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ABSTRACT
A growing number of people is turning to Social Media in
the aftermath of emergencies to search and publish critical
and up to date information. Retrieval and exploitation of
such information may prove crucial to decision makers in
order to minimize the impact of disasters on the popula-
tion and the infrastructures. Yet, to date, the task of the
automatic assessment of the consequences of disasters has
received little to no attention. Our work aims to bridge this
gap, merging the theory behind statistical learning and pre-
dictive models with the data behind social media. Here we
investigate the exploitation of Twitter data for the improve-
ment of earthquake emergency management. We adopt a
set of predictive linear models and evaluate their ability to
map the intensity of worldwide earthquakes. The models
build on a dataset of almost 5 million tweets and more than
7,000 globally distributed earthquakes. We run and discuss
diagnostic tests and simulations on generated models to as-
sess their significance and avoid overfitting. Finally we deal
with the interpretation of the relations uncovered by the
linear models and we conclude by illustrating how findings
reported in this work can be leveraged by existing emergency
management systems. Overall results show the effectiveness
of the proposed techniques and allow to obtain an estima-
tion of the earthquake intensity far earlier than conventional
methods do. The employment of the proposed solutions can
help understand scenarios where damage actually occurred
in order to define where to concentrate the rescue teams and
organize a prompt emergency response.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.8 [Database Management]: Database
Applications—Data mining ; I.5.1 [Pattern Recognition]:
Models—Statistics

General Terms
Algorithm, Experimentation, Measurement

Keywords
Predictive modeling, feature selection, information retrieval,
social sensing, web mining, emergency management

1. INTRODUCTION
Social Media (SM) is the most effective, sophisticated and
powerful way to gather preferences, tastes and activities of
groups of users in the context of Web 2.0 [24]. Therefore,
SM users could be regarded as social sensors, namely as a
source of information about situations and facts related to
the users (e.g., their preferences or experiences) and their
social environment [33], as asserted by the Social Sensing
paradigm. Among the most widespread SMs are online so-
cial networks (OSNs) such as Facebook, Twitter and Weibo.
These platforms have grown bigger in the last few years, be-
coming a primary hub for public expression and interaction.
The advantage of exploiting OSNs compared to traditional
methods of investigation lies in the spontaneous participa-
tion of the users, in that their contribution is made with-
out pressure or influence from others. Twitter, in particu-
lar, counting a total of 645 million active users and 58 mil-
lion messages shared every day1, introduced a policy and a
message format which encourages users to make their mes-
sages, commonly known as tweets, by default publicly avail-
able. Furthermore, the 140 characters limitation imposed to
Tweets length causes Twitter users to share more topic spe-
cific content. The global spread of the Twitter phenomenon
thus enabled a new wave of experimentation and research

1http://www.statisticbrain.com/twitter-statistics/



on web stream mining. Now, it has been shown that this
vast amount of data encapsulates useful signals driven by
our everyday life [20]. Data mining and statistical learn-
ing methods can be applied to retrieve and extract useful
knowledge from the digital shadows cast everyday on the
web.

Given this picture, it’s not surprising that SM data, and in
particular Twitter data, has been deeply studied by academia
for a broad variety of purposes. Emergency Management is
a promising field of application for Social Sensing since it is
possible to retrieve and exploit the content shared on these
web platforms to gather up to date information on emerging
situations of potential danger [4]. Emergency management
is one of the research fields which have attracted the most
attention in the last few years. Many studies have focused on
the understanding of the on-the-ground community knowl-
edge during disasters [16]. Such knowledge, reflected on the
social web by the multitude of emergency related messages,
can greatly contribute to improve situational awareness dur-
ing all kinds of crises. Yet, despite many compelling findings
along this line of research, the task of the automatic assess-
ment of the consequences of disasters has received little to
no attention. Our work aims to bridge this gap, merging
the theory behind statistical learning and predictive models
with the data behind social media.

We apply our methodology to the field of earthquake emer-
gency management. Other previous works employed web
mining techniques in the same field [25] [3], however almost
no effort has been made towards the assessment of earth-
quake consequences. The severity of an earthquake is de-
scribed by both magnitude and intensity. Magnitude char-
acterizes earthquakes measuring the energy released and is
accurately and timely measured by seismographs. By con-
trast, intensity indicates the local effects and potential for
damage produced by an earthquake. It is verified after the
earthquake has occurred with direct surveys on the field.
Intensity can also be estimated from instrumental measure-
ments by using empirical relationships.
We address one central question. Can social media data pre-
dict earthquake intensity?
Models capable of accurately and timely defining observed
earthquake intensity may have a huge impact on the miti-
gation of the damages. Currently adopted estimations can
only infer shaking level distribution in the epicentral area in
terms of ground-motion parameters and of instrumentally
derived intensities [28]. This scenario does not take into ac-
count information coming from the earthquake-stricken area
and can be greatly improved with the analysis of data auto-
matically collected in near-real-time site by site. The impor-
tance of social data, such as eyewitness reports, towards the
estimation of earthquake intensity have long been asserted.
Data collected from online surveys is already employed to
obtain a more accurate characterization of the consequences
of earthquakes [10]. However, such a solution obviously lacks
responsiveness and the output of this system is often sub-
ject to updates even weeks after the earthquake2. Here our
objective is to leverage data collected from on-the-ground
social sensors in a responsive predictive system.

2We provide a detailed discussion of currently adopted in-
tensity estimation techniques in Section 3.1

The models we propose build on a dataset of almost 5 mil-
lion tweets and more than 7,000 globally distributed earth-
quakes. Each analyzed earthquake is described by 45 dis-
tinct numeric features and by their interactions. On aver-
age, the proposed models predict earthquake intensity with
an error as low as 0.5 on a continuos 1→ 10 scale. These re-
sults can help understand scenarios where damage actually
occurred in order to define where to concentrate the rescue
teams and organize a prompt emergency response.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the related work. Section 3 discloses the de-
tails of our dataset, Section 4 describes the adopted method-
ology. Section 5 details the results of our study and Section 6
draws the conclusions and describes future work.

2. RELATED WORK
Several initiatives, both in scientific and in application en-
vironments, have been developed with the aim of exploiting
information available on Social Media (SM). To the best of
our knowledge predictive models with SM have never been
applied to emergency management. In this section we sur-
vey works in the fields of both social media emergency man-
agement and prediction from social media data. We aim
to leverage previous experiences in both research fields and
apply them to the prediction of earthquake intensity.

2.1 Social media emergency management
Works such as [4] highlighted how disasters and emergen-
cies cause changes in human behavior and dynamics which
are clearly distinguishable in SM. These studies showed the
potential for the exploitation of such information and paved
the way for the current research in the fields of social me-
dia emergency management. The vast majority of existing
works have focused on the event detection and information
dissemination tasks, with only a few exceptions dealing with
the automatic damage assessment, thoroughly discussed in
the remainder of this section.

To date the only work which adopted a predictive modeling
approach to earthquake damage assessment with SM is de-
scribed in [6]. The goal is the estimation of the earthquake
intensity via statistical models. Authors benefited from a
Twitter data grant3 and performed a combined analysis on
both tweets and seismographic data4. Achieved results are
overall interesting with some of the proposed models able to
map seismographic and Twitter data into an estimation of
the earthquake intensity. However, the study proposed in [6]
still leaves many open issues. Among all proposed models,
those trained only with Twitter data achieved the worst per-
formances. Researchers experimented only with a few basic
tweets features, which might have negatively influenced the
results. Moreover the proposed models are not thoroughly
discussed and are only evaluated by means of mean squared
error (MSE). Therefore it is difficult to assess the statistical
significance of the proposed solutions and it remains unclear
what Twitter may contribute to earthquake intensity esti-
mation. Our results, discussed in Section 5, shed light on
this issue and show how our detailed analysis leads to differ-

3https://engineering.twitter.com/research/data-grants
4https://blog.twitter.com/2014/using-twitter-to-measure-
earthquake-impact-in-almost-real-time



ent conclusions. In addition, while researchers in [6] focused
on earthquakes in Japan, we collected and analyzed data for
earthquakes from all over the world.

Other works have previously focused on the analysis of SM
data for the detection of earthquakes. Researchers in [25]
and [26] had the goal of creating an early warning system
(EWS) for the real-time detection of earthquakes and tor-
nadoes in Japan. The proposed system is based on bayesian
statistics and was able to timely detect 67.9% (53 of 78)
of the earthquakes which occurred over two months. The
system described in [25] and [26] only focuses on the event
detection task.
USGS efforts towards the development of an earthquake de-
tection system based solely on Twitter data are described
in [12]. The proposed solution is evaluated with differ-
ent settings according to the sensitivity of the event de-
tection module. However, even with its best configuration
the system could only detect 48 globally distributed earth-
quakes out of the 5,175 earthquakes reported during the
same time window. USGS kept on working on the project
and recently announced the official employment of a Twit-
ter earthquake detection system named TED (Tweet Earth-
quake Dispatch). As explained by USGS, such detection
system proved more responsive than those based on seismo-
graphs in regions where the number of seismographic sta-
tions is low5.

Situational awareness during emergencies is the goal of the
work described in [7] and [31]. The system performs event
detection and authors propose some first solutions towards
the task of the automatic damage assessment of disasters.
Standard burst detection algorithms are employed for the
event detection task. After the detection of an event the
system mines the content of new tweets and outputs word-
clouds to help users understand the nature of the detected
emergency.

Other works related to the emergency management have
studied communication patterns and information diffusion
in OSNs in the aftermath of disasters. The study described
in [9] shows how OSNs can be used as a reliable source of
spatio-temporal information. Researchers investigate Twit-
ter activity during a major forest fire in the south of France
in July 2009. Other similar studies have been carried out
in [16], [21], [11] showing the importance of OSNs in the
communications after a disaster. These studies encourage
the exploitation of this information and motivate further re-
search in this field such as the one that we are proposing.

In [3] we designed and developed a system for the detec-
tion and the assessment of the consequences of earthquakes.
The proposed solution employs data mining and natural lan-
guage processing techniques on SM data to enhance situa-
tional awareness after seismic events. The system proved
highly effective over a seven months long testing period,
however it still lacks some important features. The work
we are proposing in this paper complements well with novel
earthquake emergency management systems like the one de-
tailed in [3]. It can enhance actual damage assessment pro-
cedures and deliver critical information to decision makers

5http://www.livescience.com/45385-earthquake-alerts-
from-twitter.html

in the aftermath of strong earthquakes.

As highlighted by the works surveyed in this section, social
media emergency management is a relatively young field of
study. We believe this is one of the reasons why the auto-
matic assessment of the consequences of disasters is a largely
unexplored line of research. In addition, preliminary studies
such as the ones proposed in [25], [7], [3] are prerequisites
for a deeper knowledge of the role of social media in emer-
gency situations, which will eventually lead to the employ-
ment of automatic damage assessment techniques in novel
emergency management systems.

2.2 Prediction with social media
Predictive models have long been trained on social media
data to explain both real world and virtual world dynam-
ics. Fields of application for such techniques range from
syndromic surveillance, social network analysis and event
forecast to sales prediction, product recommendation and
many more.

The work discussed in [15] dates back to 2005 and was among
the first studies to focus on the impact of web discussions
and chatter towards the prediction of real world trends. Re-
searchers exploited postings in blogs, media, and web pages
to successfully predict book sales. Other subsequent works
related to prediction of purchase behaviors are described
in [5] and [32]. In particular, the latter study focused on the
correlations between Facebook account data and eBay pur-
chases. In [29], authors study the dynamics of time patterns
related to content published on the web. Part of the work
also focused on the prediction of new time patterns exploit-
ing a small number of new observations. Works presented
in [14] and [18] apply predictive modeling to social network
analysis. The former thoroughly discusses the design and
evaluation of an ordinary least squares (OLS) regression
model for the estimation of tie strength on Facebook. The
latter work employs a multilevel logistic regression approach
and focuses on the impact of network structure in the break-
ing of ties.

Prediction of web content change is studied in [23] where
authors analyze the impact of novel page features to the
predictive power of content change models. The work dis-
cussed in [17] proposes a model based on dwell time to pre-
dict search satisfaction. Authors first employ a regression
model to infer dwell time characteristics, then apply a bi-
nary classification for the prediction of search satisfaction.
An application of LASSO regression for the prediction of
real world phenomena is discussed in [20]. Authors perform
two case studies on the prediction of (i) rainfall levels and
(ii) influenza-like illness in the UK. Researchers in [1] focus
on the forecast of future events by training autoregressive
models over a corpus of news articles from the New York
Times.

Works described in this section represent a small survey of
the application of predictive models on social media data.
Although the application context differs from ours, the en-
couraging results of these studies demonstrate the power of
predictive models and social media and pave the way for
the exploitation of such techniques in other research fields
as well.



Figure 1: Geographical view of the 7,283 earthquakes covered by our study

3. THE DATASET
Our dataset is composed of (i) earthquake data, acquired
with a semi-automatic procedure from USGS, and (ii) Twit-
ter data. USGS earthquake data serves as our ground truth,
while messages collected from Twitter are exploited to com-
pute our earthquake features.
We started collecting earthquake-related tweets for a period
of 90 days, spanning from October 18th 2013 to January
15th 2014. We then queried USGS for data about world-
wide earthquakes occurred in the same time window. The
exploitation of automatic crawling strategies for data col-
lection gives us an advantage in terms of amount of data
to use in our experiments compared to works such as [14]
where data acquisition is performed manually.

3.1 USGS Earthquakes
We started collecting earthquake data directly from USGS’s
search web page6 which we queried specifying time bound-
aries and a minimum magnitude of 2. As a result we ob-
tained a list of 7,283 globally distributed earthquakes. For
each of these earthquakes we further queried USGS for ad-
ditional data.
Specifically, USGS performs many different analyses for ev-
ery earthquake giving access to detailed information ranging
from magnitude, epicenter, depth to intensity estimations,
cities near the epicenter, etc. However, not every earthquake
presents all these information. This is because USGS col-
lects data about earthquakes striking anywhere in the world,
but some calculations are computed only for seismic events
which occur in areas covered by its seismic network. For
instance, data about earthquakes having a magnitude lower
then 4 is available almost only for earthquakes hitting US
territory. As further explained in Section 5 we set up several
different experimental settings to account for the diversity
in earthquake data.

Intensity estimations are computed both at an aggregate
level and at a local level. In the aggregate estimation a sin-
gle intensity value is given for each earthquake. Instead,

6http://earthquake.usgs.gov/earthquakes/search/

local estimations produce more values per earthquake which
may differ between the various stricken locations. In this
work we focus on the prediction of aggregate intensity esti-
mations, as opposed to [6] where the focus is on local values.
Intensity estimations, both at the aggregate and local level,
are computed by the ShakeMap7, Did You Feel It?8 (DYFI?)
and PAGER9 systems. The ShakeMap system outputs in-
tensity values based on empirical relationships that convert
recorded or estimated accelerations in intensities [28]. The
intensity estimation computed by ShakeMap outputs values
according to the MMI (Modified Mercalli Intensity) 1→ 12
continuos scale and the aggregate MMI value is defined as
follows.

Definition 1. The MMI value is the maximum estimated
instrumental intensity for the event.

The DYFI? system outputs intensity values based on online
survey reports [10]. The intensity estimation computed by
DYFI? outputs values according to the CDI (Community
Decimal Intensity) 1→ 10 continuos scale and the aggregate
CDI value is defined as follows.

Definition 2. The CDI value is the maximum reported
intensity for the event.

As further explained in Section 4 we exploit CDI and MMI
values for earthquakes as the dependent variables in our OLS
regression models. We do not exploit PAGER estimations
for our predictive models since the PAGER system builds
on ShakeMap estimations.

Figure 1 displays the epicenter and magnitude of each of the
7,283 earthquakes contained in our dataset. As shown in fig-
ure, a limited number of earthquakes occurred in sea regions.
Such seismic events obviously didn’t cause any damage and
therefore we removed them from the training-set employed
to build our statistical models. We discarded those earth-
quakes occurred more than 50km away from the coast and
7http://earthquake.usgs.gov/research/shakemap/
8http://earthquake.usgs.gov/research/dyfi/
9http://earthquake.usgs.gov/research/pager/



Group Countries Language (εLang)

CNA: Central and North America United States, British and U.S. Virgin Islands, Canada, etc. English

CSA: Central and South America Puerto Rico, Mexico, Chile, Peru, Argentina, etc. Spanish

ROW: Rest of the World Indonesia, Japan, Philippines, New Zealand, Taiwan, etc. English, Spanish

Table 2: Earthquake to language association

those more than 50km deep from the surface, with the excep-
tion of seismic events having a particularly high magnitude.

3.2 Twitter Data
We exploited the Twitter Streaming API10 for Twitter data
acquisition. The Streaming API gives access to a global
stream of messages, optionally filtered by search keywords.
We set search keywords so as to maximize the trade-off be-
tween completeness and specificity in earthquake-related col-
lected messages. We based the keyword selection process on
our previous studies in this field [2, 3] and on other related
works such as [12,25,26].
For our study we analyze tweets in the two most widespread
languages: English and Spanish. This allows us to thor-
oughly evaluate the impact of earthquakes hitting the Amer-
ican region while still giving us the chance to experiment
with earthquakes from the rest of the world and specifi-
cally the Asian region. Although expecting decreased per-
formances for models working on earthquakes outside the
American region, we believe it is interesting to evaluate the
possibility to predict worldwide seismic intensity with only
messages in English and Spanish languages.
Table 1 summarizes data collected during our 90 days long
data acquisition phase.

English Spanish Total

Tweets 3,362,873 1,623,248 4,986,121

Tweet Entities 3,785,805 1,920,007 5,705,812

Users 2,000,491 897,551 2,898,042

Table 1: Twitter dataset statistics

4. METHOD
Building on the work discussed so far, we want to address
the following research issues:

• Can social media data predict earthquake intensity?

• What are the limitations of such predictive models
based solely on social media data?

We exploit data collected from Twitter to design features
associated with earthquakes. These features, together with
their mutual interactions, are then employed as predictive
variables in the proposed statistical models. To compute
features we must first link each earthquake εj with a corre-
sponding set of tweets T εj . We based this link on both tem-
poral and geographical information about the earthquakes.
As summarized in Table 2, geographical information is ex-
ploited to create three distinct groups of earthquakes. Only

10https://dev.twitter.com/docs/api/streaming

tweets τ with a given language τLang are used to compute
features for earthquakes of a specific group.

T
εj
lang = {τ : τLang = εLangj } (1)

We further exploited temporal information by only consid-
ering tweets published during a given time window after the
occurrence time of the earthquake. Leveraging previous ex-
periences [2] we modeled the time window length ε∆t ac-
cording to the magnitude εMag of the earthquake, so that
stronger earthquakes received a wider time window than
weaker ones.

ε∆t ∝ εMag (2)

T
εj
time = {τ : εTimej < τTime ≤ εTimej + ε∆tj } (3)

This is because stronger earthquakes are likely to generate
more messages and data which is critical towards the damage
assessment is likely to be shared over a longer time. As
thoroughly explained in the remainder of this section, our
features are then normalized over the length of the time
window to avoid introducing a bias.
The final set of tweets T εj associated to an earthquake εj is
computed as in the following:

T εj = T
εj
lang ∩ T

εj
time (4)

Together with the set of tweets, for our features we also ex-
ploit a set of user accounts Aεj associated to an earthquake
εj which is computed selecting all the accounts α that posted
at least one tweet among the ones belonging to the set T εj .

Aεj = {α : α← τ ∈ T εj} (5)

4.1 Feature Extraction
In order to characterize earthquakes we designed a large set
of features to act as potential predictors of earthquake in-
tensity. Our 45 distinct features fall into four different cat-
egories according to the nature of the information they aim
to capture. This categorization is also exploited to assess
the contribution and predictive power of the single classes
of features as well as their combined effects. During the
design process we also picked features which fit well with
Twitter’s dynamics and that could still be carried over to
other social medias.
Features that are influenced by the length of the observation
time are indicated as F ∗

i and are normalized to account for
the different time windows associated to every earthquake.
Given the time window length ε∆tj of the jth earthquake ε,
normalized features are defined as:

Fi,j =
F ∗
i,j

ε∆tj
(6)

Table 3 gives formal definitions for a subset of all the ex-
tracted features.



# Label Definition

Profile Features

F ∗
1 distinct acc |A|
F ∗

2 distinct acc in same country |Asame| , where Asame = {α : α ∈ A ∧ αCountry = εCountry}
F5 avg acc dist from epicenter D, where D = haversine(αLoc, εLoc) ∀α ∈ A

Tweet Features

F ∗
8 productivity |T |

F ∗
10 earthquake hashtag count |Tear| , where Tear = {τ : τ ∈ T ∧ τ contains “#earthquake”}
F ∗

12 location hashtag count |Tloc| , where Tloc = {τ : τ ∈ T ∧ τ contains “#εLoc”}

F15 avg character count |K|, where K = {ζ : ζ ← τ ∈ T}

Time Features

F22 avg time between msgs τTimei+1 − τTimei , for i = 1, . . . , |T | − 1

Linguistic Features

F ∗
28, . . . , F

∗
42 proto word count |W |, where W = {ω : ω ← τ ∈ T ∧ ω = ηk}

Table 3: Formal definition of a sample of features

Profile features. Most OSNs allow users to provide basic
information about themselves such as: user name, location,
short bio, etc. Statistics reported in previous works [8], [22]
showed that profile information is often unreliable and does
not contain enough high-quality data to be employed in com-
plex data mining tasks. For the sake of experimentation we
aimed at verifying these claims and we implemented a few
basic profile features, mainly based on the account location
αLoc: number of distinct accounts (F ∗

1 ); number of distinct
accounts that tweeted from the same country of the earth-
quake (F ∗

2 ); number of distinct accounts that tweeted from
a neighbour country (F ∗

3 ); number of distinct countries de-
rived from accounts locations (F ∗

4 ); average (F5), minimum
(F6) and variance (F7) of accounts distances from the epicen-
ter. These features can help understand whether a relation
exists between earthquake intensity and the geographic dis-
tribution of reports around the epicenter.
We exploited the Geonames11 database for the conversion
from the user location string to the geographic coordinates
and geographic distances are computed by means of the
Haversine formula.

Tweet features. To compute tweet features we exploited
tweet entities, tweet metadata and the structure of the mes-
sages. Tweet entities comprehend urls, mentions, hashtags
as well as photos attached to a tweet. Among these in-
formation we found hashtags to be particularly useful for
our goal. Eyewitness reports of earthquakes usually carry
the #earthquake or #quake hashtag and the same also ap-
plies to Spanish language messages. Other hashtags related
to the location of the epicenter or the country hit by the
earthquake are sometimes used as well. Among tweet meta-
data we exploited the geographic information of geolocated
tweets. Regarding the structure of tweets we tried to mea-
sure the complexity of the messages. As highlighted in [2],
the emotional state of users after an emergency tends to be
reflected by the length, use of punctuation and number of
capital letters in the messages shared. Thus we defined the

11http://www.geonames.org/

following set of features that takes into account the results
of the previous analyses: total number of tweets (F ∗

8 ); ratio
between the total number of tweets and the average num-
ber of tweets shared during the same time of the day for all
other days (F ∗

9 ); number of #earthquake (or similar) hash-
tags (F ∗

10); number of hashtags with the name of the country
hit by the earthquake (F ∗

11); number of hashtags with the
name of the location hit by the earthquake (F ∗

12); average
(F13) and variance (F14) of the total number of words ω
among messages; average (F15) and variance (F16) of the
total number of characters ζ among messages; average ra-
tio between number of capital letters and total number of
characters in messages (F17); average ratio between number
of punctuation characters and total number of characters in
messages (F18); average (F19), minimum (F20) and variance
(F21) of tweets distances from the epicenter.

Time features. Time features aim at grasping the bursty
nature of emergency reports. Other previous studies have
exploited bursty characteristics of message streams for the
tasks of topic or event detection [19], [7, 31], [3]. Here we
want to evaluate whether the quantification of such char-
acteristics contributes to the prediction of the intensity of
an emergency. Therefore we designed the following set of
features, based on the publication time τTime of messages:
average time delay between one message and the next one
(F22); average (F23), minimum (F24), maximum (F25) and
variance (F26) in the number of messages per minute; longest
streak of messages having a maximum delay of 5 seconds be-
tween one another (F27).

Linguistic features. Many recent works such as [22] and
[14] demonstrated the power of linguistic features towards
classification and prediction tasks. In literature, bag-of-
words techniques are opposed to approaches based on auto-
matically bootstrapped prototypical words (or proto-words).
Proto-words represent typical expressions that characterize
a specific class of users. Here we adapt the proto-words al-
gorithm originally proposed in [22] and employed in a user
classification task. Our goal is to extract prototypical ex-



Figure 2: Simulation results for CDI ∈ [2, 10] and CNA earthquakes over 50 steps

pressions used in reports related to severe earthquakes. We
are confident that employing such proto-words as predictors
in our models will greatly increase the accuracy of earth-
quake intensity estimations. Given |C| classes of events,
each class ci ∈ C is represented by a set of seed events.

Si = {εi1, . . . , εin} (7)

We compute frequencies for every unigram ηk found in a
message τ associated to one of the seed events εi.

T i = T ε
i
1 ∪ · · · ∪ T ε

i
n (8)

T iηk = {τ : τ ∈ T i ∧ τ contains “ηk”} (9)

seedfreq(ηk, ci) =

∣∣T iηk ∣∣
|T i| (10)

The term seedfreq(ηk, ci) represents the normalized frequency
of the unigram ηk for the class ci. The normalization term∣∣T i∣∣ is necessary to account for the different cardinalities

among sets of messages T i of the different classes. The score
of the unigram ηk for the class ci is then computed as in the
following:

score(ηk, ci) =
seedfreq(ηk, ci)∑
j seedfreq(ηk, cj)

(11)

This score indicates how much an unigram ηk is representa-
tive of the class ci. For our experiments we chose 3 classes of
events: strong earthquakes that caused damages and casu-
alties (STR), moderate earthquakes widely felt by the pop-
ulation but without severe consequences (MOD) and light
earthquakes felt only by a small number of social sensors
(LIG). We picked the top 10 unigrams from the STR class as
predictors, together with the top 5 unigrams from the MOD
class. Unigrams of the LIG class are not directly exploited
to compute features but instead serve as contrast terms to
highlight typical expressions of the other classes. This re-
sulted in 10 features computed as the number of times an
unigram of the STR class was used in the earthquake reports
(F ∗

28, . . . , F
∗
37), plus 5 features computed the same way for

unigrams of the MOD class (F ∗
38, . . . , F

∗
42). We also added

aggregate features as the total number of unigrams of the
STR class used in reports (F ∗

43); the total number of uni-
grams of the MOD class used in reports (F ∗

44); and the total
number of unigrams from both the STR and MOD classes
(F ∗

45).

4.2 Earthquake Intensity Model
We modeled earthquake intensity as a linear combination of
our predictive variables, plus terms for pairwise interactions:

yi = β0 +

n∑
j=1

βjFj,i + γIi + εi (12)

We adopted a linear model over more complex ones since we
are not only interested in predictive power, but we also focus
on the relations between our predictive variables and earth-
quake intensity. Although slightly increasing model com-
plexity, pairwise interactions are commonly included in pre-
dictive models and proved to significantly boost predictive
power without impairing model interpretability [14] [13]. In
the definition of our model yi represents the intensity of the
ith earthquake; β0 is the intercept term of our linear model;
βj are the coefficients of our predictors Fj,i; γ is the coeffi-
cient vector of the interaction terms; Ii is the vector of the
interactions and εi represents the error term.

Because of the large number of regressors together with their
pairwise interactions, we employed feature selection tech-
niques to include in our model only the most influential pre-
dictors. We started from a model trained exploiting all the
45 predictive variables presented in Section 4.1 and we ran a
stepwise model selection algorithm to chose which features
to add or remove from the models. During the forward steps
the starting model is expanded with the addition of the most
influential interactions. In the backward steps, least relevant
variables are removed from the model. Two widespread cri-
teria for model selection are the Akaike’s information cri-
terion (AIC) and Schwarz’s Bayesian information criterion
(BIC). We experimented with both criteria and decided to
employ BIC in our procedure for the sake of model parsi-
mony. In fact BIC penalizes the number of parameters more
strongly than AIC does [30]. In addition, we ran a series
of simulations to overcome the trade-off between predictive
power and model complexity. Finally, being aware of the
criticism raised with regards to stepwise model selection, we
evaluated candidate models exploiting the domain specific
knowledge of a seismologist.
In our simulations we evaluated the different model struc-
tures by means of the predicted residual sum of squares
(PRESS) statistic [27]. The PRESS statistic is a form of
leave-one-out cross-validation (LOOCV) used in regression



Model R2 Adjusted R2 Predicted R2 MAE MSE n p p-value

dep. var. CDI ∈ [1, 10]

CNAmag>2 0.4820 0.4637 0.4125 0.66 0.67 734 25 < 2.2× 10−16

CSAmag>4 0.7769 0.7195 0.5980 0.38 0.24 182 37 < 2.2× 10−16

ROWmag>4 0.5917 0.5551 0.5358 0.47 0.52 147 12 < 2.2× 10−16

dep. var. CDI ∈ [2, 10]

CNAmag>2 0.5357 0.5125 0.4877 0.46 0.33 465 22 < 2.2× 10−16

dep. var. MMI ∈ [1, 12]

ALLmag>2 0.6074 0.5202 0.2286 0.45 0.42 89 16 2.69× 10−9

Table 4: Earthquake intensity prediction results

analysis to measure the accuracy of a model versus a sample
of observations that were not themselves used to train the
model. Therefore for each model structure generated by the
stepwise algorithm we computed the PRESS statistic, the
PRESS residuals and the Predicted R2 values:

PRESS =

n∑
i=1

(yi − ŷi,−i)2 (13)

PRESSresid = {y1 − ŷ1,−1, . . . , yn − ŷn,−n} (14)

Predicted R2 = corr(Y, Ŷ−i)
2 (15)

Models that are over-parameterised (overfitted) would tend
to give small residuals for observations of the training-set
but large residuals for unseen observations. It is possible to
avoid overfitting and assess a model’s ability to generalize
by analyzing R2 and Adjusted R2 values versus Predicted
R2 values. In contrast to R2 and Adjusted R2, Predicted
R2 values drop as an overfitted model looses its ability to
generalize.
Our simulation procedure builds on these considerations and
also plots intermediate results which are useful to evalu-
ate models performances during the iterative selection pro-
cess. Figure 2 shows evaluation plots related to the back-
ward model selection part of the algorithm and resulting
from a simulation targeting the estimation of CDI inten-
sity values ∈ [2, 10] over the earthquakes of the Central and
North American group (CNA). Prior to step 31 Predicted
R2 values show massive fluctuations and a significative dif-
ference in comparison to the stable trends of R2 and Ad-
justed R2. This should raise concerns towards overfitting
and the model’s ability to generalize. As model complexity
is reduced Predicted R2 values also manifest a stable trend,
comparable to those of R2 and Adjusted R2. This simula-
tion seems to suggest the model generated at step 31 as a
good candidate for the estimation of CDI values over CNA
earthquakes. All the experimental settings proposed in Sec-
tion 5 have been evaluated with this procedure. In addition,
candidate models resulting from simulations have been fur-
ther diagnosed to check models assumptions and assess their
statistical significance.
Although widely used in many research fields such as bio-
statistics, to the best of our knowledge the PRESS statistic
and the Predicted R2 are almost never employed for predic-
tive analyses on social media data.

5. RESULTS
We set up 5 different experiments building on the geograph-
ical grouping of earthquakes as reported in Table 2 and on
USGS earthquake intensity estimations which we described
in Section 3.1. Intensity estimations based on online sur-
veys (CDI) are the most frequent among the collected earth-
quakes. We are interested in evaluating the relation between
CDI values and intensity estimations with social media data.
We started with 3 experiments aimed at mapping the whole
scale of 1 → 10 CDI values. Each experiment is based on
earthquakes from one of the three geographical regions and
resulted in the top 3 models described in Table 4. Com-
paring results from these 3 models can help understand to
what extent predictive power is affected by the differences
in earthquake magnitude and by our language assumptions.
Specifically, as anticipated in Section 3.1, 98.5% of the earth-
quakes of the CNA group have a magnitude value between 2
and 4, as underlined by the CNAmag>2 label. Earthquakes
in the CSA and ROW groups instead have magnitude val-
ues almost always higher than 4, hence the labels CSAmag>4

and ROWmag>4. In other words, earthquakes of the CNA
group are almost completely non-overlapping with the ones
in the CSA and ROW groups, with regards to magnitude.
All the models proposed in Table 4 show p-values � 0.001
assessing their statistical significance. Among all the pro-
posed models, the CSA one achieves the best performances
with a Predicted R2 close to 0.6 , MSE as low as 0.24 and
MAE = 0.38 on a continuos 1→ 10 scale.
The substantially lower performance of the model trained
on CNA data is probably to be imputed to the much lower
severity of the earthquakes in the 2 → 4 magnitude range.
These results seem to suggest that the prediction of earth-
quake intensity is more difficult for low magnitude earth-
quakes compared to high magnitude ones. This can be intu-
itively explained by considering that earthquakes having a
magnitude < 3 are felt by a very limited number of persons
thus resulting in a reduced number of shared messages.
As anticipated in Section 3.2, constraining the analysis of
earthquakes outside the American region to messages only
in English and Spanish language resulted in a slightly worse
intensity estimation. It is worth noticing however that de-
spite a 0.18 reduction in R2, the ROW model exhibits a
MAE value of 0.47 which still reflects accurate predictions.
Since a considerable number of earthquakes in the ROW
group occurred in Japan and Taiwan, we would expect a
better fit by extending the analyses to also include messages
in Japanese and Chinese languages.



Figure 3: Regression plot for the CNA model trained over
earthquakes with CDI ∈ [2, 10]

In addition to these experiments, we were also interested
in evaluating the prediction of CDI values over a reduced
2 → 10 scale. The technical motivation for this experiment
is based on an analysis of the distribution of CDI estimations
in that the 1 values form a distinct cluster of points, sep-
arated from the remaining values. Specifically, CDI values
are uniformly distributed over the [2, 10] range, while there
are no observations in the (1, 2) interval. This is because a
CDI value of 1 means that the earthquake was not felt by
anyone and actual intensity estimations start from a CDI
value of 2 [10]. From a theoretical point of view the CDI
value of 1 encodes a different kind of information than the
remaining values. Furthermore, while online surveys also
store information about earthquakes not felt by the pop-
ulation, Twitter users almost never share messages about
earthquakes they did not feel. The low number of USGS
estimations for earthquakes of the CSA and ROW regions
having a CDI ≥ 2 (49 and 26 respectively) did not allow to
adequately experiment in these areas. Instead, we trained
a new model with the CNA earthquakes reducing the inter-
val of the CDI dependent variable to [2, 10]. Noticeably the
new model produces overall better predictions, with MSE =
0.33 and MAE = 0.46 in contrast to MSE = 0.67 and MAE
= 0.66 for the model trained on the whole CDI 1 → 10 in-
terval. Figure 3 shows the regression plot for this model:
despite the good fit the model exhibits a slight tendency to
underestimate.

Among all the earthquakes of our dataset, USGS computed
MMI intensity estimations only for a small portion of them.
Therefore we did not have enough observations to propose
different models based on geographical areas. Instead, we set
up a single experiment comprising all 89 earthquakes carry-
ing an MMI estimation, disregarding the location of the epi-
center. Results for this experiment are labeled ALLmag>2

in Table 4. Although exhibiting encouraging R2, Adjusted
R2, MAE and MSE values, the Predicted R2 is substantially
lower which seems to indicate an overfitted model. The in-
conclusive results with MMI estimations ask for subsequent
experimentations on more data.

Figure 4: Features classes contribution towards predictive
power

Figure 4 represents the contribution of the different classes
of features towards the predictive power of the CNA model
trained on the limited CDI 2→ 10 scale. The weight of each
feature class is computed by summing the absolute values of
the β coefficients of its features. As shown, there is no dom-
inant class in the model and all 4 classes give a significative
contribution to the prediction. The profile and tweet classes
alone provide 76.9% of the predictive power. This some-
what contrasts with results presented in [8] and [22] claim-
ing the unreliability of profile features for data mining tasks.
Linguistic features exhibit the smaller contribution, anyway
they appear in the majority of the interaction terms. De-
spite their relatively small direct impact on predictive power,
in our experiments they play an important modulating role
for the other parameters. Among the 4 classes, time fea-
tures seem to be the most marginal ones because of their
relatively light direct contribution and limited presence in
interaction terms.

6. CONCLUSIONS AND FUTURE WORK
In this study we shed light on the possibility to exploit so-
cial media data towards the prediction of earthquake in-
tensity. We leveraged experiences in previous works and
demonstrated the impact of Twitter earthquake reports on
intensity estimations. The proposed models build on a large
dataset and exploit 45 distinct features belonging to 4 dif-
ferent classes.
Results discussed in Section 5 are overall encouraging and
show significative correlations between the messages shared
in social media and the consequences of worldwide earth-
quakes. This correlation is particularly strong for intensity
estimations based on online survey data (CDI). Instead, the
prediction of intensity estimations based on empirical rela-
tionships (MMI) is still an open issue which requires further
investigation.

We achieved a Predicted R2 value close to 0.6 with an MSE
of 0.24 over a 1 → 10 scale for the best performing model.
This is a remarkable performance in comparison to the only
work available in literature addressing the same issue [6] and
to other comparable works such as [14]. Discussed results
seem to favor the employment of predictive techniques in
novel earthquake emergency management systems.
It is worth noticing that the proposed results are based on
unfiltered social media data, which is known to be particu-



larly noisy. We believe that employing data filtering tech-
niques could further improve prediction accuracy by remov-
ing most of the noise. Therefore, such techniques should
always be adopted when applying predictive models in de-
ployed emergency management systems.
We are confident that the proposed study addresses funda-
mental challenges towards the understanding and the ex-
ploitation of social media data for the enhancement of mod-
ern emergency management procedures.

In the future we will apply our predictive models to novel
earthquake emergency management systems, such as the one
described in [3]. We also plan to experiment with more
complex regression models and we look forward to extending
our analyses to the local earthquake intensity estimations.
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