
There are Two Sides to Every Question

Controller Versus Attacker

Fabio Martinelli(B), Ilaria Matteucci, and Francesco Santini

Istituto di Informatica e Telematica, IIT-CNR, Pisa, Italy
{Fabio.Martinelli,Ilaria.Matteucci,Francesco.Santini}@iit.cnr.it

Abstract. We investigate security enforcement mechanisms that run in
parallel with a system; the aim is to check and modify the run-time
behaviour of a possible attacker in order to guarantee that the sys-
tem satisfies some security policies. We focus on a CSP-like quantitative
process-algebra to model such processes. Weights on actions are mod-
elled with semirings, which represent a parametric structure where to
cast different metrics. The basic tools are represented by a quantitative
logic and a model checking function. First, the behaviour of the system
is removed from the parallel computation with respect to some security
property to be satisfied. Secondly, what remains is refined in two for-
mulas with respect to the given operator executed by a controller. The
result describes what a controller has to do to prevent a given attack.

1 Introduction

Security is frequently in conflict with functional requirements, such as costs,
execution times, and rates, as well as performance requirements of a system,
making 100 % security an impossible or overly expensive goal to be accomplished.
Therefore, the relevant question is not whether a system is secure, but rather
how much security it provides under such “soft” constraints.

In addition, we can use security-oriented metrics, as the vulnerability expo-
sure (the sum of known and unpatched vulnerabilities), the worst case loss (the
maximum money-value of the damage/loss that could be inflicted), the data
transmission exposure (the unencrypted data-transmission volume), or the detec-
tion performance (a measure of the effectiveness of the detection mechanisms
implemented on the system) [8]. Instead of a plain yes/no answer, quantita-
tive levels of security can express different degrees of protection, and allow a
security expert to reason about the trade-off between security and conflicting
requirements. Quantitative security analysis [19] has been already applied, e.g.,
to name a few, for quantifying the side-channel leakage in cryptographic algo-
rithms, for capturing the loss of privacy in statistical data analysis or information
flows, and for quantifying security in anonymity networks.

Concurrent languages (e.g., process algebras) are expressive enough to model
a system, a controller, and an attacker within the same formalism. As a proto-
typical example, in this work we choose Generalised Process Algebra (GPA) [9]

The author is supported by MIUR PRIN 2010XSEMLC “Security Horizons”.

c© Springer International Publishing Switzerland 2015
C. Bodei et al. (Eds.): Degano Festschrift, LNCS 9465, pp. 304–318, 2015.
DOI: 10.1007/978-3-319-25527-9 20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37831575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

There are Two Sides to Every Question 305

featuring a CSP-style synchronisation; actions are weighted over a semiring
algebraic-structure. In a quantitative process, transitions are labelled with some
quantity, denoting a cost or a benefit associated with a step in the behaviour of
a system. Indeed, the main actors on stage are the GPA behaviour-descriptions
of (i) a system S, (ii) a controller C, and (iii) an attacker A, which all run
in parallel and may synchronise on a set of action L ⊆ Act. S represents the
correct behaviour of a (software) system, while A attempts to divert S from the
expected path. A controller is implemented to correct/mitigate a threat against
the system (insertion), suppress the impact of a threat (suppression), or ignore
it (acceptance), i.e., C �K A. These actors are required to follow a plot, defined
in terms of a formula φ in a c-semiring Hennessy-Milner Logic (c-HM) [25].
Such formula specifies the requested behaviour, and its evaluation corresponds
to a semiring value, i.e., the amount of weight needed to follow that behav-
iour. Clearly, the overall cost depends on action-weights of S, C, as well as A,
and, more in particular, on the action performed by C in order to restrain the
behaviour of A (i.e., insertion, suppression, or acceptance).

Our main tool consists of a quantitative partial model-checking function
(QPMC) we use to remove S from the scene, since its performance is not sig-
nificant for our purposes: indeed we want to focus on the other two actors on
the stage. Hence, the specification of S is moved from S‖L(C �K A) to φ, which
becomes φ′ consequently to the application of the QPMC function to φ with
respect to S. The next and final step is the application of QPMC to refine φ′ in
a binary c-semiring Hennessy-Milner formula (c-HM 2) whose modalities repre-
sent the couple of action a1 and a2 that respectively represent the reaction of C
and A: if A plays a2, then C plays a1.

In this way, we are able to identify the requested property φ on the shoulders
of C and A, knowing exactly what C has to do for a given A. This corresponds
to an amount t of weight demanded to satisfy φ: if t is the requested level of
time-delay on the execution of S, when A introduces a delay then C has to react
to A by performing some action with the aim to maintain t. “Does C exist or
not exist? That is the question”. Therefore, in this paper we find an answer to
∃C ∀A S‖L(C �K A) |=t φ.

The main basic ideas behind this work are an advancement of what is pro-
posed in [25], where, among other results, we propose a unidimensional c-HM
logic and a similar QPMC function. The paper is organised as a five-act drama,
following the Freytag’s structure-pyramid.1 Section 2 is our exposition: we intro-
duce the necessary preliminary notions at the heart of our approach, i.e., semi-
rings, GPA, and definitions for quantitative control-rules, and the related work.
Then, Sect. 3 is the rising action part; it builds toward the point of greatest
interest, an approach to security of the presented ingredients. Afterwards, we
reach the climax in Sect. 4: there we show how to apply the QPMC function on
control-rules. During the falling action (Sect. 5) we provide an example of our
approach on the Chinese Wall policy, while Sect. 6 presents a dénouement, i.e.,
a resolution of the plot (conclusions and future work).

1 Freytag, Gustav. Die Technik des Dramas. Hirzel, 1872.

306 F. Martinelli et al.

2 Setting up the Scene

We start this section by introducing the algebraic formalism we adopt to repre-
sent quantitative metrics on which we evaluate countermeasures’ behaviour in
the following of the paper.

2.1 Semiring

Definition 1 (c-semiring [6]). A c-semiring is a five-tuple K = 〈K,+,×,0,1〉
such that K is a set, 1,0 ∈ K, and +,× : K × K → K are binary operators
making the triples 〈K,+,0〉 and 〈K,×,1〉 commutative monoids (semigroups
with identity), satisfying (i) (distributivity) ∀a, b, c ∈ K.a×(b+c) = (a×b)+(a×
c), (ii) (annihilator) ∀a ∈ A.a×0 = 0, and (iii) (top element) ∀a ∈ K.a+1 = 1.

The idempotency of + leads to the definition of a partial ordering ≤K over
the set K (K is a poset). Such partial order is defined as a ≤K b if and only if
a+b = b, and + becomes the least upper bound (lub) of the lattice 〈K,≤K〉. This
intuitively means that b is “better” than a. As a consequence, we can use + as
an optimisation operator that always chooses the best available solution. Other
properties can be derived on c-semirings [6]: (i) both + and × are monotone
over ≤K , (ii) × is intensive (i.e., a × b ≤K a), and (iii) 〈K,≤K〉 is a complete
lattice where 0 and 1 are its bottom and top elements, respectively.

Some examples of semiring instantiation are: boolean 〈{F ,T},∨, ∧,F ,T 〉
fuzzy 〈[0, 1], max,min, 0, 1〉, bottleneck 〈R+ ∪ {+∞},max, min, 0,∞〉, proba-
bilistic 〈[0, 1], max, ×̂, 0, 1〉 (known as the Viterbi semiring), weighted 〈R+ ∪
{+∞},min, +̂,+∞, 0〉. Capped operators stand for their arithmetic equivalent.

2.2 Quantitative Controller Operator

A controlling strategy [12] is a run-time execution trace of a controller C that
follows the behaviour of a target A. The resulting behaviour is denoted by C�KA,
where K is the semiring used for specifying quantities on each executed action so
that it is possible to quantitatively estimate the contribution of the countermea-
sures in the system workflow. Indeed, injecting a controller in a possible point of
failure may increase, e.g., the cost of the system, especially when it is activated
to react to an attack.

Generalized Process Algebra. In this paper we model both a controller
and a target as GPA processes [9]. GPA, i.e., Generalized Process Algebra, is a
quantitative process algebra, whose transitions are labelled by pairs (a, k) where
k is a quantity of a semiring associated to an action a.

Definition 2. The set L of agents, or processes, in GPA over a countable set
of transition labels Act and a semiring K is defined by the grammar

P :: = 0 | (a, k).P | P + P | P‖L P | X

There are Two Sides to Every Question 307

where a ∈ Act, k ∈ K, L ⊆ Act, and X belongs to a countable set of process
variables, coming from a system of co-recursive equations of the form X � P .
We write GPAK for the set of GPA processes labelled with weights in K.

In order to give the flavour of the meaning of GPA operators, we informally
describe their semantics:2 process 0 describes inaction or termination; (a, k).P
performs action a with weight k, and then it evolves into P ; P + P ′ non-
deterministically behaves as either P or P ′; P‖L P ′ describes the process in
which P and P ′ proceed concurrently and independently on all the actions that
are not in L. On the other hand, all the actions in L are synchronisation points,
meaning that the computation advances if and only if both P and P ′ perform
the same action in L at the same time. X � P allows to associate the behaviour
of a process P (body) with a process variable name X (identifier).

Semantics Definitions for Quantitative Control-Rules. To denote con-
troller and (its) target processes, hereafter we will use C and A respectively. The
alphabets of C, A, and of the resulting process C �K A are different. C may per-
form control actions of the form a, �a, �a.b for a, b ∈ Act, denoting respectively
the actions of acceptance, suppression, and insertion, which regulate the actions
of A. The resulting process C �K A may perform internal actions, denoted by τ ,
as a consequence of suppression. Each action of C, A, and C �K A is associated
with a value of a semiring K, i.e., (a, k), where k ∈ K is a quantity associated
with this action a.

Table 1. Semantics definitions for quantitative control-rules.

C
a,k→ C′ A

a,k′
→ A′

C �K A
a,k×k′

→ C′ �K A′
(A) C

�a,k→ C′ A
a,k′
→ A′

C �K A
τ,k×k′

→ C′ �K A′
(S) C

�a.b,k→ C′ A
a,k′
→ A′

C �K A
b,k→ C′ �K A

(I)

C follows the execution trace of A step by step, and it reacts to each step
of the target according to one of the rules in Table 1. Note that, neither the
controller nor the target performs τ actions independently.

The acceptance rule (A) in Table 1 constrains a controller and a target to
perform the same action, in order for it to be observed in the resulting behaviour.
In particular, if A performs an action a with a weight k′, and the same action is
performed by C with a weight k (so it is allowed on the system), then E �K F
performs a with an observed value that is the × of those of the controller and
target, i.e., k × k′.

The suppression rule allows C to hide an action a, but it counts its weight
because it has been executed by A anyway. Hence, the suppression rule (S) in
Table 1 allows the controller to hide target actions by performing a control action
�a with a measure k. The target wants to perform an action a with a weight k′,
but the action is not performed by the controlled entity and the observed result
2 The interested reader can find the formal semantics of GPA processes defined in [9].

308 F. Martinelli et al.

is a τ action, with the value computed as the product k × k′ of the suppressing
and the target actions. Then C �K A performs an action τ that suppresses action
a, i.e., a becomes invisible from external observation.

Finally, the insertion rule (I) in Table 1 describes the capability of correct-
ing some undesirable behaviour of a target A: it inserts another action in A’s
execution trace by performing a control action �a followed by an action b. The
insertion cost corresponds to the value of C only, i.e., k; this accounts for the
fact that A does not perform any action, but it rather stays in its current state.

2.3 Related Work

There is a significant bulk of work devoted to the enforcement of security mech-
anisms, e.g., [18,23,29]. As foremost examples (due to similarities with respect
to this work) we recall security automata [29], designed to prevent bad execu-
tions, and edit automata [4], which are able to edit their input sequences by
suppressing, inserting, or replacing observed actions. One can also use concur-
rent languages (e.g., process algebras), to model both the target and the control
system in the same formalism [17,23,26].

As a prototypical example, we choose GPA process algebra [9], featuring a
CSP-style synchronisation with actions weighted over a semiring. We add to it
control-operators in the style of edit automata, in order to study enforcement
strategies from the quantitative standpoint. Compared to the existing literature,
our work identifies an abstract approach to quantitative and multi-dimensional
aspects of security. The quest for a unifying formalism is witnessed by the sig-
nificant amount of inhomogeneous work in quantitative notions of security and
enforcement. The problem of finding an optimal control strategy is considered by
Easwaran et al. in [16] in the context of software monitoring, taking into account
rewards and penalties. In [27], the optimal policy can be derived by solving the
optimisation problem of a Markov Decision Process. Bielova and Massacci pro-
pose in [5] a notion of edit distance among traces, which extends to an ordering
over controllers. In [14], a notion of cost similar to the one we propose is used to
compare several enforcement mechanisms that are correct (in the boolean sense).
In this work, we follow some intuitive leads from [24] to move from qualitative
to quantitative enforcement, and generalise that idea by using semirings. In [15]
the possibility that the controller allows some policy violations is quantified over
traces for non-safety policies, where a controller cannot be both correct and fully
transparent. In [10], the authors use a notion of lazy controllers, which are able
to check the security of a system at some point in time, proposing a probabilis-
tic quantification of the expected risk. In the context of access control, Molloy
et al. [28] use a machine-learning approach to predict a decision for a given
request, and, at the same time, to balance the risk of error against the cost of
contacting the real mechanism to get a decision. Non-binary measures of security
have also been considered for access-control systems, e.g., in [11,30].

In [13], Degano et al. propose a formal framework to specify and enforce
quantitative security policies. The framework consists of (i) a stochastic process

There are Two Sides to Every Question 309

calculus to express the measurable space of computations in terms of Contin-
uous Time Markov Chains; (ii) a stochastic modal logic (a variant of CSL) to
represent the bound constraints on execution speed; (iii) potential or actual
enforcement mechanisms of quantitative security policies. The potential enforce-
ment computes the probability of policy violations, thus supporting the user
to accept/discard a component when the probability of security violation is
below/above a suitable chosen threshold. The actual enforcement computes
instead the deviation of execution speed from an acceptable rate.

In [7] the authors take advantage of an operational semantics with the aim
to predict quantitative measures on systems describing cryptographic protocols.
Moreover, they also introduce a possible attacker in the model. The transitions
of the system carry enhanced labels: rates are assigned to transitions by only
looking at these labels. Finally, transition systems are mapped to Markov chains
and an evaluation of system performance is obtained by using standard tools.

In [2] the authors investigate usage automata, a formal model for specifying
policies on the usage of resources. Usage automata extend finite state automata
with some additional features, parameters and guards, that improve their expres-
sivity. The authors check the decidability if a given computation complies with
a usage policy.

3 Quantitative Security Approach

In the literature on qualitative enforcement of secure systems, several approaches
have been developed, as we have recalled in Sect. 2.3. A possible approach for
the specification, analysis, and synthesis of secure systems is based on the open
system paradigm [22], where the considered system and a possible malicious
agent interacting with it are represented as two processes that work in parallel.

The same approach can be used when we pass from a qualitative to a quan-
titative analysis of such system S. The unspecified part of S is a component
whose behaviour is not known a priori, and we want S to be quantitatively
secure, whatever the behaviour of such unspecified components is. A is the pos-
sible attacker whose behaviour is a priori unknown; L ⊆ Act is the set of possible
synchronisation actions; thus S‖LA is the overall (partially specified) system, on
which we require that:

∀A S‖LA |=t φ.

φ is a logic formula expressing some behavioural requirements, such as secu-
rity requirements as well as performance or cost constraints (i.e., non-functional
requirements), and t denotes a required level of satisfaction: the evaluation of φ
with respect to S‖LA has to be equal to t. Formally,

Definition 3 (|=k). A process P satisfies a c-HM formula φ with a threshold-
value t, i.e., P |=t φ, if and only if the interpretation of φ on P is equal to t.
Formally: P |=t φ ⇔ t = �φ�P .

Even if it is not always possible to check all different behaviours of component
A, nevertheless it is possible to define distinct countermeasures that follow the

310 F. Martinelli et al.

rules of the controller operator �K defined in Table 1. These countermeasures are
specified as execution traces of a controller process denoted by C. They guarantee
the system to properly work by forcing the desired behaviour of unspecified
components, in such a way that the system satisfies φ according to a predefined
value t. Hence, the question here is if there exists an implementation that, by
monitoring the behaviour of an unspecified component A, guarantees S to satisfy
the required security property with a certain value t:

∃C ∀A S‖L(C �K A) |=t φ

First of all we apply a QPMC function inspired from the work in [25], with
the purpose to evaluate φ with respect to the behaviour of S. In this way we
obtain a new formula φ′ = φ//S

and we only have to monitor the attacker’s
behaviour A. φ′ represents the necessary and sufficient conditions that C �K A
has to satisfy in order to guarantee the security of S. Indeed, the problem we
have to solve reduces to the following one:

∃C ∀A (C �K A) |=t φ′ (1)

It is worth noting that we neither know the behaviour of the controller process
C, nor the one of attacker A. The only information we have is the semantics rules
of the controller operator �K. Based on that, we have developed a quantitative
partial model checking function able to refine the formula φ′ ∈ c-HM into a
binary formula φ′′ ∈ c-HM2 able to specify the set of quantitative controller
execution traces for any attacker execution trace. The basic idea is that, know-
ing the possible reaction rules that drive the behaviour of a controller and the
quantitative security requirements that S has to satisfy, it is possible to find
the necessary and sufficient condition both the controller and the target has to
quantitatively satisfy in order to assure the system security. Indeed, we consider
both the controller and the target behaviours as unknown.

To this aim, we propose a variant of a quantitative Hennessy-Milner logic, the
c-HM logic firstly proposed in [25]; thus, we can specify a property on couples of
actions, extending it to c-HM2 (see Sect. 3.1). Afterwards, we define a different
version of the QPMC function [25], allowing us to refine a formula φ′ with
respect to the semantics definition of the controller operator (see Sect. 4). This
refinement allows us to write each action of the execution trace of the controlled
process as a couple of actions, respectively representing the weight contribution
to that action of both the controller and the target.

3.1 Binary C-Semiring Hennessy-Milner Logic (c-HM2)

We start by assembling the transition system on which c-HM2 is defined:

Definition 4 (MLTS). A (finite) Multi-Labelled Transition-System (MLTS) is
a five-tuple MLTS = (S,Act2,K, T, s0), where S is the countable (finite) state-
space, s0 ∈ S is the initial state, Act2 is a finite set of transition labels, where
each label is a couple of labels in Act, i.e., the label 〈a1, a2〉 ∈ Act2 and a1, a2 ∈ L.

There are Two Sides to Every Question 311

K is a semiring used for the definition of transition weights, and T : (S ×Act2 ×
S) −→ K is the transition weight-function.

Definition 5 syntactically defines the correct formulas given over an MLTS.

Definition 5 (Syntax). Given an MLTS M = 〈S, Act2,K, T, s0〉, and let ã ∈
Act2, the syntax of a formula φ ∈ ΦM is as follows, where k ∈ K:

φ:: = k | φ1 = φ2 | φ1 + φ2 | φ1 × φ2 | φ1 � φ2 | 〈ã〉φ | [ã]φ

The semiring operators +, � (the glb), and × are used in place of classical
logic operators ∨ and ∧, in order to compose the truth values of two formulas
together. Truth values are all the k ∈ K. In particular, while false corresponds
to 0, we can have different degrees of true, where “full truth” is 1. As a reminder,
when the × operator is idempotent, then × and � coincide (Sect. 2.1). Moreover
we can use = to compare the evaluation of two formulas: the result is 1 if
they are both evaluated to the same k ∈ K, 0 otherwise (i.e., it corresponds
to ⇔ in boolean logic).3 Finally, we have the two classical modal operators,
i.e., “possibly” (〈·〉), and “necessarily” ([·]).

Table 2. Semantics of c-HM2.
∑

(∅) = 0 and �(∅) = 1.

The semantics of a formula φ is given on a finite MLTS M =
〈S,Act2,K, T, s0〉, where the set of states S corresponds to the set of finite
GPA processes. The purpose is to check the specification defined by φ over
the behaviour of a couple of GPA processes. The semantics of a formula,
� �M : (ΦM × S) −→ K (see Table 2), computes a semiring value associated
with a formula in a given state s ∈ S of an MLTS M .

In Table 2 and in the following (when clear from the context), we omit M
from � �M for the sake of readability. It is worth noting that, due to the expressive

3 We can think of further operators between formulas, e.g., {=, ≥, ≈ε}.

312 F. Martinelli et al.

power of c-HM2, we deal with safety properties, e.g., properties expressing that,
if something goes wrong, then it can be detected in a finite number of steps.

Note that, the notion of satisfiability given in Definition 3 holds also for a c-
HM2 formula φ on a binary MLTS M = 〈S,Act2,K, T, s0〉. A binary MLTS may
also represent a couple of processes composed as an independent combination of
two processes P1 and P2, hereafter denoted as (P1, P2).

Definition 6 (Binary Process). Let P1 and P2 be two GPA processes. A
binary process (P1, P2) ∈ GPA×GPA is the juxtaposition of two processes and
it is fully characterised by the following rule:

P1
(a,h)−−−→ P ′

1 P2
(b,s)−−−→ P ′

2

(P1, P2)
((a,b),h×s)−−−−−−−→ (P ′

1, P
′
2)

Note that, the semantic interpretation of a binary process is given through a
binary MLTS. In particular, according to the definition of binary transition func-
tion, the set of states of a binary process is the union of the two sets of states of
both the processes. In this way, either both processes perform an action being
in the same state or, they are asynchronous processes, i.e., both component P1

and P2 contribute in the transition of the combined process (P1, P2), even when
one of the two performs the 0 action.

4 Quantitative Partial Model Checking for Controller
Operator

In order to solve the problem in Eq. 1, we define a QPMC function with the
purpose to evaluate φ′ ∈ c-HM with respect to the application of controller
rules, i.e., to controller strategies. As a remainder, φ′ is obtained from the initial
φ by removing S from the parallel computation, and “adding” it to φ (φ′ = φ//S

,
see Sect. 3). Our goal in this section is to obtain a refinement of φ′, i.e., φ′′ ∈
c-HM2, which also depends on �K.

The QPMC function we use to achieve such goal is defined in Table 3. Being
the logic closed with respect to the QPMC function, the interpretation of the
formulas obtained through the application of the function is straightforward.
Theorem 1 proposes a result similar to the one in [1].

Theorem 1. Let C and A two processes in GPA such that C �K A ∈ GPA and
(C,A) is a binary process in GPA × GPA, K a totally ordered c-semiring with
k ∈ K, as well as φ′ a c-HM formula and φ′′ = W(C �K A,φ) a c-HM2 formula,
the following holds:

�φ′�(C�KA) = �φ′′�(C,A)

Due to this result, the problem in Eq. 1 can be simplified as follows:

∃C ∀A (C,A) |=t W(C �K A,φ′) (2)

There are Two Sides to Every Question 313

where W(C �K A,φ′) is a c-HM2 formula that describes, in a unique way for
each action of the process A, that the reaction of a controller C guarantees the
quantitative satisfaction of the initial system’s requirements. Hence, it is worth
observing that a security controller needs to make a decision in order to select
the best reaction (if any). This decision is supported by the quantitative value
associated to each reaction. However, in general, the decision for a single action
can change according to the actions previously executed by A. For instance, in
the Chinese Wall policy (see an example in Sect. 5), a user can a priori access to
a resource from any company, unless in the past she has accessed to a resource
from another company in the same conflict-of-interest class.

Moreover, dealing with quantitative aspects, it is important to distinguish
between the decision process, i.e., C, and the actual implementation of the con-
trolled process, i.e., C �K A. Indeed, it is possible to specify the best editing
strategy by associating particular costs with actions. For instance, by setting
the acceptance cost to a minimum, we showed that it is always the best strat-
egy to accept a correct action. Similarly, by associating an infinite cost with the
suppression of a particular action, we can model the concept of uncontrollable
action [3], that is, an action that has to be accepted, such as the tick of a clock.

Table 3. A QPMC function (i.e., W) for quantitative controller operator �K.

314 F. Martinelli et al.

5 A Simple Example

To exemplify our approach, let us consider a very simple example. For sake of
simplicity, we omit the system S: the goal is to show how the QPMC function
works with respect to controller operations. To do this, let us now consider
a well-known access-control policy for distributed systems: the Chinese Wall
policy.

To evaluate the security level of C �K A, each action is weighted with a semi-
ring value expressing a security-evaluation score for that action. Security, trust,
functionality, and performance can be represented by different semirings. In this
section, we use weights from S = 〈{i, l,m, g, e}, max,min, i, e〉, where the chain
insecure ≤ low ≤ medium ≤ good ≤ excellent models a set of security levels.
When we compose two levels together we choose the worst, while preference goes
to the higher level.

Given two sets of resources (e.g., files or data) V and W , such policy states
that one can choose to access either to V or to W , but if an access to V is
performed (setting the security level of access to V to e) then it is no more
possible to access to W ; consequently, the access to W has security level i.
Clearly, this also holds vice-versa, i.e., if we open an element x of W then we can
not access to any element in V . Note that, in this example, the required security
level to access to set W , i.e., l, is less than the required security level to access
to V , that is e. The reason is that V collects more sensitive information. The
Chinese Wall policy is expressed by a formula φ = φ1 + φ2 where

φ1 = [access V]e × [access W]i φ2 = [access W]l × [access V]i.

In this example, we consider an insertion controller �S, and we require C �S A to
satisfy the Chinese Wall policy with a security equal to g.

By using the QPMC function with respect to the controller operator �S, we
have that:

C �S A |=g φ ⇔ (C,A) |=g φ′

where φ′ = W(C �S A,φ) = φ′
1 + φ′

2, and

φ′
1 = W(C �S A,φ1) = (k(access V,access V)

access V × [(access V, access V)]e)
� (k(�access W.access V,access W)

access V

× [(�access W.access V, access W)]e)
× (k(access W,access W)

access W × [(access W, access W)]i)
� (k(�access V.access W,access V)

access W

× [(�access V.access W, access V)]i)
φ′
2 = W(C �S A,φ2) = (k(access W,access W)

access W × [(access W, access W)]l)
� (k(�access V.access W,access V)

access W

× [(�access V.access W, access V)]l)
× (k(access V,access V)

access V × [(access V, access V)]i)
� (k(�access W.access V,access W)

access V

× [(�access W.access V, access W)]i)

There are Two Sides to Every Question 315

According to Theorem 1, to verify if C�SA quantitatively satisfies the Chinese
Wall policy with a security level g, it is necessary and sufficient to evaluate φ′

with respect the binary process (C,A). A priori we do not know the behaviour
of A, however, due to the quantitative nature of the proposed framework, we
can infer some constraints on the controller process C, which help the synthesis
of the best controller, if it exists.

As a remainder, the weight of an accepted action is equal to the product (i.e.,
×) of the weights of both the actions respectively performed by C and A, while
the weight of an inserted action is equal only to the weight associated with the
action of C. This leads to the following considerations:

– If the attacker does not perform the correct action, e.g., it tries to access
to W after accessing to V (or vice versa), the controller C may insert the
correct action access V with an appropriate security level, e.g., better than
g. In this way, the controller assures that the Chinese Wall policy is satisfied
with the required security level g.

– If the attacker performs the correct action, but with a security level worse
than the required one, e.g., g in the example, the controller, accepting the
correct action, does not increase the level of security. Thus, the Chinese Wall
policy is not satisfied because the required security level is not respected.
This is the case in which both C and A perform a valid sequence of actions,
e.g., one access V each, but the level of one of these actions is worse than
g. In this case, the controller guarantees that the Chinese Wall Policy is
not violated by not changing the security level of the attacker actions, and
accepting the correct action. However, also in this case as well as in the
previous one, C can insert the correct action with the correct security level
in such a way to not halt the execution and, at the same time, guarantee
the satisfaction of φ. It is worth noting that, another possible scenario may
happen when an agent A try to access to W with a security level l. This
does not violate the requirement imposed by φ, but it violates the satisfac-
tion requirements, because l is worse than g. Also in this case, C can fix
the execution trace by inserting the correct action with a more appropriate
security level.

6 Conclusion

We have presented a verification framework to study quantitative properties
associated with a formula φ, i.e., properties with an associated weight. Such a
value is interpreted as how costly the verification of a property is. The conun-
drum has consisted in investigating controller-agents C accepting, suppressing,
or inserting actions in the behaviour of an attacker A, while considering the
correct functioning of a system S. The question we have address in this paper
is ∃C ∀A S‖(C �K A) |=t φ. As in Sect. 1, we again come across a triangled
structure: the drama triangle4 is a psychological and social model of human
4 First described by Stephen Karpman, M.D., in his 1968 article “Fairy Tales and
Script Drama Analysis”.

316 F. Martinelli et al.

interaction used in psychology and psychotherapy. At its vertices we find the
Victim (S), the Persecutor (A), and the Rescuer (C). With the aid of a QPMC
function we remove S from the global parallel computation (moving it into φ),
and we refine φ′ investigating the duties of C and A in order to satisfy φ: such
approach helps us to better understand C and A separately.

In the future we plan to extend this work in several ways. For instance, we
plan to have a multidimensional decomposition of properties, instead of a bi-
dimensional one as in this paper: we would like to follow the pioneering proposal
in [20], thus decomposing quantitative properties satisfied by an n-ary context
into n local quantitative constraints, each of them satisfied by a unary (quanti-
tative) context. Each context represents a different component of a distributed
system. In such a way, we can improve the approach by taking into account fully-
distributed systems with multiple components and attackers. Another direction
is the extension of the framework to use more than one measure in order to eval-
uate a context. Such measures can be combined and ordered, e.g., by using the
lexicographical ordering, in such a way that controlling strategies can be selected
with respect to the optimisation of the trade-off between some of them. Finally,
we would like to manage infinite contexts by extending our logic to deal with
fix-points; to achieve this goal, suggestions could come from the work in [21].

References

1. Andersen, H.R.: Partial model checking. In: LICS 1995, p. 398. IEEE Computer
Society (1995)

2. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
Math. Struct. Comput. Sci. 25(3), 710–763 (2015)

3. Klaedtke, F., Zălinescu, E., Jugé, V., Basin, D.: Enforceable security policies revis-
ited. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS,
vol. 7215, pp. 309–328. Springer, Heidelberg (2012)

4. Bauer, L., Ligatti, J., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1–2), 2–16 (2005)

5. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú.,
Zannone, N., Wieringa, R. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer,
Heidelberg (2011)

6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

7. Bodei, C., Curti, M., Degano, P., Priami, C.: A quantitative study of two attacks.
Electr. Notes Theor. Comput. Sci. 121, 65–85 (2005)

8. McQueen, M., Boyer, W.: Ideal based cyber security technical metrics for control
systems. In: Hämmerli, B.M., Lopez, J. (eds.) CRITIS 2007. LNCS, vol. 5141, pp.
246–260. Springer, Heidelberg (2008)

9. Buchholz, P., Kemper, P.: Quantifying the dynamic behavior of process algebras.
In: Gilmore, S., de Luca, L. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and
PAPM 2001. LNCS, vol. 2165, p. 184. Springer, Heidelberg (2001)

10. Caravagna, G., Costa, G., Pardini, G.: Lazy security controllers. In: Samarati, P.,
Petrocchi, M., Jøsang, A. (eds.) STM 2012. LNCS, vol. 7783, pp. 33–48. Springer,
Heidelberg (2013)

There are Two Sides to Every Question 317

11. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: an experiment on quantified risk-adaptive access control.
In: Proceedings of the 2007 IEEE S&P, pp. 222–230. IEEE Computer Society
(2007)

12. Ciancia, V., Martinelli, F., Ilaria, M., Morisset, C.: Quantitative evaluation of
enforcement strategies (position paper). In: Danger, J.-L., Debbabi, M., Marion,
J.-Y., Garcia-Alfaro, J., Heywood, N.Z. (eds.) FPS 2013. LNCS, vol. 8352, pp.
178–186. Springer, Heidelberg (2014)

13. Degano, P., Mezzetti, G., Ferrari, G.-L.: On quantitative security policies. In:
Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 23–39. Springer, Heidelberg
(2011)

14. Drábik, P., Martinelli, F., Morisset, C.: Cost-aware runtime enforcement of security
policies. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol.
7783, pp. 1–16. Springer, Heidelberg (2013)

15. Drábik, P., Martinelli, F., Morisset, C.: A quantitative approach for inexact enforce-
ment of security policies. In: Freiling, F.C., Gollmann, D. (eds.) ISC 2012. LNCS,
vol. 7483, pp. 306–321. Springer, Heidelberg (2012)

16. Easwaran, A., Kannan, S., Lee, I.: Optimal control of software ensuring safety and
functionality. Tech. Rep. MS-CIS-05-20, University of Pennsylvania (2005)

17. Gay, R., Mantel, H., Sprick, B.: Service automata. In: Barthe, G., Datta, A., Etalle,
S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 148–163. Springer, Heidelberg (2012)

18. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime moni-
tors? a survey. Computer Science Review 6(1), 27–45 (2012)

19. Köpf, B., Malacaria, P., Palamidessi, C.: Quantitative security analysis (Dagstuhl
seminar 12481). Dagstuhl Reports 2(11), 135–154 (2013)

20. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of
contexts. J. Logic Comput. 1(6), 761–795 (1991)

21. Lluch-Lafuente, A., Montanari, U.: Quantitative mu-calculus and CTL defined over
constraint semirings. TCS 346(1), 135–160 (2005)

22. Martinelli, F.: Analysis of security protocols as open systems. TCS 290(1),
1057–1106 (2003)

23. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata.
ENTCS 179, 31–46 (2007)

24. Martinelli, F., Matteucci, I., Morisset, C.: From qualitative to quantitative enforce-
ment of security policy. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012.
LNCS, vol. 7531, pp. 22–35. Springer, Heidelberg (2012)

25. Martinelli, F., Matteucci, I., Santini, F.: Quantitative security on distributed sys-
tems. In: EPTCS (ed.) Proceedings of the 13th International Workshop on Quan-
titative Aspects of Programming Languages and Systems (QAPL 2015) (2015)
(accepted for publication)

26. Martinelli, F., Matteucci, I.: Partial model checking, process algebra operators and
satisfiability procedures for (automatically) enforcing security properties. Tech.
rep, IIT-CNR (2005)

27. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of CODASPY 2012, pp. 169–180. ACM
(2012)

28. Molloy, I., Dickens, L., Morisset, C., Cheng, P.C., Lobo, J., Russo, A.: Risk-based
security decisions under uncertainty. In: Proceedings of the second ACM Confer-
ence on Data and Application Security and Privacy, CODASPY 2012, pp. 157–168.
ACM (2012)

318 F. Martinelli et al.

29. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

30. Zhang, L., Brodsky, A., Jajodia, S.: Toward Information Sharing: Benefit And Risk
Access Control (BARAC). In: Proceedings of POLICY 2006, pp. 45–53 (2006)

	There are Two Sides to Every Question
	1 Introduction
	2 Setting up the Scene
	2.1 Semiring
	2.2 Quantitative Controller Operator
	2.3 Related Work

	3 Quantitative Security Approach
	3.1 Binary C-Semiring Hennessy-Milner Logic (c-HM2)

	4 Quantitative Partial Model Checking for Controller Operator
	5 A Simple Example
	6 Conclusion
	References

