
Twitlang(er): interactions modeling language
(and interpreter) for Twitter‹

Rocco De Nicola1, Alessandro Maggi1, Marinella Petrocchi2,
Angelo Spognardi2, and Francesco Tiezzi3

1 IMT Institute for Advanced Studies, Lucca, Italy
{rocco.denicola,alessandro.maggi}@imtlucca.it

2 CNR, Istituto di Informatica e Telematica, Pisa, Italy
{marinella.petrocchi,angelo.spognardi}@iit.cnr.it

3 School of Science and Technology, University of Camerino, Italy
francesco.tiezzi@unicam.it

Abstract. Online social networks are widespread means to enact interactive col-
laboration among people by, e.g., planning events, diffusing information, and
enabling discussions. Twitter provides one of the most illustrative example of
how people can effectively interact without resorting to traditional communica-
tion media. For example, the platform has acted as a unique medium for reliable
communication in emergency or for organising cooperative mass actions. This
use of Twitter in a cooperative, possibly critical, setting calls for a more precise
awareness of the dynamics regulating message spreading. To this aim, in this pa-
per, we propose Twitlang, a formal language to model interactions among Twit-
ter accounts. The operational semantics associated to the language allows users
to clearly and precisely determine the effects of actions performed by Twitter
accounts, such as post, retweet, reply-to or delete tweets. The language is imple-
mented in the form of a Maude interpreter, Twitlanger, which takes a language
term as an input and, automatically or interactively, explores the computations
arising from the term. By relying on this interpreter, automatic verification of
communication properties of Twitter accounts can be carried out via the analysis
tools provided by the Maude framework. We illustrate the benefits of our exe-
cutable formalisation by means of few simple, yet typical, examples of Twitter
interactions, whose effects are somehow subtle.

Keywords: Social systems dynamics, Twitter, Formal semantics, Verification

1 Introduction

More than a personal microblogging site, Twitter has been transformed by common
use to an information publishing venue. At August, 2014, stats reported 271 million of
monthly active Twitter users, with an average of 500 million of tweets sent per day and
‹ Research supported by the European projects IP 257414 ASCENS and STReP 600708 QUAN-

TICOL, the Italian PRIN 2010LHT4KM CINA, and the Registro.it project MIB (My Informa-
tion Bubble).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


about 307 tweets sent per user [1]. Popular public characters, such as actors and singers,
as well as traditional mass media, such as radio, TV, and newspapers, currently use
Twitter as a new media channel. Politicians commit notable part of their campaigns to
their Twitter home pages, see, e.g., the last US presidential election event [2]. Naturally,
the platform has raised the attention of the most famous brands, that massively use the
site for business promotion [3]. Furthermore, it has been used for spreading alerts and
activity information messages by civil protection departments and the most well-known
humanitarian driving forces, e.g. [4].

One of the keys for the success of this socially-centric platform consists on its ease
of use. Basically, Twitter users interact by posting tweets, textual messages up to 140
characters. Tweets can also carry pictures, URLs, or mentions to other users. Remark-
ably, mentions trigger notifications to the mentioned users. There are three types of
possible relationships between Twitter usersA andB: eitherA followsB, meaning that
the tweets posted by B appear on A’s Twitter timeline, or B follows A (with the com-
plementary meaning), or both A and B follow each other. Of course, there is also the
case of no relationship between A and B. Users may also reply to, or even retweet, any
tweet, in order to spread to their followers what they think particularly worth of notice
(leading to a capillary diffusion of tweets).

In the last recent years, researchers have focused their attention on several aspects
of Twitter, from modeling the number and nature of follow relationships (see, e.g., [5]),
to applying to tweets sentiment analysis and natural language processing techniques,
in order to, e.g., discover trending topics and their correspondence to real events (see,
e.g., [6]), to relying on machine learning for malicious accounts detection (e.g., [7]). In
this paper, we focus on what probably represents one of the core aspects of the platform,
that makes it so popular and widespread: the Twitter communication and interaction
network. All those who like to use Twitter for socializing, being informed, interact
within the community, must precisely know the dynamics of their tweets, say, e.g.,
which accounts are directly reachable by their tweets, or what happens if a tweet is
deleted. A conscious usage of Twitter becomes even more crucial when it is used as a
communication media to support (critical) collaborative work.

Despite the apparent easiness and simplicity of Twitter interactions, the achievement
of a full user experience-awareness on Twitter should not be given for granted. Indeed,
the effects of (a sequence of) Twitter interactions could be subtle. As simple examples,
we invite the reader to consider the following three sequences of actions:

1. post a tweet t - reply to t - delete t;
2. post a tweet t - retweet t - undo the retweet;
3. post a tweet t - retweet t - retweet the retweet - delete t.

Without introducing here a formal notation, we give the intuition for such sequences.
Sequences 1 and 2 involve two users, say @mickey and @goofy , while sequence 3
involves also a third user, say @donald . In sequence 1, @mickey posts a tweet t and
@goofy replies to that tweet, then @mickey deletes t. In sequence 2, @mickey posts a
tweet t, @goofy retweets t, and successively @goofy cancels his retweet. In sequence 3,
@mickey posts a tweet t, @goofy retweets t, then @donald retweets @goofy’s retweet,
and finally @mickey deletes the original tweet t. The effects of the removal actions
in these three interactions are quite different. In the first case, t is removed from any



id2id1
id2id1id2id1

@mickey @goofy @donald

@mickey: tweet():id1

@goofy: retweet(id1):id2

@donald: retweet(id2):id3

@mickey: delete(id1)

id1 id1

tim
e

empty empty empty

empty

empty empty empty

follows follows

id3
id3id1

id1id3id1

Fig. 1. Effects of an example Twitter interaction on users’ accounts

timeline, while the reply still exists. In the second case, the fact that @goofy cancels his
retweet does not cause any effect to t, that still exists. Finally, in sequence 3, deleting t
leads to the disappearance of the tweet and of all its retweets as well. Figure 1 gives a
pictorial representation of sequence 3, from the point of view of the messages received
by the three accounts under examination. For the sake of modeling, each tweet/retweet
is labeled by a unique identifier idj .

The previous interactions are just some of many example interactions users can
engage on Twitter. Even these simple examples have effects that could be not fully
intuitive for the community. In the following of the paper, we will show examples of
interactions leading to more subtle and counterintuitive effects. This motivates the need
for designing a rigorous model to trace, and hence analyse, Twitter interaction patterns.

In this paper, we propose a formalization of Twitter interactions, through Twitlang, a
specification language describing a network of Twitter accounts and their behavior. The
language has been inspired by process calculi (à la CCS [8]) and its semantics is defined
in the SOS style [19] in terms of labeled transition systems. To the best of our knowl-
edge, this is the first attempt to formally model the basic interactions resulting from
users communicating on Twitter. The Twitlang formal semantics clearly determines the
effects of the actions of a Twitter account, with respect to all the other accounts (includ-
ing subtle and counterintuitive effects). This is determined “a priori”, without the need
of experimenting interactions and their effects case by case.

Besides being interesting per se, the Twitlang formal semantics has been imple-
mented in the form of a Maude interpreter, called Twitlanger. It takes a language term,
i.e. a specification of a network of Twitter accounts, as an input and performs an au-
tomatic or interactive exploration of the computations arising from the term. This also
paves the way to automatic verification of communication properties of Twitter ac-
counts (by using, e.g., the model checking facilities offered by the Maude toolset).

Road map The remainder of this paper is organized as follows. The next section
presents the syntax and the semantics of Twitlang, focusing on specifying a simple
Twitter interaction pattern. Then, we describe in Section 3 a sequence of Twitter inter-
actions among three parties, which is peculiar for its counterintuitive visible outcome.



Table 1. Twitlang: syntax

pNetworksq N ::“ u : T : N : F : B | N1 ‖ N2

pTimelinesq T ::“ ε | m | T1, T2

pNotification listsq N ::“ ε | m | N1, N2

pMessagesq m ::“ xidcur, idret, idrep, text , ua, ul, usy

pFollowing listsq F ::“ ε | u | F1, F2

pBehavioursq B ::“ nil | a.B | B1 `B2 | B1 | B2 | K

pActionsq a ::“ tweetptext , xq | deletepxq

| searchpP, zq@t | retweetpz, yq | undopyq

| replypz, text , U, xq | followpuq | unfollowpuq

pTargetsq t ::“ u | all

We show that the semantics of the language is capable to precisely capture that subtle
outcome, without the need for setting up empirical experiments. Section 4 describes the
basic Maude modules of the Twitlanger interpreter. Section 5 is devoted to the related
work in the area of Twitter modelling and analysis techniques. Finally, in Section 6
we discuss future work and conclude the paper. For the sake of readability, we have
relegated to the Appendix the complete semantics of our formalism.

2 Twitlang: a formal language for modeling Twitter interactions

In this section, we introduce Twitlang, a formalism for modelling interactions among
Twitter accounts. Specifically, we present both syntax and operational semantics of the
language.

2.1 Syntax

The syntax of Twitlang is reported in Table 1.
A network N is a composition, by means of parallel operator ‖, of accounts of the

form u : T : N : F : B, where:

– u is a username that uniquely identifies the account;
– T is the timeline, i.e. the list of messages received from the account’s followings or

sent by the account;
– N is the list of notifications of the account, containing the messages where the

account’s username is mentioned and the replies to account’s messages;
– F is the list of followings of the account;
– B is a model of the account’s behaviour, expressed as a process performing Twitter

actions.



A message is a data tuple of the form xidcur, idret, idrep, text , ua, ul, usy, where:

– idcur is the identifier of the (current) message;
– idret is the identifier of the original tweet the current message is a retweet of;
– idrep is the identifier of the message the current message is a reply to;
– text is the textual content of the message;
– ua is the username of the author of the (retweeted or replied) original message;
– ul is the username of the sender of the last retweet in a retweet chain;
– us is the username of the sender of the current message.

We will use the null symbol to leave unspecified a field of a message, as, for exam-
ple, in the case of a new tweet, where the fields idret, idret, ua and ul are irrelevant.
Moreover, we will exploit a projection function m Ói that returns the i-th field of the
message m. It is worth noticing that the identifiers used in a message act as links to
other messages. Thus, given a message xid1, id2, id3, t, u1, u2, u3y, the identifier id1 is
a link to access all messages produced as replies to this message (i.e., the set of mes-
sages tm | m Ó3“ id1u), while the identifier id3 can be used to access the previous
message in the conversation (i.e., the messagem such thatm Ó1“ id3). Other messages
can be iteratively retrieved from the already accessed ones. The navigation among mes-
sages via links can be done in Twitter by means of the functionalities expand and view
conversation. As an example, let us consider the case of a reply to a reply of a tweet;
the message m corresponding to the reply of the tweet permits accessing both the tweet
message (by means of the id in the third field of m) and the second reply message (by
means of the id in the first field of m).

Account behaviours are modelled by means of terms of a simple process algebra
(actually, this is a simple variant of the well-known process algebra CCS [8], with spe-
cialised actions). Each process is built up from the inert process nil via action prefixing
(a.B), nondeterministic choice (B1 ` B2), parallel composition (B1 | B2), and pro-
cess invocation (K). We assume that K ranges over a set of process constants that are
used in (recursive) process definitions. We assume that each constant K has a single
definition of the form K fi B.

Processes can perform eight different kinds of actions. We use the following pair-
wise disjoint sets of variables: the set of tweet variables (ranged over by x), the set
of retweet variables (ranged over by y), and the set of message variables (ranged
over by z). We define three action prefixes tweetptext , xq.B, retweetpz, yq.B and
replypz, text , U, xq.B used to send messages to other accounts; they bind variables
x and y in B. The receivers of such messages are determined according to follower-
following relationships and presence of mentions in the content of messages, as for-
mally described by the language semantics (described below). In particular, action
tweetptext , xq produces a new tweet with content text , whose fresh message iden-
tifier is bound to the tweet variable x. Action retweetpz, yq permits retweeting a
message identified by z; the fresh identifier of the retweet message is bound to the
retweet variable y. Action replypz, text , U, xq produces a message in response to the
message identified by z; the produced message has content text , inherits all mentions
from the replied message but for those specified in the set U of usernames4, and its

4 For the sake of simplicity, the set U is statically defined. This is adequate for the purpose of
our study; a more dynamic definition of the set could be considered in further developments.



identifier is bound to variable x. Tweet and reply messages can be removed by means
of action deletepxq, while retweet messages by means of action undopyq. Actions
retweetpz, yq and replypz, text , U, xq act on a message that, at runtime, will replace
the message variable z. This message is retrieved from the Twitter network by means
of the (blocking) action searchpP, zq@t.B, which indeed binds variable z in B. The
action relies on a predicate P for selecting a message among those stored in a given
account u (target t “ u) or among all messages in the network (target t “ all). Pred-
icates are boolean-valued expression obtained by logically combining the evaluation
of (comparison) relations between message fields and values. An account can add or
remove a username u to/from its following list F by means of actions followpuq and
unfollowpuq, respectively.

We conclude the presentation of the syntax by showing how the examples shown in
Figure 1 is rendered in our formalism.
Example 1 (Tweet-retweet-retweet-delete). Let us consider a network of three accounts
with usernames um (@mickey), ug (@goofy) and ud (@donald ), with empty timelines
and notifications lists and such that ug follows um and ud follows ug:

um : ε : ε : ε :Bm ‖ ug : ε : ε : um :Bg ‖ ud : ε : ε : ug :Bd

Account um posts a tweet, waits for a local message indicating that ud has retweeted
it, and then deletes it. Account ug (resp. ud) reads a local message from um (resp. ug)
and retweets it. This is rendered by the following behaviours:

Bm “ tweetpHello, xq. searchpÓ7“ ud, zq@um.deletepxq.nil

Bg “ searchpÓ7“ um, z
1
q@ug. retweetpz1, yq.nil

Bd “ searchpÓ7“ ug, z
2
q@ud. retweetpz2, y1q.nil

Predicate Ó7“ u is verified by a message m if its sender (i.e., m Ó7) is the username u.

2.2 A glimpse of the semantics

We present here an excerpt of the operational semantics of Twitlang. We refer to the
Appendix for a more complete account.

The operational semantics is given in terms of a labeled transition relation, whose
definition relies on an auxiliary relation on behaviors B

α- B1 meaning that “B
can perform a transition labeled α and become B1 in doing so”. Intuitively, all actions
give rise to a transition labeled by the corresponding label α. For example, the rules for
actions tweet, retweet or reply are as follows:

tweetptext , xq.B
tweetptext, idq- Brid{xs

retweetpm, yq.B
retweetpm, idq- Brid{ys

replypm, text , U, xq.B
replypm,pmÓ7¨mÓ5¨mentionspmÓ4qqzU ¨text,idq- Brid{xs

When one of the above actions is executed, a fresh message id is generated and used
to replace the corresponding variable x or y via a substitution, i.e. a function rv{ks



Table 2. Twitlang: operational semantics (excerpt of rules at network level)

B
tweetptext,idq- B1 id R idspT,N,Bq

u : T : N : F : B
xid, , ,text, , ,uy- u : pT, xid, , , text , , , uyq : N : F : B1

B
retweetpm,idq- B1 id R idspT,N,Bq m Ó7‰ u

u : T : N : F : B
xid,mÓ2{1, ,mÓ4,authorpmq,mÓ7,uy-

u : pT, xid,m Ó2{1, ,m Ó4, authorpmq,m Ó7, uyq : N : F : B1

B
replypm,text,idq- B1 id R idspT,N,Bq

u : T : N : F : B
xid, ,mÓ1,text,mÓ7, ,uy- u : pT, xid, ,m Ó1, text ,m Ó7, , uyq : N : F : B1

N m- N 1 m Ó1R idspT,N,Bq

N ‖ u : T : N : F : B
m- N 1 ‖ u : pT ‘F mq : pN ‘u mq : F : B

mapping variable k to value v. As clarified later, the freshness of message identifiers
is ensured by operational rules at network level. The message text within the label
produced by a reply action consists of a mention to the sender of messagem, a mention
to the author of the original tweet, all mentions included in the text of m (retrieved by
means of the mention retrieval function mentionsptextq) except those in U and, of
course, the text of the reply (which may include new mentions).

The rules below state that the execution of an action permits to take a decision be-
tween alternative behaviors (left rule), while execution of parallel actions is interleaved
(right rule):

B1
α- B11

B1 `B2
α- B11

B1
α- B11

B1 | B2
α- B11 | B2

Now, the labeled transition relation on networks is given by the rules (an excerpt of
which are) in Table 2. We write N λ- N 1 to mean that “N can perform a transition
labeled λ and become N 1 in doing so”. Transition labels are generated by the following
production rule:

λ ::“m | deletepidq | undopidq | u : foundpmq | u : addedpu1q | u : removedpu1q

meaning that a message m has been transmitted, the tweet/reply identified by id and
its related messages have been deleted, the retweet identified by id has been deleted, a
message m is retrieved by u, the account u1 has been added to the following list of u,
the account u1 has been removed from the following list of u, respectively.

The first rule shown in Table 2 transforms a tweet label into a network label m rep-
resenting the message generated by the action. The message is inserted in the timeline
of the account. Notably, premise id R idspT,N,Bq checks that the message id is fresh



in the considered account (in fact, function idsp¨q returns all identifiers used in the terms
passed as arguments).

The second rule is similar; the extra premise m Ó7‰ u permits blocking a retweet
of a message generated by the same account u (indeed, this is not allowed in Twitter).
Notice that this time the second field of the produced message records the identifier
of the original tweet. If m is a retweet, this information is retrieved from the second
field of m, while in case of tweet or reply it is retrieved from the first field. This is
achieved by resorting to a particular projection function m Ói{j , which stands for m Ói

ifm Ói‰ , otherwisem Ój . Similarly, the fifth field is determined by means of function
authorpmq that returns m Ó5 if m Ó2‰ (i.e., m is a retweet), otherwise (i.e., m is a
tweet or a reply) it returns m Ó7. Moreover, the text of the retweet is the same of that of
the retweeted message (indeed, in Twitter the retweet action does not allow to modify
the text of the retweeted message).

The third rule of Table 2 is similar; the rule properly records identifier and author of
the replied messagem in the third and fifth field of the generated message, respectively.

The forth rule takes care of delivering a new message to all the accounts of the net-
work that have to receive it. In particular, this rule should be repeatedly applied in order
to consider one by one all the accounts. For each account is checked if the identifier of
the message is fresh. In this way, at the end of the inference of the transition, the global
freshness of the identifier is ensured. Notably, this does not require to use a restriction
operator à la π-calculus [9], because the scope of the identifiers is always global, i.e.
each user potentially can access every tweet in the network (in Twitter, for example,
it is possible to access the messages sent and received by any user by visiting his/her
Twitter page). The possible insertion of the message in the timeline and notification list
of the considered account u is regulated by the following insertion operators:

– tweet insertion T ‘F m: a message m is inserted in the timeline T of an account
only if the sender of m is in the following list F of this account;

– notification insertion N ‘u m: a message m is inserted in the notification list N
of an account with username u only if u is mentioned in the text of m, or m is
a retweet whose original tweet message has been sent by u, or m is a reply to a
message sent by u.

Example 2 (Tweet-retweet-retweet-delete). Let N be the network defined in the Exam-
ple 1. The behaviour Bm of the account um can evolve as follows:

Bm
tweetpHello,id1q- B1m

Now, by applying the first rule in Table 2, the message m1 “ xid1, , ,Hello, , , umy
is produced. Then, by applying the last rule in Table 2, m1 is delivered to ug (since ug
is a follower of um). Thus, the resulting transition is:

N xid1, , ,Hello, , ,umy- N 1
“ um : m1 : ε : ε :B1m ‖ ug : m1 : ε : um :Bg ‖ ud : ε : ε : ug :Bd

Similarly, ug and ud perform their actions as follows:

N 1 ug :foundpm1q- m2- ud:foundpm2q- m3- N 2
“

um : m1 : pm2,m3q : ε :B
1
m ‖ ug : pm1,m2q : m3 : um :nil ‖ ud : pm2,m3q : ε : ug :nil



wherem2 andm3 are xid2, id1, ,Hello, um, um, ugy and xid3, id1, ,Hello, um, ug, udy,
respectively. Finally, um performs the search and delete actions:

N 2 um:foundpm3q- deletepidq- N3
“um : ε : ε : ε :nil ‖ ug : ε : ε : um :nil ‖ ud : ε : ε : ug :nil

As in Figure 1, the action produces a domino-effect that removes all messages from the
timelines and notification lists.

3 An example interaction with counterintuitive effects

Twitter provides users with a basic set of simple features to communicate each other
over the platform. Despite the apparent simplicity of such features, the combination of
some communication actions can lead to counterintuitive effects.

We consider three Twitter accounts, say @mickey , @donald , and @goofy . We sup-
pose that the three accounts belong to three distinct researchers, Mickey Mouse, Donald
Duck, and Goofy, respectively. Mickey and Donald are colleagues and follow each oth-
ers on Twitter, while Goofy is neither a follower nor a following of both. This scenario
is rendered in our formalism as the following network (for the sake of presentation, we
consider empty the timelines and notifications lists of the accounts at the beginning of
the interaction):

um : ε : ε : ud : Bm ‖ ud : ε : ε : um : Bd ‖ ug : ε : ε : ε : Bg

Mickey is attending a conference on Social Informatics and listens with interest
to Goofy’s talk on his recent results on using formal methods for the specification of
the Twitter interaction patterns. Since Mickey and Donald are performing research on
very related topics, Mickey sends an enthusiastic tweet mentioning both Donald and
Goofy, with the following text: “@donald great work by @goofy on #formalmethods
and Twitter! Let’s start a collaboration!”. Thus, the behavior of the Mickey’s account
is:

Bm “ tweetp“ud great work by ug on#formalmethods and Twitter ! . . . ”, xq. B1m

Such a tweet, called hereafter the original tweet and denoted by m1, appears 1) on
Donald’s user timeline, since Donald follows Mickey, and on Donald’s notifications
list, since Donald has been mentioned; 2) on Goofy’s notifications list, since Goofy has
been mentioned, but Goofy does not follow Mickey; and 3) on Mickey’s user timeline:

um : m1 : ε : ud : B 1m ‖ ud : m1 : m1 : um : Bd ‖ ug : ε : m1 : ε : Bg

It happens that Donald has listened some rumors on Goofy’s professional reputation.
Quite recklessly, he replies to the original tweet, although removing the mention to him:
in that reply, called hereafter the replying tweet and denoted by m2, Donald writes the
following “@mickey don’t go for it, waste of time”. Note that mention to @mickey
is automatically inserted in the replying tweet, being it a reply to the original tweet
sent by Mickey. By default, the reply contains all the mentions included in the original
tweet, thus, in this case, it automatically contains @goofy . However, Donald manually



Fig. 2. Donald’s reply is visible on Goofy’s notification list

removes “@goofy” from the reply, before sending it. Thus, the behavior of the Donald’s
account is:

Bd “ searchpÓ7“ um ^#formalmethods P hashtagspÓ4q, zq@ud.
replypz, “um don 1t go for it , waste of time2, tugu, x

1
q. B1d

Notably, the reply is triggered by the presence in the @donald account of a message
whose sender is @mickey and whose text contains the hashtag #formalmethods (in
fact, function hashtagsp¨q returns all hashtags in the text passed as argument).

Donald’s reply 1) appears on Mickey’s user timeline, since Mickey follows Don-
ald, and on Mickey’s notifications list, since Mickey has been mentioned; 2) appears on
Donald’s user timeline; and 3) quite surprisingly, is added to a conversation on Goofy’s
notifications list, even if the mention to Goofy has been removed. In particular, the reply
is tied to the original tweet, and it is visible on Goofy’s notifications list upon clicking on
the “expand” button. Figure 2 shows the screenshot of Goofy’s notifications list, upon
clicking on the “expand” button. Formally, we have:

um : pm1 ,m2 q : m2 : ud : B 1m ‖ ud : pm1 ,m2 q : m1 : um : B 1d ‖ ug : ε : m1 : ε : Bg

where m1 at ug now allows Goofy accessing the message m2. In fact, as explained in
the section devoted to the presentation of our formalism, the identifiers in a message
can be thought of as links to retrieve other messages. In our example, the identifier of
m1 (i.e., its first field) can be used to retrieve m2, because m2 Ó3 is set to the m1’s
identifier (since m2 is a reply to m1).

Finally, having seen the message of Donald, Mickey decides to remove his tweet,
which is expressed in our formalism as an action deletepxq. This removes all occur-
rences of m1, leaving untouched those of m2:

um : m2 : m2 : ud : B2m ‖ ud : m2 : ε : um : B 1d ‖ ug : ε : ε : ε : Bg

Notice, even if the reply message is still around, Goofy now has no direct link to it.



4 Twitlanger: executable Twitlang in Maude

Maude is “a programming language that models (distributed) systems and the actions
within those systems” [10]. The systems are specified by defining algebraic data types
axiomatising systems’ states, and rewrite rules axiomatising systems’ local transitions.

In this section, we present Twitlanger, the interpreter for Twitlang written in Maude.
Four basic Maude modules represent the core of Twitlanger: TWITLANG-SYNTAX,
TWITLANG-CONTEXT, TWITLANG-SUPPORT and TWITLANG-SEMANTICS.

The functional module TWITLANG-SYNTAX provides declarations of sorts, e.g.,
networks, messages, actions and behaviours, and operators on those sorts that are de-
fined in the language syntax. It also defines subsort relationships which are mainly used
to capture the hierarchy between sets and respective elements. The module also provides
reserved ground terms representing the names of actions (tweet, delete, search, etc.) and
network-level labels (found, added, etc.). Given the similarities between behaviours in
Twitlang and processes in CCS [8], we used Verdejo and Martı́-Oliet state-of-the-art
implementation of CCS in Maude [11] as a foundation for operators definition.

The functional module TWITLANG-CONTEXT defines the top-level behaviours’
context that supports behaviour definition in terms of bindings to identifiers.

Module TWITLANG-SUPPORT defines equations that realise support operators
used in rewrite rules for behaviour unfolding and network transitions.

Such rewrite rules are finally defined in TWITLANG-SEMANTICS, alongside ad-
ditional operators and equations introduced to allow for a more compact and readable
definition of the transition rules. The latter represent the operational semantics rules
for behaviours and networks, an excerpt of which is given in Section 2.2 (while the
complete set of rules is defined in Tables 4 and 5 in the Appendix).

Maude uses appropriate strategies for rules application. A Maude default strategy is
implemented by the rewrite command, that explores one possible sequence of rewrites,
starting by a set of rules and an initial state [10]. To prevent undesirable looping caused
by recursive rewrites inside operators arguments, we have adopted an approach similar
to the one described in [11]. Thus, in our implementation, the rewrite command can
only be used to produce a one-step successor of a given state.

However, Maude provides another convenient command, search, which gives a pri-
ori all the possible sequences of rewrites between an initial and a final state supplied
by the user. By providing a transitive closure to the network transitions, it is thus possi-
ble to use this command to evaluate arbitrarily long traces. Practically, since for certain
recursively defined systems the search could not terminate, the command is decorated
with an optional bound on the number of desired solutions and on the maximum depth
of the search.

The example in Section 3 can be specified in the machine-readable syntax of Twit-
lang taken as input by Twitlanger. Then, the interpreter can be used to evaluate the
evolution of the network, verifying that the exploration yields the expected outcome.
Indeed, by issuing the following command5:

search example =>* T:Twitter .

5 Both the command and its output use a shorthand notation - i.e. the terms example, M1 and
M2 - that is equationally equivalent to a complex composition of terms.



we obtain a full unfolding of a rewrite trace

{M1}{Donald :Nfound(M1)}{M2}{Mickey :Nfound(M2)}{Mickey :Ndelete(1)}

up to the final state:

Donald : M2 : empty : Mickey : Bd’ || Goofy : empty : empty : none : Bg
|| Mickey : M2 : M2 : Donald : Bm’’

Further analyses of the interactions can be performed by invoking search with the
such that clause, effectively introducing a condition that the solutions have to fulfil.
For instance, we may use the auxiliary operator expand, which evaluates accessible
messages through direct linking (without resorting to the search action) from a specific
user’s perspective:

search example =>* T:Twitter such that ( M2 in expand(Goofy,1,T:Twitter) ) .

The command basically says “find all states of the system in which user Goofy can
access message m2 via a one-hop link”. The output produced by the interpreter in this
case is comprised of two solutions, the first one describing the trace and the state:

{M1}{Donald :Nfound(M1)}{M2}

Donald : ( M1 ; M2 ) : M1 : Mickey : Bd’ || Goofy : empty : M1 : none : Bg
|| Mickey : ( M2 ; M1 ) : M2 : Donald : ((search(predP7(Donald),z’)@ Mickey) .

delete(x) . Bm’’)[1 / x])

which represents the system configuration after Donald replies to Mickey, meaning that
indeed Goofy is able to easily access m2 as soon as the message is published, even
though it carries no mention of him. On the other hand, given that the only other solution
found by the interpreter that satisfies the clause is the subsequent state in which Mickey
has performed the search action, these results confirm that after deleting m1 Goofy
looses his only direct link to m2 and, thus, he cannot access it without resorting to
explicit search.

A more comprehensive overview of Twitlanger alongside the access to the complete
Maude implementation of the Twitlanger modules and examples discussed in this pa-
per, together with appropriate equations for all the declared operators, are available at
http://sysma.imtlucca.it/tools/twitlanger/.

5 Related Work

To the best of our knowledge, there is no previously attempt to rigorously formalise
Twitter interaction patterns. Instead, a series of blogs offer the general public some
useful, yet informal, tips on tweets, retweets, and replies, see, e.g., [12].

Proposing a syntax and associated semantics describing the cause-effect relation-
ships among communicating Twitter accounts should not be considered as a standalone
work. Indeed, our formalisation aims at putting the rigorous basis for a uniform ap-
proach to Twitter accounts’ properties specification and analysis. The first, yet signifi-
cant, step in this direction is given by the implementation of the Twitlanger tool.

Interestingly, in the scientific literature there are several works on modelling and
analysis of tweets’ contents and their associated metadata. As an example, both work

http://sysma.imtlucca.it/tools/twitlanger/


in [13,14] exploit sentiment analysis techniques over real tweet-sets, to detect “public
sentiment” and associate its fluctuations with a timeline of notable events that took
place in the period tweets were collected. The authors of [15] address the problem of
using text-mining tools to understand tweets (whose restricted length may prevent such
tools from being employed to their full potential). The authors propose several schemes
to train standard tools and compare their quality and effectiveness. In our work, instead,
we mainly focus on analysing the interactions among users rather than on the content
of their tweets.

Aiming at making tweets useful for recommendations, authors of [16] propose a
method for enriching the semantics of tweets, by identifying and detailing, e.g., topics,
persons, events mentioned in tweets. The usefulness of the platform for real-time cri-
sis management has been tested by various work, see, e.g. [17,18], where technologies
were investigated for understanding the semantic meaning of Twitter messages. Authors
of [19] study the Twitter hashtags ability to represent real-world entities, by comparing
hashtags characteristics with Semantic Web “strong identifiers” features. By analysing
a dataset of Twitter conversations, work in [20] measures the “economy of attention” in
the Twitter world. As predicted by Dunbar’s theory, Twitter users can entertain a max-
imum of 100-200 stable relationships and are constrained by cognitive and biological
constraints as well as in the real world. Authors of [5] provide a characterisation of the
topological features of the Twitter follow graph, mainly aiming at answering questions
related to the inner nature of the platform, e.g.: “Is Twitter a social network or an in-
formation network?”. From the analysis they carried on, conclusions are that Twitter
evolves towards a social network. Indeed, even if the “follow” relationships is primarily
about information consumption, many relationships are instead “built on social ties”.
Similar issues are addressed in [21], where two Twitter networks are identified: a net-
work made of followers and friends that shows a certain level of stability and a “topical”
network, characterised by a high level of contingency. The work investigates how the
two networks influence each other (for example, whether the participation in the same
hashtag-based conversation changes the follower list of the involved accounts). Finally,
work in [22] models information propagation through different social networks (among
them, Twitter). Again, the above bunch of works concerns information and social as-
pects of Twitter, while we are interested in the effects of user interactions in terms of
message spreading.

Remarkably, Twitter versatility and spread of use have made it the ideal arena for
proliferation of anomalous accounts, that behave in unconventional ways. Literature has
focused its attention on spammers, that is those accounts actively putting their efforts in
spreading malware, sending spam, and advertising activities of doubtful legality (see,
e.g., [7,23]) as well as on fake followers, corresponding to Twitter accounts specifically
exploited to increase the number of followers of a target account, e.g., see [24]. Our
research goal is to define an approach for distinguishing genuine accounts from anoma-
lous one by making use of the analysis techniques enabled by the formal semantics and,
in particular, by its Maude implementation.

To sum up, the above literature overview clearly highlights the research effort to-
wards the characterisation of social dynamics inferred from Twitter studies and having
an impact on real life (and vice versa). Our modeling approach, instead, focuses on



a novel study of Twitter interactions’ effects from the point of view of Twitter users,
with a special care on understanding the communication mechanisms underlying the
message spreading. Besides this achievement, we think that our work can be extended
in several directions in order to enable some of the analyses mentioned above. In fact,
our formalism could serve as a uniform, common formal ground for modelling and
analysing Twitter accounts’ behaviour. For example, quantitative information could be
added to model the frequency of actions (by resorting, e.g., to a stochastic approach).

6 Concluding remarks

We have presented Twitlang, a formal language to specify communication interactions
on Twitter, from the point of view of the involved accounts. To the best of our knowl-
edge, this is the first attempt to rigorously model communications on Twitter. By equip-
ping the language with an operational semantics, it is possible to know in advance
which are the effects of the basic actions that millions of Twitter users daily perform,
without the need of setting up experiments (which, of course, we have extensively car-
ried out to properly define our formal semantics). On top of the formal semantics, we
have implemented Twitlanger, an interpreter of the language written in Maude.

It is worth noting that the language is currently able to capture the core aspects of
Twitter communications, i.e., standard behavioural patterns, like, e.g., posting a tweet,
replying to, or retweeting a particular tweet. However, it could be easily extended by
giving both the syntax and the semantics rules for more specific features, as direct mes-
sages and blocking of an account. Concerning peculiar behaviours, an example, which
perhaps not everyone is aware of, is as follows: putting a mention at the very beginning
of a tweet implies that the tweet is sent only to the intersection of the author’s followers
and of the mentioned account’s followers. This and other peculiarities, if considered
relevant for specific analyses, could be dealt with in our approach.

As future work, we intend to incorporate in Twitlanger the Maude facilities sup-
porting automatic analysis, thus enabling verification of Twitter interactions properties.
Also, we aim at realising a user-friendly, on-line service, based on Twitlanger, through
which the Twitter community can test what happens to their tweets, by means of simple
questions and easy-to-understand answers.

References

1. Smith, C.: By The Numbers: 150+ Amazing Twitter Statistics. In: http://goo.gl/2Xr9X.
(March 2015) Last checked March 21, 2015.

2. The Guardian: Barack Obama tweets the start to his 2012 re-election campaign. In:
http://goo.gl/Uk6Av. (Apr 2011) Last checked March 21, 2015.

3. Brandwatch.com: Analysis of global brands’ Twitter activity. In: http://goo.gl/C6MeU. (Dec
2012) Last checked March 21, 2015.

4. Save the Children: Hurricane Tips for Parents: How to Help Kids. In: http://goo.gl/vZynkt.
(Jun 2014) Last checked March 21, 2015.

5. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information Network or Social Network?: The
Structure of the Twitter Follow Graph. In: WWW, ACM (2014) 493–498



6. Ritter, A., Cherry, C., Dolan, B.: Unsupervised modeling of twitter conversations. In: HLT-
NAACL. (2010) 172–180

7. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: ACSAC,
ACM (2010) 1–9

8. Milner, R.: Communication and concurrency. Prentice-Hall (1989)
9. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Inf. Comp. 100(1)

(1992) 1–77
10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All

About Maude - a High-performance Logical Framework. Springer (2007)
11. Verdejo, A., Martı́-Oliet, N.: Implementing CCS in Maude 2. In: WRLA. Volume 71 of

ENTCS., Elsevier (2002) 239–257
12. Larson, D.: 9 Strange Things About Tweets, Retweets And DMs Every Twitter User Must

Know. In: http://goo.gl/XyvAO. (Nov 2011) Last checked March 21, 2015.
13. Bollen, J., Mao, H., Pepe, A.: Modeling Public Mood and Emotion: Twitter Sentiment and

Socio-Economic Phenomena. In: ICWSM. (2011)
14. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In:

LREC, ELRA (2010)
15. Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: SOMA, ACM

(2010) 80–88
16. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing user modeling on twitter for personalized

news recommendations. In: UMAP. (2011) 1–12
17. Abel, F., Hauff, C., Houben, G.J., Stronkman, R., Tao, K.: Twitcident: fighting fire with

information from social web streams. In: WWW. (2012) 305–308
18. Mendoza, M., Poblete, B., Castillo, C.: Twitter Under Crisis: Can We Trust What We RT?

In: SOMA, ACM (2010) 71–79
19. Laniado, D., Mika, P.: Making Sense of Twitter. In: ISWC. Volume 1. (2010) 470–485
20. Gonalves, B., Perra, N., Vespignani, A.: Modeling Users’ Activity on Twitter Networks:

Validation of Dunbar’s Number. PLoS ONE 6(8) (2011)
21. Rossi, L., Magnani, M.: Conversation practices and network structure in twitter. In: ICWSM.

(2012)
22. Magnani, M., Rossi, L.: The ml-model for multi-layer social networks. In: ASONAM.

(2011) 5–12
23. Yang, C., Harkreader, R., Gu, G.: Empirical evaluation and new design for fighting evolving

twitter spammers. IEEE Information Forensics and Security 8(8) (2013) 1280–1293
24. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: A Criticism to Society

(as seen by Twitter analytics). In: DASec, IEEE (2014)
25. Plotkin, G.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61

(2004) 17–139



Appendix

In this Appendix we report the complete formal semantics of our Twitter formalism.
First, it is worth noticing that not all processes allowed by the syntax in Table 1

are semantically meaningful. Indeed, in a general term of the language, the messages
stored in the accounts may not be consistent (e.g., we could have a message represent-
ing a retweet whose reference to the original tweet does not correspond to any tweet
message). Thus, to ensure consistent terms we only consider reachable networks, i.e.
networks obtained by means of reductions from networks with no stored messages.

Definition 1 (Reachable networks). The set of reachable networks is the closure un-
der

λ- (see below) of the set of terms generated by the following grammar:

N ::“ u : ε : ε : F : B | N1 ‖ N2

The operational semantics is given in the SOS style [25] in terms of a structural
congruence and of a labeled transition relation. Notably, the semantics is only defined
for closed terms, i.e. terms without free variables. Indeed, we consider the binding of
a variable as its declaration (and initialization), therefore free occurrences of variables
at the outset in a term must be prevented since they are similar to uses of variables
before their declaration in programs (which are considered as programming errors).
Notice also that the semantics is defined over an enriched syntax that also includes
those auxiliary terms resulting from replacing (free occurrences of) variables with the
corresponding identifier.

The structural congruence, written”, is defined as the smallest congruence relation
on networks that includes the laws shown in Table 3.

B ` nil ” B B1 `B2 ” B2 `B1

pB1 `B2q `B3 ” B1 ` pB2 `B3q

B | nil ” B B1 | B2 ” B2 | B1

pB1 | B2q | B3 ” B1 | pB2 | B3q

K fi B

K ” B

B ”α B
1

B ” B1

B ” B1

u : T : N : F : B ” u : T : N : F : B1

N1 ‖ N2 ”N2 ‖ N1 pN1 ‖ N2q ‖ N3 ”N1 ‖ pN2 ‖ N3q

Table 3. Twitter modeling language: structural congruence

Almost all laws are standard laws of process algebras: the first six laws are the monoid
laws for ` and | (i.e., it is associative and commutative, and has nil as identity el-



tweetptext , xq.B
tweetptext,idq- Brid{xs [B-TWEET]

deletepidq.B
deletepidq- B [B-DELETE]

searchpP, zq@t.B searchpP,zq@t- B [B-SEARCH]

retweetpm, yq.B
retweetpm,idq- Brid{ys [B-RETWEET]

undopidq.B
undopidq- B [B-UNDO]

replypm, text , U, xq.B
replypm,pmÓ7¨mÓ5¨mentionspmÓ4qqzU ¨text,idq- Brid{xs [B-REPLY]

followpuq.B
followpuq- B [B-FOLLOW]

unfollowpuq.B
unfollowpuq- B [B-UNFOLLOW]

B1
α- B11

[B-CHOICE]
B1 `B2

α- B11

B1
α- B11

[B-PAR]
B1 | B2

α- B11 | B2

Table 4. Twitter modeling language: operational semantics (behaviors)

ement); the seventh law permits unfolding a recursion; the eighth law equates alpha-
equivalent behaviors, i.e. behaviors only differing in the identity of bound variables
(alpha-equivalence is denoted by ”α); the ninth law permits lifting the structural con-
gruence from behaviors to nets; the last two laws state that ‖ is associative and commu-
tative.

To define the labeled transition relation, we rely on an auxiliary relation on behav-
iors, which is defined as the smallest relation on behaviors generated by the rules in
Table 4. We write B

α- B1 to mean that “B can perform a transition labeled α and
become B1 in doing so”. Transition labels are generated by the following production
rule

α ::“ tweetptext , idq | deletepidq | searchpP, zq@t
| retweetpm, idq | undopidq | replypm, text , idq

| followpuq | unfollowpuq

Basically, all actions give rise to the corresponding label. When a tweet, retweet or
reply is executed, a fresh message id is generated and used to replace the corresponding
variable x or y via a substitution, i.e. a function rv{ks mapping variable k to value v.
Application of a substitution to a behavior, written Brv{ks, has the effect of replacing
every free occurrence of k in B with v. As clarified later, the freshness of identifiers is
ensured by operational rules at network level.



The message text within the label produced by a reply action is extended with the
mentions inherited from the replied message m, except for those indicated in U . To this
aim, we exploit a mention retrieval function mentionsptextq and the removal operator
textzU : the former returns the set of usernames mentioned in text , while the latter
removes from text all mentions to accounts belonging to the set U . Thus, in the label
generated by the reply action, the text of the message consists of a mention to the sender
of messagem, a mention to the author of the original tweet, all mentions included in the
text of m except those in U and, of course, the text of the reply. They are composed by
means of the concatenation operator ¨ . Notably, new mentions can be added by means
of the text of the reply.

Execution of an action permits to take a decision between alternative behaviors (rule
[B-CHOICE]), while execution of parallel actions is interleaved (rule [B-PAR]).

The labeled transition relation is the smallest relation on closed networks generated
by the rules in Table 5. We write N λ- N 1 to mean that “N can perform a transition
labeled λ and become N 1 in doing so”. Transition labels are generated by the following
production rule

λ ::“ m | deletepidq | undopidq | u : foundpmq
| u : addedpu1q | u : removedpu1q

meaning that a message m has been transmitted, the tweet/reply identified by id and
its related messages have been deleted, the retweet identified by id has been deleted,
a message m is retrieved, the account u1 has been added to the following list of u, the
account u1 has been removed from the following list of u, respectively.

Rule [N-TWEET] transforms a tweet label into a network label m representing the
message generated by the action. The message is inserted in the timeline of the account.
Notably, premise id R idspT,N,Bq checks that the message id is fresh in the consid-
ered account (in fact, function idsp¨q returns all identifiers used in the terms passed as
arguments).

Rule [N-RETWEET] is similar; the extra premise m Ó7‰ u permits blocking a
retweet of a message generated by the same account u (indeed, this is not allowed in
Twitter). Notice that this time the second field of the produced message records the
identifier of the original tweet. If m is a retweet, this information is retrieved from the
second field of m, while in case of tweet or reply it is retrieved from the first field.
This is achieved by resorting to a particular projection function m Ói{j , which stands
for m Ói if m Ói‰ , otherwise m Ój . Similarly, the fifth field is determined by means
of function authorpmq that returns m Ó5 if m Ó2‰ (i.e., m is a retweet), otherwise
(i.e., m is a tweet or a reply) it returns m Ó7. Moreover, the text of the retweet is the
same of that of the retweeted message (indeed, in Twitter the retweet action does not
allow to modify the text of the retweeted message).

Rule [N-REPLY] is similar; the rule properly records the identifier and author of the
replied message m in the third and fifth field of the generated message, respectively.

Rule [N-DELIVER] takes care of delivering a new message to all account of the
network that have to receive it. In particular this rule should be repeatedly applied for
considering once at a time all accounts. For each account is checked if the identifier
of the message is fresh. In this way, at the end of the inference of the transition, the



B
tweetptext,idq- B

1
id R idspT,N,Bq

[N-TWEET]
u : T : N : F : B

xid, , ,text, , ,uy- u : pT, xid, , , text, , , uyq : N : F : B
1

B
retweetpm,idq- B

1
id R idspT,N,Bq m Ó7‰ u

[N-RETWEET]

u : T : N : F : B
xid,mÓ2{1, ,mÓ4,authorpmq,mÓ7,uy-

u : pT, xid,m Ó2{1, ,m Ó4, authorpmq,m Ó7, uyq : N : F : B1

B
replypm,text,idq- B

1
id R idspT,N,Bq

[N-REPLY]
u : T : N : F : B

xid, ,mÓ1,text,mÓ7, ,uy- u : pT, xid, ,m Ó1, text,m Ó7, , uyq : N : F : B
1

N m- N 1
m Ó1R idspT,N,Bq

[N-DELIVER]
N ‖ u : T : N : F : B

m- N 1 ‖ u : pT ‘
F
mq : pN ‘

u
mq : F : B

B
deletepidq- B

1

[N-DELETE]
u : T : N : F : B

deletepidq- u : pT a idq : pN a idq : F : B
1 id

N deletepidq- N 1

[N-DELPROPAG]
N ‖ u : T : N : F : B

deletepidq- N 1 ‖ u : pT a idq : pN a idq : F : B id

B
undopidq- B

1

[N-UNDO]
u : T : N : F : B

undopidq- u : pT c idq : pN c idq : F : B
1 id

N undopidq- N 1

[N-UNDOPROPAG]
N ‖ u : T : N : F : B

undopidq- N 1 ‖ u : pT c idq : pN c idq : F : B id

B
searchpP,zq@u- B

1
Dm P pT YNq : Ppmq “ true

[N-SEARCH-U]
u : T : N : F : B

u:foundpmq- u : T : N : F : B
1
rm{zs

B
searchpP,zq@t- B

2
pt “ u

1
_ t “ allq Dm P T

1
: Ppmq “ true

[N-SEARCH-T]
u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1 u:foundpmq-

u : T : N : F : B2
rm{zs ‖ u1 : T 1 : N 1 : F 1 : B1

B
followpu1q- B

2
u

1
R F

[N-FOLLOW1]
u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1 u:addedpu1q-

u : pT, tm P T 1
| m Ó7“ u1

uq : N : pF, u1
q : B2 ‖ u1 : T 1 : N 1 : F 1 : B1

B
followpu1q- B

2
u

1
P F

[N-FOLLOW2]
u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1 u:addedpu1q-

u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1

B
unfollowpu1q- B

2

[N-UNFOLLOW]
u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1 u:removedpu1q-

u : pT ztm P T | m Ó7“ u1
uq : N : pF zu1

q : B2 ‖ u1 : T 1 : N 1 : F 1 : B1

N1
λ- N 1

1 λ P tu : foundpmq, u : addedpu
1
q, u : removedpu

1
qu

[N-PAR]
N1 ‖ N2

λ- N 1
1 ‖ N2

N ” N1
λ- N2 ” N 1

[N-STR]
N λ- N 1

Table 5. Twitter modeling language: operational semantics (networks)



global freshness of the identifier is ensured. Notably, this does not require to use a
restriction operator à la π-calculus, because the scope of identifiers is always global,
i.e. each user potentially can access every tweet in the network (in Twitter, for example,
it is possible to access the messages sent and received by any user by visiting his/her
Twitter page). The possible insertion of the message in the timeline and notification list
of the considered account u is regulated by the following insertion operators:

– tweet insertion: a message m is inserted in the timeline T of an account only if the
sender of m is a following of this account

T ‘F m “

"

pT,mq if m Ó7P F

T otherwise

– notification insertion: a message m is inserted in the notification list N of an ac-
count with username u only if u is mentioned in the text of m, or m is a retweet
whose original tweet message has been sent by u, or m is a retweet of a retweet
sent by u, or m is a reply of a message sent by u

N ‘u m “

$

&

%

pN,mq if u P mentionspm Ó4q

_m Ó5“ u _ m Ó6“ u

N otherwise

Rule [N-DELETE] deletes the tweet identified by id and all its retweet from the ac-
count that performed the delete action (which is the account that emitted such a tweet).
The deletion of a message from a list L (which denotes either a timeline or a notification
list) is defined by the following operator:

– tweet deletion: a message m is deleted from the list L of an account only if id is its
identifier or m is a retweet of a message identified by id

La id “ Lztm P L | m Ó1“ id _ m Ó2“ idu

Moreover, retweeting and replying of deleted messages (which may happen when a
delete is executed after a search) are prevented by means of the block operator B id,
which replaces prefixes a.B1 in B by nil when a is a retweet or a reply action having
a message m as parameter with m Ó1, m Ó2 or m Ó3 sets to id6.

The deletion is propagated to the other accounts by rule [N-DELPROPAG].
Retweets are undone by means of rules [N-UNDO] and [N-UNDOPROPAG], that are

similar to rules for the delete action except for the deletion operator:

– retweet deletion: a messagem is deleted from the list L of an account only ifm has
id as identifier of the current message

Lc id “ Lztm P L | m Ó1“ idu

6 The definition of more sophisticated solutions, e.g. based on exception handling, to deal with
actions involving deleted messages is left for future investigation. Indeed, the blocking solution
used here properly suits the study carried out in this paper.



In this case, it is considered only the first field of the message. Thus, only the retweets
identified by id are removed, while other retweets of the same tweet and the tweet itself
are not affected by the deletion.

Rule [N-SEARCH-U] allows account u to search for a message satisfying predicate
P in its timeline and notification list. If a message is found, say m, the label produced
at network level is m : foundp). Rule [N-SEARCH-T] is similar, but it looks for a
message in the timeline of another account u1, which either is specifically indicated in
the target (t “ u1) or is anyone of the rest of the net (t “ all). Once a message is found,
rule [N-PAR] permits terminating the search without affecting the other accounts of the
network.

Rule [N-FOLLOW1] extends the followings list of account uwith username u1 when
the former is not a follower of the latter; consequently, extends the timeline T with mes-
sages (i.e. tweets and retweets) sent by u1. Rule [N-FOLLOW2] is used to let the follow
action pass without affecting the timeline and the following list of u when this account
is already a follower of u1. Rule [N-UNFOLLOW] performs the inverse operations, i.e.
it removes u1 from F and the messages sent by u1 from T . Rule [N-PAR] is used for
allowing the whole network to evolve accordingly. Notably, for the sake of simplicity,
if the argument u1 of actions follow and unfollow does not correspond to an account of
the network, or it is the same account performing such actions, rules [N-FOLLOW] and
[N-UNFOLLOW] cannot be applied and, hence, the actions are blocked. In fact, this kind
of situations cannot take place in Twitter, where only existing accounts can be object of
actions follow and unfollow.

Finally, rule [N-STR] states that structural congruent nets have the same transitions.


	Twitlang(er): interactions modeling language  (and interpreter) for Twitter 

