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Abstract: Independent component analysis (ICA) 
has been widely used to remove artefacts from 
multichannel biomedical signal acquisitions under 
the hypothesis that there is statistical independence 
among the original sources. However, the basic ICA 
model does not take into account the influence on the 
mixing process of the different paths from the signal 
sources to the sensors In this study we propose a 
convolutive mixtures model in order to overcome the 
limitations of the basic ICA approach. The 
independent components are estimated in the 
frequency domain, where the convolutive model can 
be solved through an instantaneous mixing model. 
The signals are reconstructed back to the 
observation space resolving the ICA model 
ambiguities. Simulations are carried out to optimize 
of the proposed method for convolutive mixtures of 
electrocardiographic (ECG) and motion artefacts 
signals. The algorithm is tested on real ECG signals 
acquired by wearable systems in order to preserve 
the QRS complex when the signals are degraded by 
real life conditions of acquisition. 

 
Introduction 

 
Wearable textile systems are designed to monitor, in 

real life environments, vital signals like 
electrocardiogram (ECG), electromyogram (EMG), 
breath patterns. In these systems conductive and 
piezoresistive materials, in form of fiber and yarn, are 
used to realize clothes where knitted fabric sensors and 
electrodes are distributed and connected to an electronic 
portable unit.  

The acquired signals can be corrupted by several 
kinds of artefacts, like contaminations in the ECG 
caused by myoelectric or respiratory activity. Other 
artefacts can be caused by a displacement of the 
electrodes integrated in the textile garment during 
subject movements. These motion artefacts produce 
base line drifts which may cause the loss of the main 
features, like QRS complex or S and T waves. 

Several methods can be applied to remove artefacts 
in biopotential recordings from wearable systems: the 

most known are linear and nonlinear filtering techniques 
[1,2] adaptive signal processing [3], and wavelets based 
methods [4]. 

Other techniques take advantage of multichannel 
data acquisitions, since both artefacts and signals of 
interest show common features in different channels. 
Thus we can suppose that signals available at the 
sensors are a mixture of several components belonging 
to different physiological phenomena and try to 
decompose these observations into components that can 
be classified either as ‘signal of interest’ or as ‘signal of 
no interest’ for each detected channel. This is what blind 
source separation methods carry out, assuming that 
neither the source signals nor the mixing processes are 
known. In order to estimate the source signals, several 
hypothesis can be made. Principal Component Analysis 
(PCA) for example looks at linearly independent 
components, while Independent Component Analysis 
(ICA) [5, 6] hypothesize the statistical independence 
among the original sources. This statement implies that 
components belonging to different physiological 
phenomena can be extracted from the signals detected 
by the sensors, even though they overlap in time and 
frequency.  

The standard ICA model assumes an instantaneous 
mixing process, but this approach seems to be 
inadequate to account for the different paths from the 
signal sources to the sensors. Moreover, an 
instantaneous mixing process may fail to model the 
effects at the sensors of the spatio-temporal dynamics of 
some signals, as Anemuller [7] hypothesized for EEG 
data. For this reason we propose a method to remove 
artefacts using blind separation of convolutive mixtures 
by means of ICA and we choose to solve this problem 
in the frequency domain [8, 9]. 

In this work we hypothesize that the signals 
generated by the electrical activity of the myocardial 
muscle, measured by the ECG signal, are filtered by a 
transfer function that depends on the distance and on the 
tissues interposed between the sources and the 
electrodes. 
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 The effect of this model may cause a delay between 
common features in the signals measured at different 
locations. To support this hypothesis we estimate the 
time delay between three different ECG leads 
recordings using a method based on the Hilbert 
transform and discrete Fourier transform: this method 
was employed by Saad et al. [10] in order to highlight 
time shift between fMRI time series. 

Then convolutive mixtures of an ECG signal and a 
manually generated motion artefact is simulated. The 
relevant decomposition process is performed and the 
parameters of the algorithm studied by a performance 
index is calculated.  

The proposed algorithm for convolutive mixtures 
separation is tested also on real ECG acquired by the 
wearable system developed by Smartex S.r.l [11, 12], 
partner in MyHeart IST-2002-507816 project and 
Wealthy IST-2001-37778 project. During the 
acquisition, the subject is asked to cause intentionally 
displacements of the electrodes in order to produce ECG 
signals affected by motion artefacts on which apply our 
method. The aim is to separate the ECG complex 
component and reconstruct it in the observe channels in 
order to produce recordings in which at least the QRS 
complex is well detectable for further processing, like 
heart rate variability estimation. 

 
Material and Methods 

 
The basic or instantaneous ICA model assumes that 

a set of n measurements x(t)=(x1(t),x2(t),…,xn(t))T is 
originated by a linear mixing process of some latent 
sources s(t)=(s1(t),s2(t),…,sm(t))T. Only the observed 
data x(t) are available while neither the sources nor the 
mixing process are known. The problem consists in 
finding an unmixing matrix W, so that y(t)=Wx(t) is an 
estimate of the original sources that are supposed to be 
statistically independent. In the following we will 
assume the number of sources equals the number of 
acquired signals, thus n=m. 

If we assume that no time delay is involved in the 
mixing process, we can drop the time index and rewrite 
the instantaneous model in matrix notation as 

 
Asx =  (1) 

 
In some applications this assumption may be too 

strong since the paths of the signals to each sensor may 
be different and the finite propagation speed in the 
medium may generate different time delays.  

In order to highlight this time delay for bioelectrical 
signals, we made use of an efficient Hilbert Transform 
algorithm, employed by Saad to estimate the fMRI 
response delays [9]. This technique evaluates the delay 
between two time series by computing their cross 
correlation function and the relevant Hilbert transform, 
whose zero crossing gives an estimation of the delay. 

In fact, for a time series, )(1 tx , and its time shifted 
version, )()(2 tttx ∆−= , the time delay t∆  can be 
evaluated by determining the maximum of their cross-

correlation function ( ) ( ) ( )[ ]ττ += txtxER xx 2121
, which is 

presumably located at t∆=τ . However, as we are 
dealing with discrete time signals, the time series are 
discrete series defined only at integers multiples of the 
sampling period. Thus the real maximum of the function 

( )τ
21xxR  may be located between two samples. 

For this reason we prefer to use the analytic function 
( ) ( ) ( )[ ]τττ

212121 xxxxxx RjHRZ += , where ( )[ ]τ
21xxRH  is 

the Hilbert transform of the cross-correlation function 
exploiting the property that when τ equals t∆ , the 
envelope of 

21xxZ  is equal to 
21xxR and [ ]

21xxRH  is null. 
Looking for the maximum of the cross-correlation 
function means looking for its Hilbert Transform zero 
crossing, that can be estimated more precisely by higher 
order interpolation. 

These concepts can be applied to the ECG signals in 
order to compare different leads registrations acquired 
simultaneously and verify the presence of a time delay 
between them. All the procedure is based on the 
hypothesis that the time structure of the signal 
(especially the QRS complex) remains approximately 
the same in different leads. 

To take into account the underlying time delays, our 
ICA generative model of observed signals, seen in 
equation (1), can be modified by introducing a 
convolution operator in the mixing process  
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The element of the mixing matrix A become finite 

impulse response (FIR) filters. 
The problem can be solved in the time domain by 

using natural gradient methods or as ordinary ICA, but 
these techniques take many iterations and much time to 
converge. Hence we decided to follow another approach 
which is called frequency-domain blind source 
separation [8, 9] exploiting the property that, since a 
convolution in the time domain can be expressed as a 
product in the frequency domain, the convolutive 
mixtures model can be transformed into an 
instantaneous linear mixing ICA model within each 
distinct frequency bin in which the spectral band is split. 
A Short Time Fourier Transform (STFT) is applied in 
order to obtain a time-varying spectral description of the 
signals. Consequently the whole separation problem is 
divided into a number of linear complex source 
separation problem, one for every frequency bin: 
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where Aij(f) are the discrete time Fourier transforms 
coefficients (DFT) of the FIR filters aij(k) present in the 
mixing matrix A. 

Hence it is possible to use the algorithms developed 
for the instantaneous ICA model like the ones based on 
nonlinear decorrelation, the maximum likelihood 
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 estimation methods, the infomax principle, and the 
minimization of mutual information (see [6] for a 
review). In this work we make use of the fast-fixed 
point algorithm developed by Hyvarinen [13] based on 
maximization of the nongaussianity of extracted 
components, whose one unit learning rule is: 

 
( ){ } ( ){ }wwww xfExzfE T

i
T
ii '−←  (4) 

 
where f(⋅) is a nonlinear function used in order to take 
into account higher order cumulants that approximate 
the Neg-entropy of the data and can be chosen among 
f(y)=tanh(y), f(y)=yexp(-y2/2) or f(y)=y3. 

Note that as we are operating with complex valued 
data we need to reformulate these algorithms and 
perform two important modifications. First we must 
convert matrix transpositions to Hermetian 
transpositions (conjugate transpose). Then the nonlinear 
functions f(·) must be defined again in the complex 
domain. For example f(y)=tanh(Re{y})+tanh(Im{y})i 
can be employed instead of f(y)=tanh(y) [8]. 

As pre-processing step, before performing ICA both 
a removal of the mean value and a whitening operation 
using PCA is performed. This operation simplifies the 
estimation of the unmixing matrix W that becomes 
orthogonal with only n(n-1)/2 degrees of freedom 
instead of n2. 

In instantaneous ICA it is well known that it is 
impossible to determine the order in which the 
independent components are extracted. This 
permutation ambiguity becomes a serious problem in 
complex domain ICA. We need to align the estimated 
independent components along the frequency bins so 
that separated components, in the time domain, contain 
frequency components from the same source signal 

To solve this permutation problem, inter-frequency 
correlations of signals can be used [14], since we 
suppose that two spectral envelopes belonging to the 
same source should have a higher correlation coefficient 
than the one they would have if they belonged to 
different sources.  
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where ),()( tfYtv i

f
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iv
σ  is the standard 

deviation of )(tv f
i .  

Hence, we compute the correlation coefficients 
between each )(tv f

i  extracted in one bin and the others 

)(1 tv f
j
− ,with j=1,...,n, belonging to the preceding bin. 

The alignment is based on the correlation coefficient, 
through an iterative process. At the first step, the 
algorithm aligns )(tv f

i  with the )(1 tv f
j
−  component 

that shows the highest correlation coefficient. These two 
components are then eliminated from successive steps 
and the same practice is reiterated for the remaining n-1 

components. This procedure is repeated until the last 
frequency bin is aligned. 

Another ICA drawback is that the components are 
always estimated up to a scale and a phase factor. This 
ambiguity is overcome by returning them to the space of 
the detected signals, the observation space. 
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where XiYj(f,t) represents the j-th estimated independent 
component contribute in the i-th channel for the 
frequency bin f, and (Wf

-1)ij is the ij-th element of Wf
-1  

After performing all this linear transformations, we 
can group the XiYj(f,t) in the following way: 
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If we move j go from 1 to n, extending the sum in 

each channel to the contribute given by all the estimated 
independent components, we obtain exactly the 
observed signals. But in the case some independent 
components returned to the observation space are not 
significant for the information provided by the channel i 
they can be set to zero in (7).  
In order to identify which component could be related to 
the ECG signal and which one could be considered 
artefacts we made use of a method for automatically 
identifying components, extracted from convolutive 
mixtures, that can be associated to periodic signals [15]. 
This approach takes origin from the observation that the 
periodicity observed in a time domain source signal, is 
still present in the magnitude spectrogram. The 
autocorrelation function of the magnitude spectrogram, 
preserve a periodicity too, in each frequency bin. This 
property of the autocorrelation function can be used to 
discriminate the ECG (or at least the QRS) component 
from other non periodic components: in fact, in the 
magnitude spectrogram of a signal that has not 
important periodic components, the time over which a 
certain pattern is correlated is very short and settles 
rapidly to zero. Fixing a proper threshold, the area of the 
autocorrelation function of an ECG component, 
exceeding a prefixed threshold, will be larger than the 
other component areas, and this source can be 
identified. After the selected independent components 
have been returned to the observation space in the 
frequency domain, an inverse short time Fourier 
transform (ISTFT) can be used to obtain the 
reconstructed signals in the temporal domain. 
 
Results 

 
Time delays between different ECG recordings, 

were evaluated employing the Hilbert transform method 
outlined in the previous section.  
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 To validate the proposed approach when dealing 
with these kind of signals, we considered an ECG 
recording )(1 te  sampled at 1KHz and its time shifted 
version )()(2 ttte ∆−=  imposing a mst 6=∆ . We 
concentrated the analysis on 0.5 second long 
observation window centered around one QRS complex. 
We computed the cross-correlation function between 
two observation window of e1(t) and e2(t) and its Hilbert 
transform. The Hilbert transform was interpolated by 
increasing the sampling rate by a factor of 3 around its 
zero crossing were evaluated. Ten different observation 
windows of the QRS complex were considered and the 
zero crossings values of the cross-correlation Hilbert 
transforms were averaged, obtaining an estimated time 
delay equal to 5,996 ms. 

Hence we extended this method also on real basal 
acquisitions of different leads, like limb leads DI and 
DII and precordial lead V5, acquired by Smartex 
wearable system. The sampling rate was 1 KHz and the 
observation window was 0.5 second long, centered 
around one QRS complex of the limb lead DI and 
placed in the same point for every leads. From these 
three time series we obtained three cross-correlation 
functions and the relevant Hilbert Transform. The time 
delay was evaluated by interpolating the Hilbert 
transform zero crossing by a factor of 3, like in the 
previous experiment. The values of ten different 
observation windows, of the same acquired signals, 
were averaged. The results are shown in table 1. 

 
Table 1: Estimation of time delay between different 
ECG leads acquisition 

 

DIVt ,5∆  DIIVt ,5∆  DIIDIt ,∆  

1.822 ms 3.868 ms 4.766 ms 

 
Starting from these observations, some simulations 

experiments were carried out to asses how our 
frequency domain independent component analysis 
algorithm works on convolutive mixtures of motion 
artefact and ECG signals. One noise-free ECG bipolar 
limb lead DI was acquired in basal condition by the 
Smartex System and a motion artefact was manually 
generated by pushing on the center of a standard red dot 
electrode. These two signals underwent an analog band-
pass filter with cut-off frequencies 0.3-100Hz and 
another filter with stop band at 50Hz, and then sampled 
at fs=1KHz. The ECG and the motion artefact were 
organized to form respectively the first and second row 
of the source signals matrix s(t). The windows method, 
based on the Hamming function, was used to design the 
FIR filters aij(k) of the mixing matrix A(t), which 
simulates the effect of each source sj(t) in the detected 
signal xi(t). We assume that the artefact interests the 
whole frequency content of the ECG, which goes 
approximately from 0 to 50 Hz. Thus a11(t) was a 70 
coefficient low pass filter with cut off frequency 
f1=50Hz followed by ten zeros, while the other ones 
were shifted version of a11(t), with lower or higher gain, 

realized to introduce a time delay between the sources 
detected at the electrodes.  

When estimating the independent components from 
the convolutive mixtures in the frequency domain, the 
first step is to choose the length of the window used in 
the STFT procedure and the shifting time between 
adjacent window. A four seconds observation of the 
data sets, x1(t) and x2(t), were initially analyzed with a 
Hamming window of the same length as the FIR filters, 
80 ms, and 90% overlap. Thanks to a frequency domain 
approach it was possible to select the spectral bands in 
which carry out the source separation procedure. In this 
case we applied our analysis only in the frequency bins 
included between 0 and f1, that delimitate the band 
where the ECG signal and the motion artefact 
overlapped after the mixing process. 

After performing ICA in each bin and solving the 
permutation problem by (5) we returned the estimated 
independent components in the observation space by 
(6). In the frequency bins, where we didn’t carry out 
ICA, no reconstruction is required and the observations 
were left unchanged. The ECG related component are 
identified by the procedure based on the magnitude 
spectrogram autocorrelation function described in the 
previous paragraph. After only this component had 
reconstructed in the two channels in each frequency bin, 
an inverse time Fourier transform was applied to obtain 
x’1(t) and x’2(t).  

To get a performance index of this model, we 
compare x’1(t) and x’2(t) respectively with the signals 
obtained from the convolution of a11(t) and s1(t), and the 
one given by the convolution of a12(t) with s2(t). These 
latter signals represent what we would have actually 
observed at the electrodes if no artefacts were involved 
in the mixing process. 

Thus our error index is defined as 
( ) ( ) ( ) ( ) ( )∑∑ ∗∗−=

t itt iiti tstatstatxEr 2
1

2
1' , where 

∗  indicates the convolution operator, and represents the 
energy of the error normalized by the energy of the 
noise free signals. Eri were measured by changing the 
window length from 80ms, the minimum value allowed 
by the model (2), to 120 ms, while the overlap degree 
was decreased from 90% to 50%. As the unmixing 
matrix always started from random points in each bin, 
we carried out five different trials and took the mean 
values of the indexes to obtain statistical reliability. In 
figure 1 we can observe how the error index changes in 
both channels. 

 

 
(a) 
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(b) 
 

Figure 1: Error indexes for the two simulated acquired 
ECG channels: (a) Er1 and (b) Er2  

 
Figure 2 shows the time domain evolution of the two 

original source signals s1(t) and s2(t), the simulated 
convolutive mixtures x1(t) and x2(t), and the signals 
x’1(t) and x’2(t) processed with a 80ms Hamming 
window with 90% overlap. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 2: (a) original source signals s1(t) and s2(t), (b) 
simulated convolutive mixtures x1(t) and x2(t), (c) the 
processed signals x’1(t) and x’2(t). 

 
Then the same algorithm was applied to two bipolar 

limb ECG signals, lead DI and lead DII, acquired by the 
Smartex wearable system. In order to cause motion 
artefacts in the observed signals, the subject was asked 
to move his arms back and forward during the 
acquisition. The analog filters were a band-pass filter 

with cut-off frequencies equal to 0.3 Hz and 100 Hz and 
stop band filter at 50 Hz. We carried out our analysis in 
the frequency interval included between 0 and 50 Hz, 
which approximately represents the whole ECG 
frequency content, and left the signals unchanged over 
50 Hz. The window parameters were chosen as 
consequence of the simulation results. In figure 4 real 
data are depicted as they were acquired and after 
frequency domain ICA separation. 

 

 
(a) 

 
(b) 
 

Figure 3: Real data (a) before and (b) after frequency 
domain ICA application. 

 
Discussion 

 
The method based on the Hilbert transform cross-

correlation highlighted the presence of a time delay 
between different ECG recordings. Under the 
hypothesis that the Q, R and S waves are always present 
in every acquisitions with the same polarity, it was 
possible to estimate a time shift of some milliseconds 
between the observations of these waves in different 
ECG leads. 

This allowed us to model our multichannel 
acquisition as a convolutive mixtures problem in order 
to take into account different paths of the source signals 
to the electrodes. 

The frequency domain approach proposed in this 
paper was tested by some simulation experiments where 
the source signals were a noise free ECG recording and 
a manually generated motion artefacts.  

The performance index in figure 1 indicated that the 
best result are achieved when the overlap percentage 
between two adjacent window, employed in the STFT 
of the observation signals, is higher. The best result is 
obtained, for both channels, with a 90% overlap.  

The window length did not seem to influence the 
algorithm performance, once the overlap degree had 
been fixed. However it worth noting that larger 
windows increased the frequency resolution of the 
algorithm but decreased the ability to resolve changes 
with time. Consequently, the choice of the window 
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 length became a trade-off between frequency resolution 
and time resolution. This compromise affected the shape 
of the time series for which the algorithm estimated the 
independent components in each frequency bin. 

A higher frequency resolution leads to a higher 
number of frequency bins and thus the computational 
load of the entire algorithm increases. The minimum 
number of bins is recommended when the target of the 
analysis is a real time implementation. 

Our algorithm was successful in motion artefacts 
removal from ECG signals acquired by wearable 
systems in real life condition. The QRS complex was 
extracted and well reconstructed in the acquired 
channels by the proposed method. Displacements of the 
electrodes or degradation of the acquisition conditions, 
that are likely to happen in wearable systems, may 
compromise the detection of the QRS complex. 
However, our algorithm guarantees to use our ECG 
recordings for further processing, like heart rate 
variability.  

As our method is completely blind (we know 
nothing about the sources and the mixing process) it 
may be extended to a wide collection of artefacts that 
can contaminate biomedical signals. Moreover, the 
algorithm in the frequency domain has another 
advantage since it can characterize the components and 
discriminate between signals of interest and of no-
interest in each frequency bin. Sources associated with 
artefacts may only be present, for example, in a 
particular set of frequency bins, in which they should 
not be utilized during the reconstruction process. 

 
Conclusions 

 
We have proposed an algorithm based on blind 

separation of convolutive mixtures in order to remove 
artefacts from biomedical signals acquired by wearable 
systems. In this model the sensors are hypothesized as 
measuring a mixing of independent components after 
they have undergone a convolutive process to account 
for the different paths of the signals to the electrodes 
and complex spatio-temporal dynamics. The proposed 
algorithm follows a frequency domain approach, 
allowing the use of ICA algorithms developed to solve 
the instantaneous mixing problem. A procedure based 
on the correlation function calculated between adjacent 
frequency bins has been employed in order to overcome 
the indeterminacy of the order of the independent 
components.  

Some experiments on simulated convolutive 
mixtures of an ECG and a manually generated motion 
artefact indicated the best parameters to be used in this 
application. 

Real data analysis highlighted that the convolutive 
model can remove motion artefacts from ECG signals 
acquired by wearable systems preserving the QRS 
complex. 

 
Acknowledgments 

This work was supported by E. U. project MyHeart-
IST-2002-507816. 

References 
 
[1] EUGENE N. B. (2001): ‘Biomedical signal 

processing and signal modeling’, (J. Wiley-
Interscience). 

[2] AKAY M. (2000): ‘Nonlinear Biomedical Signal 
Processing’, (J. Wiley IEEE Press). 

[3] ALMEBAR V,. ALBIOL A (1999): ‘A new adaptive 
scheme or ECG enhancement’, Signal Process., 75, 
pp. 253-263. 

[4] KADAMBE S., MURRAY R., BOURDEAUX-BARTELS 
G. F. (1999): ‘Wavelet Transform-Based QRS 
Complex Detector’, IEEE Tran. Biomed. Eng., 46, 
pp. 838–847. 

[5] COMON P. (1194): ‘Independent Component 
Analysis. A new concept?’, Signal Process., 36, pp. 
287-314. 

[6] HYVARINEN A., KARHUNEN J., OJA E. (2001): 
Independent component analysis, (John Wiley & 
Sons). 

[7] ANEMULLER J., SEJNOWSKI T. J., MAKEIG S. (2003): 
‘Complex spectral-domain independent component 
analysis of electroencephalographic data’, Neur. 
Net., 16, pp. 1311-1323. 

[8] P. SMARAGDIS (1998), Blind separation of 
convolved mixtures in the frequency domain, 
Neurocomputing, 22, pp.21-31. 

[9] MURATA N., IKEDA S., ZIEHE A. (2001): ‘An 
Approach to Blind Source Separation based on 
Temporal Structure of Speech Signals’, 
Neurocomputing, 41, pp. 1-24. 

[10] SAAD S. Z., DEYOE E. A., ROPELLA K. M. (2003): 
‘Estimation of FMRI response delays’, 
NeuroImage, 18, pp. 494-504. 

[11] LORIGA G., SCOZZARI A. (2004): ‘Dispositivo 
elettronico indossabile per il monitoraggio di 
variabili fisiologiche attraverso misure di 
impedenza elettrica corporea’, Italian Patent N. 
PI/2004/A/000060, September 6, 2004. 

[12] PARADISO R., LORIGA G., TACCINI N.: ‘A 
WearableHealth Care System Based on Knitted 
Integrated Sensors’, IEEE Trans. Inf. Technol. 
Biomed., in printing. 

[13] HYVÄRINEN A., OJA E. (1997): ‘A fast fixed-point 
algorithm for independent component analysis’, 
Neural Comput., 9, pp. 1483-1492 

[14] SAWADA H., MUKAI R., ARAKI S., MAKINO S. 
(2004): ‘A Robust and Precise Method for Solving 
the Permutation Problem of Frequency-Domain 
Blind Source Separation’, IEEE Trans. Speech 
Audio Processing, 12, pp. 530-538. 

[15] MILANESI M., VANELLO N., POSTANO V., 
SANTARELLI M.F., DE ROSSI D., LANDINI L (2005): 
‘An Autoamtic Method for Separation and 
Identification of Biomedical Signal from 
Convolutive Mixtures by Independent Component 
Analysis in the Frequency Domain’, Proceeding of 
the 5th WSEAS Int. Conf. on SSIP, Corfù, Greek, 
pp. 74-79. 

 


