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ABSTRACT
Background. Next Generation Sequencing (NGS) data has
been extensively exploited in the last decade to analyse genome
variations and to understand the role of genome variations
in complex diseases. Copy number variations (CNVs) are
genomic structural variants estimated to account for about
1.2% of the total variation in humans. CNVs in coding or
regulatory regions may have an impact on the gene expres-
sion, often also at a functional level, and contribute to cause
different diseases like cancer, autism and cardiovascular dis-
eases. Computational methods developed for detection of
CNVs from NGS data and based on the depth of coverage
are limited to the identification of medium/large events and
heavily influenced by the level of coverage.
Result. In this paper we propose, CNVScan a CNV detec-
tion method based on scan statistics that overcomes limita-
tions of previous read count (RC) based approaches mainly
by being a window-less approach. The scans statistics have
been used before mainly in epidemiology and ecology stud-
ies, but never before was applied to the CNV detection prob-
lem to the best of our knowledge. Since we avoid window-
ing we do not have to choose an optimal window-size which
is a key step in many previous approaches. Extensive sim-
ulated experiments with single read data in extreme situ-
ations (low coverage, short reads, homo/heterozygoticity)
show that this approach is very effective for a range of small
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CNV (200-500 bp) for which previous state-of-the-art meth-
ods are not suitable.
Conclusion. The scan statistics technique is applied and adapted
in this paper for the first time to the CNV detection prob-
lem. Comparison with state-of-the art methods shows the
approach is quite effective in discovering short CNV in rather
extreme situations in which previous methods fail or have
degraded performance. CNVScan thus extends the range of
CNV sizes and types that can be detected via read count with
single read data.

Categories and Subject Descriptors
J.3 [ LIFE AND MEDICAL SCIENCES]: Biology and genet-
ics

General Terms
Computational biology

Keywords
Next Generation Sequencing, Copy Number Variation

1. INTRODUCTION
High throughput technologies (HT) are significantly improv-
ing the investigation of human variation. The identification
of individual genomic variations is usually the first step fol-
lowed by several downstream analytic tools aiming at infer-
ring causality relationships between the individual genotype
and phenotype, including disease conditions. Accurate and
correct calling of genomic variations is thus both critical for
subsequent analysis, and challenging due to the generally
noisy data from HT technologies. Genomic variations may
range in size from single nucleotide polymorphisms (SNP) to
larger structural variation (SV) as duplications, deletions and
translocations of entire chromosomal regions. Here we con-
centrate on the class of structural variations of size≥ 50 bp in
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length, named Copy Number Variations, CNV, (i.e. deletions
and duplications). CNV are a particular important form of
genomic rearrangements in cancer ( [8]), and also a popula-
tion distribution fingerprint for the general population ( [24],
[22], [9]). General surveys on several aspects of Structural
Variations in genomes and on the challenges faced by detec-
tion methods based on Next Generation Sequencing data are
in [33] and [4].
We propose a new approach based on scan statistics to detect
CNV from Whole Genome Sequencing (WGS) data that we
called CNVscan. It works with single-read data and is able to
cover an intermediate range of CNV sizes that was not cov-
ered in a satisfactory manner by previous approaches. CN-
Vscan produces almost no False Positive and balances well
sensitivity and precision (PPV). Also in breakpoint identifi-
cation, as measured by the Root Mean Square Error (RMSE),
produces better results when compared against 4 other state-
of-the-art methods. The gap between CNV scan and the al-
ternative methods used in the comparison grows even larger
when we consider heterozygous deletions and duplications
which are harder to detect. Experiments with synthetic CNV
embedded in genomic sequence show that CNVScan is quite
superior to other Read Count (RC) algorithms for a range of
CNV sizes below 1000 (i.e. 200-500), using single-reads, for
which the RC approach was deemed not suitable. We term
this region of CNV sizes as the "borderline" region as it lies
between the region≥ 1000 usually tackled via RC, and the re-
gion of values≤ 100 which could be tackled with approaches
different from read count (e.g. the so-called split reads or
pair-end approaches, when pair-end reads are available). More-
over we tested our method and compared performances for
the most challenging low-coverage case (5x).

2. STATE OF THE ART
The number of computational methods for CNV detection
on NGS data easily exceeds 50, thus for details on individual
methods we refer the reader to surveys in [23], [35], [5], [29],
[12]. Among the proposed methods for CNV detection, sev-
eral follow a Read Count (RC) approach (either in a pure or
hybrid form) and in [21] [32] one can find an extensive dis-
cussion of several technical issues. They are among the most
effective for SV in the order of magnitude from about 1000
bp and higher. These methods are almost all based on an ini-
tial phase in which the reference genome is split into disjoint
buckets of equal length, each aligned read is associated the
bucket containing it leftmost bp, and the signal being ana-
lyzed is the number of reads in each bucket. Systematic bi-
ases due to the sequencing technology, the CG content and
the ambiguity in read alignment position (mappability) are
usually corrected at this stage.

The bucketing approach has the advantage that the read
counts in each bucket can be regarded as independent random
variables, thus leading to the use of simpler statistical theo-
ries to estimate the relevant statistics. On the other hand,
the choice of the bucket size is delicate when the size of the
bucket, the size of the reads and the size of the CNV are all
of the same order of magnitude, since in this case reducing a
read to a single point is less justified and border effects of the
discretization become noticeable. Each method has different
criteria for deciding a preferred window size for a given set
of parameters. Interestingly, in [14] it is proposed a general
principled approach to the determination of the optimal win-
dow size.

Other important parameters are the read length of the library
and the average coverage. Having higher coverage bene-
fits almost all methods but it comes at a cost, in particular
for whole genome case and when the goal is the screening
of a large pool of subjects, thus one should strive to devise
methods that work well also with cheaper low-coverage data
(about 5x). Over time the attainable read length is slowly in-
creasing as new NGS technologies progress, however meth-
ods that are able to exploit reads of shorter length with little
quality degradation may have an edge, as producing shorter
reads may still be more cost-effective.
In this paper we stay within the read count approach to CNV
detection but we dispense with bucketing altogether, relying
instead on a classical "scan statistics" approach in order to
detect unusual concentrations of reads aligned to the refer-
ence genome. Scan statistics tests implicitly and efficiently
a continuum range of window sizes and locations and does
not use an initial bucketing phase. At the best of our knowl-
edge no CNV detection method has been proposed so far that
uses scan statistics as its key model, although such model has
been used for a long time in data mining, anomaly detection,
epidemiology, ecology, and crime detection. Scan statistics is
a statistical technique proposed by J. I. Naus in 1965 [25], and
later extended to multidimensional domains by M. Kulldorff
in 1997 [16]. Efficient computation of scan statistics is non-
trivial thus various efficient approximation algorithms have
been proposed [26], [13], [3], [2]. Scan statistics is used in bio-
surveillance, epidemiology, crime detection and in general
for anomalous event detection in space-time data sets [27],
[10]. Another area of application is in detection of anoma-
lous activity in fMRI brain imaging data [28].

Background knowledge on CNV distributions is useful also
for the realistic simulation of SV in data generators for the
purpose of testing detection tools in a more realistic setting
[6].

3. CNVSCAN DESCRIPTION

3.1 A novel approach to the detection of CNVs
In this section a novel scan-statistics method for the detec-

tion of CNVs is described in detail. Subsection 3.2 gives some
background on scan statistics and point Poisson processes
and describes the Likelihood Ratio Test used to estimate the
parameters and the hypothesis testing, using mainly the no-
tation in [16]. In subsection 3.3 we adapt the abstract setting
for generic Poisson processes to the biological problem of de-
tecting CNVs, by aligning reads to the reference and using
the depth of coverage. Subsequently, we discuss bias cor-
rection steps (subsection 3.4). Finally, having identified the
CNV we proceed in subsection 3.5 to call its copy number.

3.2 Scan Statistics and the Likelihood Ratio
Test

In general, given a point process, many statistical applica-
tions deal with the detection of clusters of events. The aim is
to determine whether all of the points under study have been
generated by a unique baseline distribution, or if there exists
a cluster of events that have been generated by a different
distribution. Clearly, this classification depends on the prob-
ability that the cluster of events is generated by the baseline
distribution - i.e. on how unlikely the set of events is, assum-
ing that the baseline distribution generating it. The Poisson
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process is the simplest type of point process, which can be in-
formally defined as a type of random process for which ev-
ery realisation consists of a set of isolated points in a given
space. More formally, a point process N = {Nt : t ≥ 0}
where Nt (or N(t)) denotes the number of arrivals in (0, t]
for t ∈ [0,+∞) can be defined as a random measure on a
complete separable metric space G taking values in the non-
negative integers Z+ (or infinity). In this framework the mea-
sure N(A) represents the number of points falling in a sub-
set A of G and if N is a Poisson process it’s probability dis-
tribution is a Poisson distribution over [0, t) of parameter p,
whereas the occurrences are distributed uniformly on any in-
terval.Thus,

P [(N(t+ τ)−N(t)) = k] =
e−pτ (pτ)k

k!
k = 0, 1, . . .

where N(t + τ) − N(t) = k is the number of events in time
interval (t, t+ τ ].
The corresponding process is said an inhomogeneous or ho-
mogeneous process if the rate parameter p changes or not
over time.
A time-based Poisson process can represent a spatial Poisson
process by simply changing the interpretation of the index
variable (now x instead of t) in some vector space V (e.g. R2

or R3). Here a spatial Poisson process can be defined by the
requirement that the random variables that count the num-
ber of events inside non-overlapping finite sub-regions A of
V , of measure µ(A), should each have a Poisson distribution
and should be independent of each other. So, if we scan the
interval [0, T ], for T > 0 fixed, with a window of size w,
0 < w < T , we can define:

νt = N(t+ w)−N(t) ∀t ∈ [0, T − w]

Then,

S = S(w, T ) = max
t∈[0,T−w]

νt

is the scan statistics for the Poisson process.

In this framework, the null hypothesis is that the underly-
ing distribution for the number of points is Poisson of rate
parameter q:

N(A) ∼ P0(qµ(A)) ∀A ⊆ G

where P0 is the Poisson distribution of parameter qµ(A):

P0(k) =
e−qµ(A)(qµ(A))k

k!
k = 0, 1, . . .

In the alternative hypothesis, conversely, there exists one zone
Z ∈ Z and a p > q such that

N(A) ∼ P0(pµ(A ∩ Z) + qµ(A ∩ ZC)) ∀A ⊆ G

In words, this means that the points in A ⊆ Z are generated
by a Poisson process of rate parameter p, whereas points in
A ⊆ ZC are produced by a Poisson process of rate parameter
q.
The likelihood function under the null and under the alterna-
tive hypothesis must be computed. Let nZ denote again the
number of points observed in Z and nG the total number of
observed points. We can define the likelihood function under
H0 as:

L0(q) =
e−qµ(G)(qµ(G))nG

nG!

which represents the probability of observing nG points in-
side G, supposing that they were all generated by a Poisson
process of parameter q.
Again, the maximum likelihood estimator q̂0 for q under the
null hypothesis can be computed as the value of q that maxi-
mizes L0(q). Doing some algebra,

q̂0 =
nG
µ(G)

Analogously, we can define the likelihood function under the
alternative hypothesis as:

L1(Z, p, q) = A(Z, p, q)B(Z, p, q)

A(Z, p, q) =
e−pµ(Z)(pµ(Z))nZ

nZ !

B(Z, p, q) =
e−q(µ(G)−µ(Z))(q(µ(G)− µ(Z)))nG−nZ

(nG − nZ)!

which represents the joint probability of observing nZ points
in Z and nG − nZ points outside Z, under the assumption
that the points in Z follow a Poisson distribution of parame-
ter p and the points outside Z follow a Poisson distribution
of parameter q.
The maximum likelihood estimators p̂1,Z , q̂1,Z under H1 for
a fixed Z are:

p̂1,Z =
nZ
µ(Z)

q̂1,Z =
nG − nZ

µ(G)− µ(Z)

if nZ
µ(Z)

> nG−nZ
µ(G)−µ(Z)

, and

p̂1,Z = q̂1,Z =
nG
µ(G)

otherwise.
Then, calling L1(Z) = L1(Z, p̂1,Z , q̂1,Z), the estimator Z′ is
defined as follows:

Ẑ = {Z : L1(Z) ≥ L1(Z′) ∀Z′ ∈ Z }

and it represents the most-likely cluster of the observed dataset.
We define the likelihood ratio λ as:

λ =
supZ∈Z ,p>q L1(Z, p, q)

L0
=
L1(Ẑ)

L0

where L0 is defined as

L0
def
= L0(q̂0)

.
In this case, doing some algebra [16], λ can be rewritten as

λ = sup
Z∈Z

(
nZ
µ(Z)

)nZ
(

nG−nZ
µ(G)−µ(Z)

)nG−nZ(
nG
µ(G)

)nG
IZ (1)

with

IZ = I

(
nZ
µ(Z)

>
nG − nZ

µ(G)− µ(Z)

)
, (2)

where I(.) is the characteristic function of a predicate, and
we assume that there is at least oneZ such that nZ

µ(Z)
> nG−nZ

µ(G)−µ(Z)
.

Otherwise λ = 1 .
Notice that so far only cluster with an abnormally high num-
ber of cases have been considered, but the same procedure
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can be used also to detect clusters with a particularly low
number of points in a Poisson process. This can be accom-
plished by simply computing the maximum likelihood esti-
mators p̂, q̂ conditioned on Z over p < q, instead of p > q,
obtaining again equation (1) but with

IZ = I

(
nZ
µ(Z)

<
nG − nZ

µ(G)− µ(Z)

)
. (3)

Apart from the simplest cases, exact derivations of the dis-
tribution of λ are impracticable [16]. For this reason, Monte
Carlo simulations are usually employed to give good approx-
imations of the test statistics [17]. The simulations consist in
generating several datasets under the null hypothesis and in
computing for each of them the value of the test statistics λ.
In particular for us, the datasets are Poisson processes of rate
parameter equal to the maximum likelihood estimator q̂0 un-
der the null hypothesis. The p-value is then approximated
with the fraction of datasets whose test statistics is higher
than the one observed in the original dataset.

The inference process consists, first, in setting a signifi-
cance level α, then the maximum likelihood estimator under
the null hypothesis q̂0 is computed for the given dataset, as
well as L0 and L1(Z) for all the possible subsets Z in the
dataset, in order to find the test statistics λ. Then N datasets
are generated under H0, λi is computed for each of them
and the p-value is approximated as the fraction of datasets
i whose λi is greater than λ. Then, H0 or H1 is accepted ac-
cording to α.

3.3 Likelihood ratio test for genomic data
All read-depth methods rely on the assumption that the

reads are sampled uniformly over the sequenced genome.
Under this assumption, the number of reads whose initial
position is a certain base of the reference genome follows a
Poisson distribution [21]. Besides the number of reads that
start in a certain position of the reference, another quantity
that can be considered is the coverage. The coverage of a base
of the reference genome is the number of aligned reads over-
lapping that specific base.

While the number of reads that start in a certain position
of the reference can be assumed to follow a Poisson distribu-
tion, the coverage rigorously could not. Indeed, the coverage
of a base can not be considered to be independent from those
of the neighbouring bases, since if one read overlaps a posi-
tion of the reference, it "probably" overlaps also the adjacent
positions. However, the length of the reads is extremely short
compared to the whole reference genome, so the coverage of
each base is actually independent from those of the greatest
majority of the other bases. For this reason, the novel read-
depth approach we developed makes use of the likelihood
ratio test applied to the coverages of the bases.
As previously described, the likelihood ratio test for a Pois-
son process contemplates the computation of a test statistics
λ, whose formulation is in equations (1) and (2) for amplifi-
cations and equations (1) and (3) for deletions.

Within the framework of CNVs detection, the whole space
G can be seen as the reference genome. Therefore, its mea-
sure µ(G) is the number of bases composing the reference
and the number of points nG is the sum of the coverages of
all the bases of the reference.
In this context, the possible subsets Z of G are consecutive
sub-strings of the reference and, analogously, the measure of

a sub-string Z is the number of bases composing Z and nZ is
the sum of the coverages of such bases.

The above-described algorithm aims to detect areas with
a particularly high coverage, therefore it is only suitable for
duplications detection. However, a small modification can be
done in order to scan for sub-strings with a particularly low
coverage. Recalling the considerations made in Section 3.2,
when scanning for events with a lower number of points, the
function λ(Z) to maximize over the possible Z is

λ(Z) =
( nZ
µ(Z)

)nZ ( nG−nZ
µ(G)−µ(Z)

)nG−nZ

( nG
µ(G)

)nG

if nZ
µ(Z)

< nG−nZ
µ(G)−µ(Z)

, and λ(Z) = 1 otherwise.

3.4 Preprocessing: bias correction
Although the read sampling process is supposed to be ap-

proximatively uniform over the test genome, two main sources
of bias affect the real distribution of the coverage: the lo-
cal GC content and the genomic mappability. The first one
represents the percentage of guanines and cytosines of a cer-
tain area of the reference. It has been shown that the GC
content heavily influences the read counts: for both particu-
larly high or particularly low values of GC content, the cover-
age is significantly lower than the average [31]. Conversely,
mappability bias is due to the fact that the genome contains
many repetitive elements and aligning reads to these posi-
tions leads to ambiguous mapping.
In order to improve the precision of the algorithm, a bias-
correction phase is performed on the distribution of the cov-
erages before the actual detection process. The following sec-
tions describe the bias-correction techniques that were adopted
in our work.

3.4.1 GC content
In analogy with a commonly-used normalization technique

for read-depth methods [37], we adjusted the coverages by
using the observed deviation in coverage for every possible
GC percentage. More specifically, for each possible position
k of the reference genome, we considered a window wk of a
fixed length centred in k and we computed the GC percent-
age (number of guanines and cytosines in the window wk
divided by total number of bases). Then, for each possible
GC percentage (0, 1, 2, . . . , 100%), we computed the average
coverage of the positions with that specific GC percentage
and we corrected the coverages according to the following
formula:

c̃k = ck
m̄

mGC(k)

k = 1, 2, . . . , nG

where ck is the coverage of the kth base of the reference, m̄ is
the average coverage along the reference,mGC(k) is the aver-
age coverage within the positions with the same GC content
as k and c̃k is the normalized coverage.
The window should represent the area of the reference that
actually influences the coverage with its GC content. Several
studies have been devoted to the understanding of the GC
bias, however the causes that lead to such bias and the exact
distribution of the coverage as a function of the GC content
are still unknown. However, recent studies [7] have shown
that it is the GC content of the full DNA fragment, not only
the sequenced read, that most influences the coverage. For

ACM-BCB 2015 338



this reason, in our work we set the length of the window to a
value that is approximately equal to the sampled fragments.

3.4.2 Mappability
To correct the mappability bias, existing approaches usu-

ally give a mappability score to genomic sequences, repre-
senting how unique the sequence is within the reference genome.
While the majority of existing methods divide the reference
into non-overlapping windows, our approach requires the
computation of a mappability score for each possible posi-
tion of the genome. As we did for the GC content, this can be
accomplished by considering windows of fixed length cen-
tred in each possible position of the reference. Therefore,
for each position k, we want to find out how unique the se-
quence wk centred in k is within the reference or, in other
words, the number of occurrences of wk along the reference.
Theoretically, various methods can be employed to compute
the number of occurrences of all thewk. The simplest one is a
brute-force approach, consisting in the explicit enumeration
and counting of all the wk present in the reference; however,
given the dimension of the genomic data, this approach is
usually unfeasible if we want to allow mismatches between
wk and the occurrences. Also using existing mapping algo-
rithms to map each wk becomes impracticable if mismatches
are taken into account. In particular, the speed of all imple-
mentations of mapping algorithms (that allow mismatches)
always shows some dependency on the number of matches
found in the reference [11]; this means that aligning a cer-
tain number of reads that all map to thousands of locations
in the genome will be much slower than aligning the same
number of reads that map uniquely. Therefore, most of the
degradation in performance actually comes from the fraction
ofwk showing high frequencies (i.e., number of occurrences),
where sometimes thousands of sequences which are equiva-
lent to wk (within the specified number of mismatches) exist
in the reference.
In [11], this problem is taken into account by performing an
approximation on the exact number of matches of sequences
with high frequencies. The approximation is the following:
each time a certain wk is mapped within the given num-
ber of mismatches to a set S of sequences of the reference,
one can pretend that all the sequences in S have already
been mapped, assign to them a frequency value equal to the
number of elements in S, and skip all of them from that
point on. Such a strategy is not enough to completely remove
the computational-cost problem - it is effective in eliminating
only the equivalent sequences occurring in the reference after
wk has been mapped -, and is only exact when no substitu-
tions are allowed. From a practical standpoint, however, the
speed results considerably improved and the mappabilities
computed in this way are good approximations of the exact
values.

3.5 Postprocessing: copy-number estimation
Once the candidate variation Ẑ that maximizes λ(Z) has

been found, it has to be decided whether to accept the null
hypothesis H0 (no variation has occurred) or to reject it (a
variation has occurred). As described in Section 3.2, this re-
quires the computation of a p-value using Monte Carlo sim-
ulations. In these simulations, a number N sufficiently large
of datasets are created under H0. More specifically, instead

of simply generating N Poisson processes of rate parame-
ter nG

mG
, in each dataset a real sampling process is simulated,

thus taking into account also the reads’ length.
If the p-value is smaller than a significance level α, the null

hypothesis is rejected, otherwise it is accepted. When H0 is
rejected, it is then necessary to estimate the copy number of
the detected variation. In case of data from haploid regions,
this can be obtained by approximating to the nearest integer
the ratio

r =
c̄Ẑ
c̄G−Ẑ

between the average coverage c̄Ẑ inside the region Ẑ and
the average coverage c̄G−Ẑ outside Ẑ. In case of data from
diploid regions, the copy number can be obtained in an anal-
ogous way normalizing to copy number 2, i.e. multiplying r
by 2. This simple estimation strategy follows the assumption
that the sequencing process is uniform and consequently the
number of reads that map to a genomic region is expected to
be proportional to the number of times the region appears in
the DNA sample.

3.6 Two-level heuristic for gain in speed
Given the large size of sequencing datasets, speeding up

the variant-detection process is an issue of great importance.
Finding the sub-string that maximizes the discrepancy func-
tion requires the computation of λ(Z) on all possible sub-
sequences Z of the reference, so in general there is no faster
way to find the optimal solution than the one previously de-
scribed. However, it is possible to skim the space of the sub-
strings, by identifying a zone where the number of reads is
particularly high (or low, in the case of deletions) and then
computing the discrepancy function only on the sub-sequences
of that zone. We apply a heuristics that conglomerates the
positions of the reference in windows of fixed length w and
computes the discrepancy function on all the groups of ad-
jacent windows, in order to find the zone with maximum
discrepancy function. Once this zone (Ẑ0 has been found,
the precision of the candidate-variation coordinates is im-
proved by re-computing the discrepancy function in all the
sub-strings around Ẑ0. More precisely, the heuristic consid-
ers all the sub-string of the reference whose initial position is
within the first window composing Ẑ0, or the immediately
preceding one, and whose ending position is within the last
window composing Ẑ0, or the following one (see Figure 1).
Naturally, instead of considering all possible groups of adja-
cent windows, it is possible to compute the discrepancy func-
tion only on groups whose length is within a certain interval.
In this manner, it is possible to reduce the computational time
required by the algorithm, in case we know a range for the
possible length of the SV to be detected.

4. EXPERIMENTS

4.1 Data Generation
The simulation pipeline uses several standard data manip-

ulation tools. We performed the experiments described in
this section on a stretch of 1M bases in the human chromo-
some 21 of the hg19 reference genome. Given the limited ef-
fects of mappability issues in this relatively short region, we
did not apply the correction outlined in Section 3.4.2. Start-
ing from such region, we:
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Figure 1: Heuristic for the computation of the sub-string
with maximum discrepancy function. First (a), the posi-
tions of the reference genome are conglomerated in win-
dows of fixed length w, creating a new vector containing
for each window the sum of the coverages of the positions
inside that window. Then (b), the discrepancy function is
computed on every sub-sequence of the new vector, lead-
ing to candidate variation Ẑ0 (c). Then, to improve the
precision of the detection, the discrepancy function is re-
computed on all the sub-string of the reference whose ini-
tial position is within the first window of Ẑ0, or the imme-
diately preceding one, and whose ending position is within
the last window of Ẑ0, or the following one (d). The sub-
string that maximizes the discrepancy function is then the
final candidate variation Ẑ (e).

a) inject in random positions a set of CNV of various sizes
and types (deletions/duplications) using RVSSim [6].

b) simulate the Illumina sequencing using the ART tool
[15] over the sequence obtained at a) extended of 200K
bp on both sides.

c) perform alignments of these reads using BWA [18] over
the reference h19 (limited to the 1.4M bp region defined
in b).

d) use Samtools [19] to generate an ordered and indexed
BAM file

The output of this pipeline is the raw data to be given as
input to the CNV calling software. Some of these tools work
in a comparative mode and need a reference set of reads.
The reference is obtained from the same pipeline described
above, just omitting step a).

4.2 CNV Generation
The generation of the SV uses a blueprint from [34]. We

selected three random values in the range [200-500], we as-
sociate to each such value randomly the label "Dup" for du-
plication or "Del" for a deletion. Moreover randomly we se-
lect a location in the chosen 1M bp stretch. The RVSSim tool
ensures that these locations are not overlapping. This data
generation phase is repeated 32 times for each parameters
setting and the measures in the subsection 4.4 are the aver-
ages of these 32 runs.

4.3 Competitors and parameter optimization
We compare the performance of CNVscan against that of

these 4 methods: BIC-Seq [34], CNVnator [1], JointSLM [20],
and CNV-seq [36], which are among the most cited in the lit-
erature adopting the RC approach for WGS. We have used
mostly the default parameters. When the default parame-
ters did not return any result we relaxed them in order to be
more permissive. In these cases, for CNVNator we adjusted
the bin size according to the recipes reported in the supple-
mentary material of [1] while for CNV-seq we set the p-value
threshold to 0.05. JointSLM can handle a pool of samples,
but, for these experiments it has been run with the option for
a single sample.

4.4 Quality Measures
Given a set of predicted CNV and a set of embedded CNV

represented as intervals we can group (and count) the nu-
cleotides into four classes according to the prediction label,
and to the fact that it corresponds to a real CNV or not.

a) nTP is the number of nucleotide labeled Positive, that
are really part of a CNV.

b) nFP is the number of nucleotide labeled Positive, that
are not really part of a CNV.

c) nTN is the number of nucleotide labeledNegative, that
are not really part of a CNV.

d) nFN is the number of nucleotide labeled Negative,
that are really part of a CNV.

Standard quality measures are the Sensitivity (Sn):

Sn =
nTP

nTP + nFN
(4)
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Figure 2: PC, PPV and Sensitivity for 5 algorithms.

Method nF FP FN Sn PPV PC RMSE
CNVScan 32 0 1 0.937 0.940 0.883 26
cnv-seq 20 2 65 0.553 0.705 0.443 81
CNVnator 31 0 32 0.687 0.828 0.594 70
BICseq 25 0 49 0.552 0.943 0.532 32
jointSLM 32 5 28 0.679 0.777 0.550 81

Table 1: Homozygote CNV. Read length 36, Mean Coverage
5, SV size range 200–500 bp.

and the Positive Predicted Value (PPV ):

PPV =
nTP

nTP + nFP
(5)

A balanced measure has been proposed by Pevzner and Sze
[30], called the Performance Coefficient (abbr. PC) and defined
as:

PC =
nTP

nTP + nFN + nFP
. (6)

As a single index the Performance Coefficient (PC) is the most
informative, as it balances well PPV and Sensitivity.

Results of experiments for borderline SV (size range 200-
500) are shown in Tables 1, 2, 3 and 4. Figures 2, 3, 4, 5 re-
port the same data for PC, PPV and Sensitivity in graphical
form.

In each table we report: 1) the number nF of data sets (out
of 32) for which the algorithm provides at least one predic-
tion; 2) the number of FP of false positive and FN of false
negatives predictions out of 32 x 3 = 96 embedded SV, where
we count a hit if the intersection of a prediction with an em-
bedded SV is not empty; 3) the sensitivity, Positive Predicted
Value and Performance Coefficient at the base level as de-
fined above; 4) the root mean square error (RMSE) of the
distance of the endpoints of each embedded SV to the end-
points of the best prediction. For nF , FP , FN , and RMSE
lower values indicate better quality. For PC, PPV and Sen-
sitivity, higher values indicate better quality.

Results of experiments for SV in the size range 1000-20000
are shown in Tables 5, 6, 7 and 8.

4.5 Time
We conducted experiments on a Server with 4 cpu Intel

Xeon (8 cores) and 256 Gb RAM, with operating system Red
Hat Enterprise Linux Server v. 5 (64 bits). The CNVScan pro-
totype code is written in Python 2.7, and, at the moment, it
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Method nF FP FN Sn PPV PC RMSE
CNVScan 25 0 58 0.525 0.842 0.459 83
cnv-seq 6 0 88 0.469 0.698 0.391 108
CNVnator 0 0 96 - - - -
BICseq 0 0 96 - - - -
jointSLM 18 8 77 0.340 0.558 0.281 83

Table 2: Heterozygote CNV. Read length 36, Mean Cover-
age 5, SV size range 200–500 bp.

Method nF FP FN Sn PPV PC RMSE
CNVScan 32 1 6 0.899 0.907 0.827 32
cnv-seq 10 1 86 0.385 0.533 0.293 150
CNVnator 30 49 48 0.560 0.177 0.147 535
BICseq 25 0 56 0.488 0.925 0.470 39
jointSLM 27 8 45 0.586 0.653 0.440 83

Table 3: Homozygote CNV. Read length 50, Mean Coverage
5, SV size range 200–500 bp.

Method nF FP FN Sn PPV PC RMSE
CNVScan 19 0 69 0.485 0.881 0.448 49
CNVseq 0 0 96 - - - -
CNVnator 25 53 90 0.081 0.016 0.014 1271
BICseq 0 0 96 - - - -
jointSLM 18 4 78 0.320 0.654 0.276 74

Table 4: Heterozygote CNV. Read length 50, Mean Cover-
age 5, SV size range 200–500 bp.

Method nF FP FN Sn PPV PC RMSE
CNVScan 32 0 2 0.996 0.997 0.993 35
cnv-seq 32 0 3 0.985 0.984 0.969 164
CNVnator 32 0 2 0.995 0.991 0.986 65
BICseq 32 0 0 0.991 0.994 0.985 2915
jointSLM 32 1 0 0.993 0.995 0.988 66

Table 5: Homozygote CNV. Read length 36, Mean Coverage
5, SV size range 1000–20000 bp.

Method nF FP FN Sn PPV PC RMSE
CNVScan 32 0 4 0.990 0.994 0.984 72
cnv-seq 30 0 21 0.538 0.997 0.537 4499
CNVnator 32 0 2 0.985 0.992 0.978 152
BICseq 32 0 4 0.978 0.981 0.960 264
jointSLM 32 10 2 0.983 0.977 0.961 153

Table 6: Heterozygote CNV. Read length 36, Mean Cover-
age 5, SV size range 1000–20000 bp.

Method nF FP FN Sn PPV PC RMSE
CNVScan 32 1 3 0.997 0.976 0.970 40
cnv-seq 32 0 6 0.973 0.974 0.948 258
CNVnator 32 0 4 0.990 0.996 0.986 51
BICseq 32 0 2 0.989 0.995 0.984 1182
jointSLM 32 2 1 0.989 0.993 0.982 100

Table 7: Homozygote CNV. Read length 50, Mean Coverage
5, SV size range 1000–20000 bp.

is not optimized for parallel execution. In this setting each
run of CNVScan takes about 3 minutes. As CNVScan has

Method nF FP FN Sn PPV PC RMSE
CNVScan 32 0 3 0.990 0.993 0.983 103
cnv-seq 30 0 28 0.545 0.996 0.542 4216
CNVnator 32 0 6 0.969 0.987 0.959 188
BICseq 32 0 8 0.958 0.975 0.935 334
jointSLM 32 9 2 0.981 0.973 0.955 227

Table 8: Heterozygote CNV. Read length 50, Mean Cover-
age 5, SV size range 1000–20000 bp.

ample scope for exploiting data level parallelism, we reckon
that substantial speed ups can be further attained on multi-
core/multi-processor architectures, thus code optimization
is left as future work.

5. DISCUSSION
On a global outlook our experiments are in line with re-

sults reported in literature for read count methods (see e.g.
those in [34]. All 5 tested methods perform better in the stan-
dard CNV size range (above 1000), than in the borderline size
range (200-500). In particular summing up the values in ta-
bles 5, 6, 7, 8, and comparing them with those in tables 1, 2,
3, 4, we obtain that out of 640 runs for a total of 636 runs the
5 algorithms returned at least one prediction (vs 375/640),
obtaining in total 23 false positives (vs. 131), and 103 false
negatives out of 1920 CNV embedded (vs. 1260/1920). This
confirms that that borderline case is indeed tougher on aver-
age for the RC algorithms. Thus we will discuss the two size
ranges separately.
Normal range : above 1000. See tables 5, 6, 7, 8. Here the
three standard normalized measures (Sn, PPV and PC) are
all very high above 0.9 in all cases (except for cnv-seq on het-
erozygote CNV where we notice a drop in Sn and PC due to
a high number of false negatives. In terms of comparative
ranking the proposed CNVscan has the best performance for
8 measures (out of 12), cnv-seq for 2 , and CNVnator for 2.
For this class of CNV sizes a second discriminating measure
is the precision in detecting the CNV breakpoints, which we
measure as the RMSE of the end point distances for a predic-
tion with maximal non null overlap against the embedded
CNV. For this measure CNVscan ranks first in 4 cases out of
4. Looking at the ability to edge false positives vs false neg-
atives, we notice that CNVscan has a trade-off (1 fp, 12 fn)
that is quite close to that of CNVnator (0fp, 14 fn), and BIC-
seq (0fp, 14fn). CNV-seq also attains 0 fp, but with a large
increase in false negatives (58 fn). At the opposite side of the
spectrum, JointSLM has low number of false negatives (5 fn)
but at the cost of introducing a larger number of false posi-
tives (22 fp).
For this size range class CNVscan thus performs marginally
better than, or equally to, the other 4 algorithms used in the
comparison in most of the chosen quality measures, in a con-
sistent way.
Borderline range : from 200 to 500. For this size class the
story told by Figures 2, 3, 4, 5 and Tables 1, 2, 3, 4 is more
dramatic. First we notice a sharper distinction between the
cases of homozygote and heterozygote CNV. Depending also
on the read size, for the heterozygote case (see Tables 2, 4,
and Figures 3, 5) CNVSseq, CNVnator and BICseq may fail
to return any prediction at all, thus making them virtually
not comparable. Only jointSLM has consistent performances
that can be compared. CNVscan has fewer false positives (0
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vs. 12) and fewer false negatives (127 vs 155) thus showing
a better balanced behavior. In the normalized measures (Sn,
PPV, and PC) CNVScan leads over jointSLM in 6 measures
(out of 6), often by a margin higher than 50%.
For the homozygote case (see Tables 1, 3, and Figures 2, 4),
with some variability, all methods make predictions in a suf-
ficient number of experiments. CNVscan attains a better fp/fn
trade-off (1 fp, 7 fn), with respect to cnv-seq (3 fp, 151 fn),
CNVnator (49fp, 80fn) and BICseq (0 fp, 105 fn), and jointSLM
(13 fp, 73 fn). This better balancing is reflected in the ranking
of the normalized measures (Sn, PPV, PC) where CNVscan
ranks first in 4 measures out of 6. BICseq ranks first in the re-
maining 2 measures, namely PPV, because of its very conser-
vative calling policy (however CNVscan is a close second).
The RMSE measure is also consistently better for CNVScan.
This set of experiments shows that in the borderline CNV
size range CNVscan is superior to the 4 state of the art read
count based methods by a remarkably high margin in most
measures.
Conclusions. For the homozygote CNVs, CNVscan is the
only one among the methods shown here that comes close
to bridging the gap between the borderline and the standard
size range for RC methods, as measured, say, by the PC mea-
sure. For the heterozygote CNVs, the performance of CNVs-
can (for these low coverage, small size, weak signal tests) de-
grades tough it is retaining a better detection capability w.r.t
competing methods.
The current implementation of CNVscan is optimized for sin-
gle read data. We plan to extend it to handling also pair-
end data, thus making it possible to compare its performance
also with other methods that exploit pair-end data (either
based on split reads signals, or on pair-end distance signals).
We also plan to test our method on non-synthetic validated
benchmark sequencing data.
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