7] V.Y. Pan, Y. Rami and X. Wang, “Structured matrices and Newton’s iter-
ation: unified approach”, Linear Algebra and its Applications, 343-344, pp.
233-265, 2002.

9


	facsimile cover_TR.pdf
	Consiglio Nazionale delle Ricerche
	Iit



