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Abstract

Histone deacetylases (HDACs) are key regulatory enzymes involved in the control of gene expression and their inhibition by specific
drugs has been widely correlated to cell cycle arrest, terminal differentiation, and apoptosis. Here, we investigated whether HDAC activ-
ity was required for PDGF-dependent signal transduction and cellular proliferation. Exposure of PDGF-stimulated NIH3T3 fibroblasts
to the HDAC inhibitor trichostatin A (TSA) potently repressed the expression of a group of genes correlated to PDGF-dependent cel-
lular growth and pro-survival activity. Moreover, we show that TSA interfered with STAT3-dependent transcriptional activity induced
by PDGF. Still, neither phosphorylation nor nuclear translocation and DNA-binding in vitro and in vivo of STAT3 were affected by
using TSA to interfere with PDGF stimulation. Finally, TSA treatment resulted in the suppression of PDGF-dependent cellular prolif-
eration without affecting cellular survival of NIH3T3 cells. Our data indicate that inhibition of HDAC activity antagonizes the mitogenic
effect of PDGF, suggesting that these drugs may specifically act on the expression of STAT-dependent, PDGF-responsive genes.
� 2006 Elsevier Inc. All rights reserved.
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Platelet-derived growth factor (PDGF) is a major mito-
gen for fibroblasts, smooth muscle cells, and other cell
types [1]. Thus, signaling initiated by its cognate receptor
has been widely used as a very powerful model system
for the study of the signal transduction mechanisms con-
trolling cell cycle progression induced by tyrosine kinase
receptors (RTKs) [1] and for the understanding of the
molecular basis of cellular proliferation. Not surprisingly,
since when twenty years ago PDGF was identified as the
cellular homologue of the transforming retroviral v-sis

oncogene [2], genetic alterations have been characterized
which cause constitutive activation of PDGF receptors,
autocrine growth stimulation and consequently, human
cancer [3]. Consequently, signaling pathways stimulated
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by this growth factor have been always considered interest-
ing targets for cancer treatment.

In eukaryotic cells, histone proteins organize DNA into
nucleosomes, which are regular repeating structures of
chromatin [4]. In general, DNA-histone interactions con-
dense chromatin and repress transcription, while reduction
of these interactions relaxes chromatin and enhances gene
transcription, by increasing the access to the DNA of pro-
teins such as RNA polymerase and transcription factors
[5]. Specifically, histone acetylation neutralizes the positive
charge of conserved lysine residues within the NH2-termi-
nal domains of the core histones, therefore diminishing
interactions between the negatively charged DNA and the
histones [6]. Two classes of enzymes, histone acetyltransfer-
ases (HATs) and histone deacetylases (HDACs), reversibly
regulate the extent of such modifications [4]. Different stud-
ies have recently demonstrated that histones are not the
only proteins under the control of HATs and HDACs
[4,7]. Thus, substrates for acetylation now include several
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transcription factors, cytosolic proteins such as Tubulin,
and proteins that shuttle from the nucleus to the cytoplasm
such as Importin [7,8]. The control by acetylation of the
activity and stability of these substrates and, in particular,
of transcription factors, therefore suggests that HATs and
HDACs are able to control gene expression also by mech-
anisms that are distinct from their direct effect on
chromatin.

HDAC inhibitors were initially discovered for their abil-
ity to reverse the malignant phenotype of transformed cells
in culture [5]. Since then, huge efforts have been made to
unravel the identity of the genes controlled by such com-
pounds. Several structural classes of HDAC inhibitors
have been identified, including short-chain fatty acids such
as valproic acid (VPA) and sodium butyrate, cyclic tetra-
peptides such as trapoxin A and benzamides, and hydroxa-
mic acids such as trichostatin A (TSA) and suberoylanilide
hydroxamic acid (SAHA) [4]. As expected from their abil-
ity to stimulate gene expression by acting on histones,
HDAC inhibitors induce the levels of different tumor sup-
pressor genes (i.e., p53, p21, and gelsoline) that cause cell
cycle arrest in G1 and/or G2, apoptosis and/or differentia-
tion [6]. Still, more recently it has become clear that they
are also able to inhibit the expression of tumor activators
such as VEGF [5], c-Myc, Bcl-XL, and HIF-1 [9], suggest-
ing for these drugs a mechanism of action more complex
than the mere effect on histone acetylation.

Materials and methods

Reagents. Human recombinant PDGF (Intergen) was used at a final
concentration of 12.5 ng ml�1. The HDAC inhibitors sodium butyrate
(Sigma), SAHA and TSA (Biomol) were added to the cells 30 min before
stimulation at the indicated concentrations. Staurosporine (Sigma) was
used at a final concentration of 0.5 lM. The STAT-responsive element
(·4) luciferase vector (pStat-Luc) was kindly provided by J.E. Jr. Darnell
[10]. PCR amplification of the wild-type STAT3 was cloned in the pCEFL-
AU1 expression vector. Specific maps and restriction sites will be made
available upon request.

NIH3T3 fibroblasts were maintained at 37 �C in 5% CO2 in Dulbecco’s
modified Eagle’s medium (Invitrogen) supplemented with 10% (v/v)
bovine calf serum (BioWhittaker), 2 mM L-glutamine, and penicillin-
streptomycin (Invitrogen). RAT2 fibroblasts (kindly provided by G. De
Vita) were maintained at 37 �C in 5% CO2 in Dulbecco’s modified Eagle’s
medium (Invitrogen) supplemented with 10% (v/v) fetal calf serum
(Invitrogen), 2 mM L-glutamine, and penicillin-streptomycin (Invitrogen).

Northern blot analysis. After 24 h of starvation, NIH3T3 cells were
stimulated with 12.5 ng ml�1 PDGF for various times in absence or after
pre-treatment with increasing concentrations of TSA. Samples were then
processed as previously described [11]. As c-myc probe, we used a 450-bp
PstI DNA fragment from the human c-myc gene (pcDNAIII/GS-Myc-V5,
purchased from Invitrogen). As VEGF probe, we used a 500-bp BamHI
fragment from the human VEGF cDNA (pCEFL-P-VEGF). As bcl-XL

probe, we used a 500-bp EcoRI fragment from the bcl-XL cDNA
(pcDNA4/TO-Bcl-XL, kindly provided by I. Iaccarino). As c-jun probe,
we used the complete 1000-bp EcoRI-Not I c-jun cDNA (pCEFL-AU1-c-
Jun). The RNA membranes were pre-hybridized for 2 h in hybridization
solution (ExpressHyb, Clontech) at 70 �C. The 32P-labeled probe for the
human c-myc gene was added to the blots and hybridized for another 16 h
at 60 �C. The 32P-labeled probes of the c-jun, VEGF, and bcl-XL genes
were added to the blots and hybridized for another 16 h at 68 �C. The
blots were washed in accordance with the manufacturer’s specifications
(ExpressHyb, Clontech). Accuracy of RNA loading and transfer was
confirmed by fluorescence under ultraviolet light after staining with ethi-
dium bromide.

Chromatin immunoprecipitation assay. Chromatin immunoprecipita-
tion (ChIP) assays were performed using the Chromatin Immunoprecip-
itation Assay Kit (Upstate Biotechnology, NY), in accordance with the
manufacturer’s instructions. Briefly, chromatin from NIH3T3 cells was
fixed by directly adding formaldehyde (1% final) to the cell culture media.
Nuclear extracts were isolated from the cells and then sonicated to obtain
mechanical sharing of the fixed chromatin. Transcription factor-bound
chromatin was immunoprecipitated with specific antibodies, cross-linking
was reversed, and the isolated genomic DNA was amplified by PCR, using
specific primers encompassing the murine c-myc promoter: forward AP66
(5 0-ATACCTGTGACTATTCATTT-30); reverse AP67 (5 0-GATGCTTC
CTTGCCTAAGAC-30). The PCR products were separated on a 2%
agarose gel.

Preparation of nuclear and cytoplasmic extracts. Nuclear and cyto-
plasmic extract preparation was performed using the NE-PER Nuclear
and Cytoplasmic Extraction Reagents kit (PIERCE Biotechnology), in
accordance with the manufacturer’s instructions.

5-Bromo-2 0deoxy-uridine assay. NIH3T3 cells were starved for 24 h,
stimulated with 12.5 ng ml�1 PDGF for 15 h in absence or after 30 min
pre-treatment with increasing concentrations of TSA, before incubation
with 5-Bromo-20deoxy-uridine (BrdU) (10 mmol) for 4 h. The BrdU
assays were performed using the 5-Bromo-20Deoxy-uridine Labeling and
Detection Kit I (ROCHE), in accordance with the manufacturer’s
instructions. The slides were mounted in Gel-mount (Biomeda Corp.) and
examined with a Zeiss Axiophot photomicroscope equipped with
epifluorescence.

Electrophoretic mobility shift assays. Nuclear extracts were obtained
from NIH3T3 cells, starved overnight, and then stimulated with PDGF
for various times in absence or after pre-treatment with increasing con-
centrations of TSA. Samples were then processed as previously described
[12]. Complementary synthetic oligonucleotides containing the STAT3
consensus sequence from Santa Cruz Biotechnology were labeled with
[c-32P]ATP, using T4 polynucleotide kinase (USB). Labeled oligonucleo-
tides were purified using G25 columns (Amersham Biosciences) and used
as probes. Complexes were analyzed on non-denaturing (5%) polyacryl-
amide gels in TBE buffer (40 mM Tris, 270 mM glycine, and 2 mM
EDTA, pH 8.0) and run at 13 V/cm at 4 �C. For supershift assays, 1 lg of
the indicated antiserum was added to the binding reaction.

Western blot analysis and antibodies. Lysates of total cellular proteins
were analyzed by protein immunoblotting after SDS–PAGE with specific
rabbit antisera or mouse monoclonal antibodies. Immunocomplexes were
detected by the ECL Plus Reagent (Amersham Biosciences), by using goat
antiserum against rabbit or mouse IgG coupled to horseradish peroxidase
(Amersham Biosciences). Electrophoretic mobility shift assays (EMSA)
and Western blot analysis were performed using rabbit polyclonal anti-
bodies against STAT3-[pSer727] (BIOSOURCE), STAT3-[pTyr705] (Cell
Signaling Technology), H3 (Novous Biologicals), STAT3, Acetyl-Histone
H4, and Acetyl-Histone H3 (UPSTATE), Rac1, Cdk2, Histone H4, and
STAT3 C20-X (Santa Cruz Biotechnology).

Reporter gene assays. For each well, cells were transfected with dif-
ferent expression plasmids together with 200 ng of the indicated reporter
plasmid and 10 ng pRL-null as an internal control. In all of the cases, the
total amount of plasmid DNA was adjusted with empty vector. After 16–
20 h from transfection, firefly and Renilla luciferase activities present in
cellular lysates from serum-starved cells were assayed using the Dual-
luciferase reporter system (Promega) and light emission was quantified
using the 20/20n luminometer (Turner BioSystems). Data obtained by
firefly luciferase, which correspond to absolute activities of the reporter
plasmid, were normalized for the corresponding transfection efficiency by
using the Renilla luciferase activity of each sample.

Immunofluorescences. NIH3T3 cells were starved for 24 h, stimulated
with 12.5 ng ml�1 PDGF for 1 h in absence or after pre-treatment for
30 min with increasing concentrations of TSA. The cells were fixed for
10 min in 2% paraformaldehyde-1% sucrose solution at room tempera-
ture. Incubation with anti-STAT3 antibodies (Upstate Biotechnology) was
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performed in accordance with the manufacturer’s instructions. Slides were
washed with PBS and incubated with a secondary anti-rabbit antibody
conjugated to FITC (Jackson ImmunoResearch Laboratories, Inc.) for 1 h
at room temperature. The slides were mounted in Gel-mount (Biomeda
Corp.) and examined with a Zeiss Axiophot photomicroscope equipped
with epifluorescence.

Results

HDAC inhibitors impede the PDGF-dependent expression of

different growth-promoting genes

A huge amount of data clearly demonstrate that
HDACs are able to modulate, both up- and down-regulat-
ing, the expression of a vast number of genes [9,13,14].
Indeed, differently from what was expected from their role
on chromatin condensation, suppression of HDAC activity
by different classes of specific inhibitors has clearly demon-
strated that these enzymes can also function as activators
of gene transcription [15]. As an approach to examine the
role of acetylation in PDGF-dependent transcriptional
activity, in NIH3T3 cells, we took advantage of the avail-
ability of pharmacological inhibitors of HDACs [4]. In par-
ticular, trichostatin A (TSA) potently and specifically
inhibits HDACs causing an accumulation of acetylated his-
tone species in a variety of mammalian cell lines [16].

We first sought to confirm the ability of this compound
to affect histone acetylation in our cellular system. Indeed,
as shown in Fig. 1, TSA strongly induced, in a dose-depen-
dent manner, histone H3 and histone H4 acetylation, after
18 h treatment.

To examine the role of HDACs in PDGF-dependent
transcription, we therefore assessed the ability of PDGF
to modulate the expression of a group of genes correlated
to cell growth, angiogenesis, and cell survival, namely
c-myc, VEGF, bcl-XL, and c-jun. Cells were starved for
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Fig. 1. TSA induces histone H3 and H4 acetylation. NIH3T3 cells were
starved for 24 h and pretreated or not with increasing concentrations of
TSA for 15 h. Nuclear extracts were then assayed by Western blot, using
the specific anti-acetyl-Histone H3 (upper panel) and anti-acetyl-Histone
H4 (bottom panel) antibodies. -, No treatment.
24 h and then stimulated with PDGF for up to 7 h. North-
ern blot analysis of the extracted total RNA showed an
increase in the levels of the four genes, although at different
time-points after PDGF stimulation. Indeed, while PDGF
caused a peak of c-myc and c-jun mRNAs after one hour of
treatment (Figs. 2A and D), such increase was delayed for
VEGF (3 h) (Fig. 2B) and bcl-XL (7 h) (Fig. 2C). Next, we
analyzed the effect of TSA on the expression of the different
genes. While the increase of the expression of c-myc,
VEGF, and bcl-XL was strongly inhibited by 30 min pre-
treatment with increasing concentrations of TSA (Figs.
2E–G), c-jun expression was unaffected by such treatment
(Fig. 2H) establishing a role for acetylation in specific early
and late gene expression processes controlled by PDGF.

To confirm that inhibition of gene expression was the
result of the HDAC inhibitory activity of TSA, other two
drugs, SAHA and sodium butyrate, were used in similar
experiments, to assess their ability to interfere with
PDGF-dependent stimulation of c-myc expression. In par-
ticular, it is important to notice that, while TSA and SAHA
belong to the same chemical class of HDAC inhibitors,
sodium butyrate is a chemically different compound [4].
As shown in Figs. 3A and B, both SAHA and sodium buty-
rate were very efficient in blocking PDGF-induced c-myc

expression, therefore strongly supporting that the effects
observed for TSA on gene expression represent a general
feature and are dependent on its histone deacetylase inhib-
itory activity. As additional controls, the effects in time-
courses of TSA and sodium butyrate were also investigated
on the expression of the c-myc proto-oncogene, used as a
model for the response of PDGF-regulated genes to
HDAC inhibitory drugs. As shown in Figs. 3C and D,
treatments of NIH3T3 cells up to 60 min with both TSA
and sodium butyrate did not affect c-myc expression. Ulti-
mately, to ascertain a role for HDAC activity in cellular
models different from NIH3T3 cells, we treated with TSA
PDGF-stimulated RAT2 fibroblasts, demonstrating that
also in this cell line the HDAC signaling network is able
to control PDGF-dependent gene expression (Fig. 3E).
Altogether, these results show that deacetylase activity is
important for both the early and late specific PDGF-
dependent transcriptional programs.

TSA interferes with STAT-dependent transcriptional activity

induced by PDGF

Signal transducers and activators of transcription
(STATs) constitute an evolutionarily conserved family of
transcription factors, originally identified as mediators of
cytokine signaling [17]. Still, STAT proteins are also acti-
vated by polypeptide growth factors such as PDGF and
epidermal growth factor (EGF) [18,19]. STAT proteins
are involved in the regulated expression of numerous
genes underlying diverse cellular processes ranging from
immune response to antiviral protection, apoptosis, prolif-
eration, differentiation, and cell survival [17]. Among the
regulated genes, expression of growth-controlling genes
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Fig. 2. HDAC inhibitors prevent PDGF-dependent expression of different growth-promoting genes. Analysis of c-myc (A), VEGF (B), bcl-XL (C), and
c-jun (D) mRNA expression in NIH3T3 cells stimulated for the indicated durations with PDGF. Analysis of c-myc (E), VEGF (F), bcl-XL (G), and c-jun

(H) mRNAs in NIH3T3 cells pretreated with increasing concentrations of the specific HDAC inhibitor, TSA, and then stimulated for 1 h with PDGF.
-, No treatment.
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such as cyclin D1, bcl-XL, VEGF, and c-myc has been cor-
related to STAT activity [20,21]. Aberrant STAT signal-
ing may also participate in development and progression
of human cancers [22]. Indeed, several studies have shown
that abrogation of STAT3 activity or expression by use of
dominant negative inhibitors or antisense oligonucleotides
leads to reversal of the malignant phenotype and apopto-
sis [22].

In search for a mechanism that could explain the ability
of TSA to inhibit PDGF-dependent gene expression, we
noticed that all investigated genes inhibited by TSA,
c-myc, VEGF, and bcl-XL are under the control of STAT
transcription factors [23–25]. As numerous recent reports
point to a positive role for HDACs in cytokine- and
STAT-dependent gene regulation [6], we decided to investi-
gate the possibility that inhibition of HDACs by TSA
blocked gene expression by directly inhibiting STAT
activity. To test this hypothesis, we took advantage of the
availability of a STAT-dependent luciferase reporter con-
struct, pStat-Luc [10]. NIH3T3 cells were therefore tran-
siently transfected with this reporter, left untreated or
treated with increasing concentrations of TSA and PDGF
(6 h), alone or in combination (Fig. 4A). While PDGF
strongly induced STAT activity in these cells, TSA almost
abolished such response (Fig. 4A), therefore suggesting
that HDAC activity is required for optimal PDGF-depen-
dent STAT activation.

To establish a requirement for HDAC activity for the
transcriptional function of a specific STAT family member,
we also performed a similar experiment in presence of tran-
siently transfected STAT3. Due to the very high levels of
this protein, the observed STAT transcriptional activity
in the transfected cells could be referred to the overexpres-
sed protein with little or no influence of different
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Fig. 4. TSA inhibits STAT transcriptional activity induced by PDGF. (A)
NIH3T3 cells were transfected by the lipofectAMINE reagent (Invitrogen)
with a STAT-responsive luciferase construct, pStat-Luc (200 ng). The day
after transfection, cells were left untreated or treated with combinations of
increasing concentrations of TSA and PDGF (6 h), as indicated. (B) Same
as in (A), but cotransfecting cells with pStat-Luc and an expression vector
for STAT3.
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endogenous STAT family members. We therefore cotrans-
fected NIH3T3 cells with pStat-Luc and an expression vec-
tor for STAT3, and then left untreated or treated with
increasing concentrations of TSA and PDGF (6 h), alone
or in combination (Fig. 4B). Again, while PDGF strongly
induced STAT3 activity in these cells, TSA almost abol-
ished such response (Fig. 4B), therefore suggesting that
HDAC activity is required for optimal PDGF-dependent
activation of STAT3.
Inhibition of HDAC activity does not directly affect STAT3

phosphorylation, nuclear translocation, and DNA-binding

Activation of STAT proteins necessarily requires phos-
phorylation of cytosolic STAT monomers on a single tyro-
sine residue at their C-terminus [17]. Once phosphorylated,
STAT proteins dissociate from the receptors and form
homo- or heterodimers that translocate to the nucleus
where they interact with other transcriptional modulators
bound to specific promoter sequences [17]. Some STATs
also require phosphorylation on a conserved serine residue
for maximal transcriptional activation [26].

To determine whether HDAC inhibition alters PDGF-
stimulated tyrosine and/or serine phosphorylation of
STAT3, we performed Western blot analysis with
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phospho-specific antibodies directed against tyrosine705 or
serine727 of this protein. Cells were incubated with PDGF
for up to 45 min, with or without pretreatment for
30 min with increasing concentrations of TSA. As shown
in Fig. 5, PDGF-dependent phosphorylation of STAT3
was not affected by TSA, when normalized to endogenous
STAT3 protein levels.

To determine weather treatment with TSA affects
STAT3 sub-cellular localization, NIH3T3 cells were treat-
ed with PDGF alone or in association with TSA and then
examined by immunofluorescence analysis using a specific
anti-STAT3 antibody. In our system, TSA treatment of
PDGF-stimulated cells had no effect on sub-cellular local-
ization of STAT3 (Fig. 6A). To confirm these data, we also
prepared cytoplasmic and nuclear extracts from NIH3T3
cells treated with PDGF alone or in association with
TSA and then analyzed them for the presence of the
STAT3 protein. As shown in Figs. 6B and C, TSA treat-
ment of PDGF-stimulated cells had no effect on sub-cellu-
lar localization of STAT3. In this regard, it is important to
notice that, although even PDGF could not induce nuclear
translocation of STAT3 it has been clearly demonstrated
that, in specific cellular systems, STAT proteins are equally
distributed between the cytoplasm and the nucleus, and
such balance is not affected by stimuli that are able to acti-
vate them [27].

Next, we sought to investigate, by electrophoretic mobil-
ity shift assay (EMSA), the possibility that inhibition of
HDAC activity could directly affect STAT3 DNA-binding
ability. As expected, PDGF stimulation rapidly induced
the binding of STAT homo- and hetero-dimers to a dou-
ble-strand oligonucleotide containing a typical STAT-
responsive element (Fig. 7A), reaching a peak at 15 min.
Specifically, three major STAT-containing DNA-binding
complexes were observed, represented by STAT3 homo-di-
mers (slowest migrating complexes), STAT1 homo-dimers
(fastest migrating complexes), and STAT1/STAT3 het-
ero-dimers (complexes with intermediate mobility) [28]
(Fig. 7A). To further verify the presence of STAT3 in such
complexes, we also performed supershift analysis by incu-
bating the binding reactions with antibodies specific to
the STAT3 protein (Fig. 7B). As an additional control,
we also verified that the binding of the complexes to the
DNA was specific, as it was efficiently competed by addi-
tion of an excess of unlabeled oligonucleotide (Fig. 7C).
As shown in Fig. 7D, pretreatment of NIH3T3 cells with
progressively increasing concentrations of TSA ultimately
indicated that the activity of HDACs had no effect on
PDGF-stimulated STAT3 (and STAT1) DNA-binding
activity.

On the basis of the binding observed in vitro, we next
examined by chromatin immunoprecipitation (ChIP) anal-
ysis whether TSA could control the binding, in vivo, of
STAT3 to the endogenous c-myc promoter. In NIH3T3
cells, ChIP assays confirmed that the activity of HDACs
had no effect on PDGF-stimulated STAT3 in vivo DNA-
binding activity (Fig. 7E), as already observed in vitro by
EMSA. Our data therefore indicate that inhibition of
HDAC activity does not directly affect the mechanisms
by which PDGF activates STAT3 or stimulates its DNA-
binding ability.

Inhibition of HDAC activity prevents PDGF-dependent

cellular proliferation

HDAC inhibitors have repeatedly demonstrated their
efficacy to arrest cellular growth of multiple cell lines
[4,5]. Based on the evidence that these drugs profoundly
affected PDGF-dependent expression of different genes
related to proliferation and survival (see above), we sought
to examine the role of acetylation on PDGF-induced
NIH3T3 cell proliferation. To this aim, we analyzed
bromodeoxyuridine (BrdU) incorporation in quiescent
NIH3T3 cells stimulated with PDGF in absence or after
pre-treatment with increasing concentrations of TSA. Cells
were first starved for 24 h to arrest them in the G0/G1-
phase of the cell cycle, left untreated or pre-treated with
increasing concentrations of TSA, and then stimulated
with PDGF for 15 h, a timeframe in which NIH3T3 cells
enter S-phase and duplicate their DNA [29]. As shown in
Fig. 8, the addition of TSA was able to completely inhibit
S-phase progression of stimulated NIH3T3 cells (middle
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panels). Conversely, as a control, it did not affect cell survival
as compared to staurosporine treatment of the cells (Fig. 8,
right panels), confirming previous observation that HDAC
inhibitors do not induce apoptosis in untransformed cells
[30,31] such as NIH3T3. TSA was therefore a strong inhibi-
tor of the early phases of cell-cycle progression of PDGF-
stimulated cells.

Discussion

Although several genetic defects exist in human tumors,
they frequently seem to converge on limited number of sig-
nal transduction pathways often controlling the expression
of different cancer-promoting genes. The possibility to
modulate the expression of such genes has therefore
become a rational target for the treatment of cancer. In
recent years, a number of structurally divergent classes of
HDAC inhibitors have been identified that induce cell-cy-
cle arrest, terminal differentiation, and/or apoptosis in var-
ious cancer cell lines and inhibit tumor growth in animal
models [7,8]. Though, in this respect, it is important to note
that several non-histone proteins, among which different
transcription factors, are direct substrates of acetylation
and, in turn, of HDACs [7,8].
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By using TSA, SAHA, and sodium butyrate, we show
that deacetylase activity is necessary for the expression of
genes correlated to the growth stimulatory (c-myc), anti-
apoptotic (bcl-XL), and pro-angiogenetic (VEGF) activity
of PDGF. Reasonable candidates for mediating the inhibi-
tion of the expression of such genes are STAT family mem-
bers. Indeed, all the investigated genes inhibited by TSA
are under the control of these transcription factors [23–
25], while c-jun, another PDGF-regulated gene whose pro-
moter is not controlled by STATs, is not sensitive to the
HDAC inhibitor treatment. These data therefore suggest
that HDAC inhibitors may negatively influence the activity
of STAT proteins. Although many papers have recently
addressed the role of HDACs in the regulation of STAT
activation, the issue is far from being solved. Indeed, many
contrasting data are present in the literature relative to the
effect of HDAC inhibitors on STAT family members: while
in some systems HDAC inhibitors interfere with STAT
tyrosine and serine phosphorylation and nuclear transloca-
tion [32,33], other papers indicate that these drugs have no
direct effect on nuclear translocation, DNA-binding activi-
ty, and tyrosine and serine phosphorylation of STAT pro-
teins [15,34,35]. Complicating even more this story, recent
data report that, upon cytokine stimulation, STAT3 under-
goes acetylation of a single amino acid residue providing an
alternative mechanism for its activation [36,37], altogether
pointing to a positive role for HDACs in STAT-dependent
gene transcription. In our experimental conditions, HDAC
activity seems to positively affect STAT activation as TSA
strongly inhibits PDGF-dependent activation of STAT
transcriptional potential, in particular of STAT3, in
NIH3T3 cells. These data therefore support a role for
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STAT proteins in mediating HDAC effects on PDGF tran-
scriptional program. Nonetheless, inhibition of STAT
activity by TSA was not correlated to a deficit in STAT3
tyrosine and serine phosphorylation, nucleo-cytoplasmic
shuttling, and both in vitro and in vivo DNA-binding
activities. TSA also inhibits selected interferon b-stimu-
lated immediate early genes that are activated by STAT1
and STAT2 although, in line with our results, the drug
does not affect tyrosine phosphorylation of the transcrip-
tion factors or their binding to the endogenous ISG54 pro-
moter [34]. Conversely, TSA prevents the binding of RNA
polymerase II to this promoter [34]. Further work will be
required to ascertain a role for STAT proteins in HDAC-
dependent recruitment of RNA polymerase II to the pro-
moter of specific genes.

Numerous data indicate that the exposure of quiescent
cells to PDGF causes the rapid activation of a number of
signaling pathways controlling re-initiation of DNA syn-
thesis and cell proliferation [11,29]. We show that one such
pathway requires HDAC activity as TSA completely pre-
vents PDGF-dependent cellular proliferation. Intriguingly,
Bowman and collaborators recently showed that STAT3-
mediated c-Myc expression is required for PDGF-induced
mitogenesis [38]. Together, these observations provide sup-
port for a requirement for histone deacetylase activity in
the control of a STAT-dependent transcriptional program
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induced by PDGF, culminating in the increased expression
of growth-related genes and, consequently, cellular
proliferation.

In contrast to the idea of HDACs as regulators of global
chromatin organization, the effects of HDAC inhibitors on
gene expression are surprisingly highly selective, leading to
modification of the transcription rate of only a limited
number of expressed genes [7,8]. As a consequence, there
is ongoing evaluation of several HDAC inhibitor com-
pounds in phase I and II clinical trials in a vast array of
human tumors (www.clinicaltrials.gov) [8]. Among these
drugs, SAHA has already shown significant anticancer
activity at doses well tolerated by patients [39].

In the case of PDGF, both solid and hematological
malignancies have been identified that present constitutive
activation of the signaling pathways controlled by its cog-
nate receptor [3]. The involvement of HDACs in the
PDGF-dependent mitogenic transcriptional program and
cell proliferation may therefore represent a valid rationale
for the use of these drugs in cancers in which deregulated
PDGF receptor signaling represents the cause of the tumor
or strongly sustains their maintenance through anti-apop-
totic and pro-angiogenic processes.
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