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A B S T R A C T

Germline mutations in breast cancer susceptibility gene 1 (BRCA1) confer high risk of devel-

oping breast and ovarian cancers. Even though most BRCA1 cancer-predisposing mutations

produce a non-functional truncated protein, 5–10% of them cause single amino acid substi-

tutions. This second type of mutations represents a useful tool for examining BRCA1

molecular functions. Human BRCA1 inhibits cell proliferation in transformed Saccharomyces

cerevisiae cells and this effect is abolished by disease-associated mutations in the BRCT

domain. Moreover, BRCA1 mutations located both inside and outside the BRCT domain

may induce an increase in the homologous recombination frequency in yeast cells. Here

we present a microarray analysis of gene expression induced in yeast cells transformed

with five BRCA1 missense variants, in comparison with gene expression induced by wild-

type BRCA1. Data analysis was performed by grouping the BRCA1 variants into three sets:

Recombination (R)-set (Y179C and S1164I), Recombination and Proliferation (RP)-set

(I1766S and M1775R) and Proliferation (P)-set (A1789T), according to their effects on yeast

cell phenotype. We found 470, 740 and 1136 differentially expressed genes in R-, P- and

RP-set, respectively. Our results point to some molecular mechanisms critical for the con-

trol of cell proliferation and of genome integrity providing support to a possible pathogenic

role of the analysed mutations. They also confirm that yeast, despite the absence of a

BRCA1 homologue, represents a valid model system to examine BRCA1 molecular func-

tions, as the molecular pathways activated by BRCA1 variants are conserved in humans.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Germline mutations in the breast cancer susceptibility gene 1,

BRCA1, predispose to breast and ovarian cancers.1
er Ltd. All rights reserved

; fax: +39 050993637.
a.unipi.it (S. Pellegrini).
Human BRCA1 encodes a full-length protein of 1863 amino

acids containing some known functional domains: a highly

conserved N-terminal RING finger domain, two nuclear local-

isation signals, an ‘SQ’ cluster, a branched DNA-binding do-

main and C-terminal BRCT domains.2
.
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BRCA1 appears to coordinate multiple activities linked to

the maintenance of genomic integrity and to function as a tu-

mour suppressor, through the direct or indirect interaction

with a large number of molecules, including tumour suppres-

sors, oncogenes, DNA damage repair proteins, cell cycle regu-

lators, transcriptional activators and repressors.3 BRCA1 plays

a role in homologous recombination (HR) during both mitosis

and meiosis and regulates the homology-directed DNA repair

and crossing over.4,5 It is also involved in non-homologous

end-joining6 and mismatch repair, both in response to DNA

damage7 and during chromosome segregation.8 BRCA1

growth suppressor function in mammalian cells depends at

least in part on its interaction with retinoblastoma protein

(RB) but also on interaction with a series of other cell cycle-re-

lated proteins such as p53 and p21.9,10

Most pathogenic BRCA1 mutations originate a truncated

protein, but a number of missense mutations, whose role in

the disease is often difficult to ascertain, have also been de-

tected in hereditary breast cancer patients. An almost com-

plete list of genetic variants detected till now in BRCA1 and

BRCA2 genes is reported in BIC (Breast Cancer Information

Core) database (http://research.nhgri.nih.gov/bic/).

Saccharomyces cerevisiae has been shown to represent a

good system to discriminate between pathogenic and poly-

morphic missense mutations located in BRCA1 BRCT do-

mains, as inactivating mutations within BRCT domains

abolish BRCA1 ability to inhibit yeast cell proliferation.11 To

elucidate the BRCA1 BRCT domain effects on gene expression,

Skibbens et al.12 compared yeast cells transformed with vec-

tor or with vector containing the BRCA1 BRCT domain by

microarray analysis. Even though their analysis was limited

to the BRCT domain, they showed that the yeast model is also

useful to elucidate molecular aspects of BRCA1 function.

Caligo et al.,13 as well, have shown that some BRCA1 mis-

sense mutations isolated from patients’ breast cancers and

located outside the BRCT domains, in scattered positions

along the sequence, induce an increase in HR. This suggests

that yeast may represent a model for the study of both BRCA1

molecular functions: growth suppression and maintenance of

genome integrity.

Here we present a study in which gene expression induced

in S. cerevisiae by each of five BRCA1 missense variants was

compared by microarray analysis to that induced by wild-type

BRCA1. All five variants had been isolated from familial breast

cancers and had induced a phenotypic change in yeast cells,

either on proliferation, or on HR or both:13 three carried mis-
Table 1 – Description of the analysed BRCA1 missense variant

Variant Nucleotide BRCA1 functional
domain

Predicted
pathogenici

Y179C c.655A > G cMyc interaction domain Damaging

S1164I c.3610G > T DNA-binding domain Damaging

I1766S c.5416T > G BRCT domain Damaging

M1775R c.5443T > G BRCT domain Damaging

A1789T c.5484G > A BRCT domain Probable

a Based on SIFT, PolyPhen and BIC.
sense mutations within the BRCT domains, and two outside

the BRCT domains.

2. Materials and methods

2.1. Yeast strain and BRCA1 missense variants

We used the diploid strain RS112 of S. cerevisiae (from Rob-

ert Schiestl, UCLA, Los Angeles, CA, USA) transformed with

the vector YCp GAL::BRCA1 which contains the human

BRCA1 gene under the control of galactose inducible pro-

moter GAL1p (obtained from Craig Bennett, Duke University,

Durham, NC, USA) or with the derivative vectors carrying

the following BRCA1 missense variants: Y179C, S1164I,

I1766S, M1775R and A1789T.13 Except for M1775R that had

been described as deleterious by a transcriptional activation

assay14 and, more recently, by a multi-modal approach,15 all

variants were either not reported or described as missense

variants of unknown pathological significance in BIC data-

base. However, in silico analyses with Sorting Intolerant

From Tolerant (SIFT) (http://blocks.fhcrc.org/sift/SIFT.html)

and Polymorphism Phenotyping (PolyPhen) (http://tux.-

embl-heidelberg.de/ramensky/polyphen.cgi) show that all

variants probably inactivate protein function.13 The I1766S

variant has been reported as deleterious in one paper,16

while the Y179C has previously been studied without reach-

ing any conclusive result;17,18 S1164I and A1789T had never

been studied before the work of Caligo and colleagues,

2009.13

Concerning the effects on yeast cell phenotype, only the

mutations in the BRCT domains (I1766S, M1775R and

A1789T) reverted the growth suppression (small colony) phe-

notype,13 typically observed in yeast cells transformed with

wild-type BRCA1.11 Two of them, I1766S and M1775R, also in-

duced HR. As expected, the two variants, Y179C and S1164I,

mapping outside the BRCT domains, did not revert the small

colony phenotype, but induced HR.13 Table 1 resumes all five

variants’ features.

2.2. Induction of BRCA1 expression

The expression of BRCA1 was induced as follows: stable trans-

formants obtained as reported by Caligo et al.13 were pre-

grown in 10–20 ml of glucose medium for 24 h at 30 �C. Then,

cell pellets were washed in water and were split into two ali-

quots: one was inoculated in 20 ml of glucose and the other
s.

tya
Reported

pathogenicity
Small colony

phenotype
assay

Homologous
recombination

induction

Neutral16,17 – +

Never studied before – +

Deleterious15 + +

Deleterious13,14 + +

Never studied before + –

http://research.nhgri.nih.gov/bic/
http://blocks.fhcrc.org/sift/SIFT.html
http://tux.embl-heidelberg.de/ramensky/polyphen.cgi
http://tux.embl-heidelberg.de/ramensky/polyphen.cgi
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was inoculated in 20 ml of galactose medium. The cultures

were incubated at 30 �C for 24 h under constant shaking.

Thereafter, cells were washed twice in sterile water and were

immediately used to extract RNA or stored at )20 �C.

The expression of BRCA1 protein was assessed by Western

blot analysis.13 The observed phenotypes (proliferation or HR)

were independent from the level of expression of BRCA1

variants.13

2.3. Isolation of RNA

Total RNA extraction and DNase treatment were performed

with the MasterPureTM Yeast RNA Purification Kit (Epicentre

Biotechnologies, Madison, WI, USA), according to the manu-

facturer’s instructions. The RNA was further cleaned using

the chromatographic system RNeasy MinElute Cleanup (Qia-

gen, Valencia, CA, USA).

The concentration and purity of total RNA were measured

by 260 nm UV absorption and by 260/280 ratios, respectively,

by using NanoDrop ND-1000 Spectrophotometer (NanoDrop

Technologies, Inc. Wilmington, Del, USA): all RNAs displayed

a 260/280 OD ratio > 1.9.

The RNA integrity was verified by electrophoresis on a

1.2% agarose-formaldehyde gel.

2.4. Microarray hybridisation

One microgram of each RNA sample was amplified and dye-

labelled with Alexa 647 (red) or Alexa 555 (green) (Invitrogen,

Carlsbad, CA, USA) with the Amino Allyl MessageAmpTM II

aRNA Amplification Kit (Ambion, Austin, TX, USA).

The Alexa 647 and Alexa 555 dye incorporation rates were

measured by UV absorption at 647 nm and 555 nm, respec-

tively. Both fluorophores showed a comparable efficiency of

incorporation ranging between 5 and 6 dye molecules per

100 nucleotides. Afterwards, 250 ll of hybridisation mix con-

taining 0.25 lg of Alexa 555-labelled amplified RNA (corre-

sponding to 35–40 picomoles of Alexa 555 dye), 0.25 lg of

Alexa 647-labelled amplified RNA (corresponding to 35–

40 picomoles of Alexa 647 dye), 25 ll of 10X control targets,

5 ll of 25X fragmentation buffer and 125 ll of 2X hybridisation

buffer (the three latter ones from the In situ hybridisation kit

plus, Agilent Technologies, Palo Alto, CA, USA) was hybridised

to each array on Yeast Oligo 2·11k Microarrays (Agilent Tech-

nologies, Palo Alto, CA, USA). Each slide contains 2 arrays with
Table 2 – Microarray experimental design.

Slide # Array #

1 1_1

1 1_2

2 2_1

2 2_2

3 3_1

3 3_2

4 4_1

4 4_2

5 5_1

5 5_2
11,000 60-mer oligonucleotide probes representing 6256 Open

Reading Frame (ORF) of S. cerevisiae S288C strain. The array

hybridisation was performed at 60 �C in an oven (Agilent

Technologies, Palo Alto, CA, USA) for 17 h under constant

rotation.

After hybridisation, the arrays were washed consecutively

in 6X SSC, 0.005% TritonX-102 (In situ Hybridisation kit Plus,

Agilent Technologies, Palo Alto, CA, USA) solution for 10 min

at room temperature and in 0.1X SSC, 0.005% Triton X-102

solution for 5 min on ice and were air dried.

2.5. Experimental design

Microarray experiments were performed by using a dye swap

‘reference design’.

The RNA from yeast cells transformed with each BRCA1

variant (BRCA1 mut+ cells) was labelled twice, with Alexa 555

and with Alexa 647, respectively. Each pair of targets was

hybridised on two distinct arrays on the same slide and was

compared to RNA from BRCA1 wt+ cells as indicated in Table

2. Two experimental replicas in dye swap per sample were

thus produced in order to avoid dye effect and mutation effect

confounding.

2.6. Microarray data acquisition and analysis

Microarray images were acquired by Gene Pix 4000B dual-la-

ser scanner (Axon Instruments, USA) at 5 lm resolution,

100% gain and variable PMT, depending on the needed colour

balancing.

Intensity raw data were extracted from TIF images by

using the GenePix PRO 6.0 software (Molecular Devices, Sun-

nyvale, CA, USA) and were analysed by using LIMMA pack-

age,19 an add-in library of Bioconductor (http://

www.bioconductor.org).

Before performing the statistical analysis, background was

subtracted from the raw data by using the LIMMA package

‘minimum’ method, which sets any null or negative intensity

value generated by the classical background subtraction,

equal to half the minimum of the positive corrected intensity

values for that array.

Data were normalised within arrays by ‘LOWESS’ method

and between arrays by ‘Aquantile’ method, both from the LIM-

MA package. B-statistic20 and adjusted p-value (adj-p)21 were

utilised to assign statistical significance to each differentially
Alexa 555 Alexa 647

M1775R Wild type

Wild type M1775R

I1766S Wild type

Wild type I1766S

A1789T Wild type

Wild type A1789T

S1164I Wild type

Wild type S1164I

Y179C Wild type

Wild type Y179C

http://www.bioconductor.org
http://www.bioconductor.org


Fig. 1 – Venn diagram of differentially expressed genes by

P-, R- and RP-set variants.
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expressed gene. Only genes with B > 0 and adj-p < 0.01 were

considered.

Pathway analyses were performed by Pathway Explorer

(http://pathwayexplorer.genome.tugraz.at/). The list of differ-

entially expressed genes was also analysed by an accurate

investigation of the literature to search for genes and molec-

ular pathways potentially involved in the observed pheno-

types. To this aim we used Saccharomyces Genome

Database (SGD) (http://www.yeastgenome.org), Ensembl

(http://www.ensembl.org), information Hyperlinked Over Pro-

teins (iHOP) (http://www.ihop-net.org/UniPub/iHOP/), Munich

Information centre for Protein Sequences (MIPS) (http://

MIPS.gsf.de) and PubMed Central (http://www.ncbi.nlm.nih.

gov/sites/entrez?db=pubmed).

2.7. Microarray data validation by real-time PCR

The total RNA samples that were used for microarray experi-

ments were also used for real-time PCR analysis.

Total RNAs were reverse transcribed with random and oli-

go-dT primers using the QuantiTect Reverse Transcription kit

(Qiagen, Valencia, CA, USA).

PCR primers were designed using the Beacon Designer 4.0

software (Premier Biosoft. International, Palo Alto, CA, USA)

and were synthesised by Invitrogen (Carlsbad, CA, USA). Pri-

mer sequences are listed out in Table 3.

Real-time PCRs were performed in the iCycler iQ instru-

ment (Biorad, Hercules, CA, USA) with the Brilliant�SYBR�

GreenQPCR Master Mix (Stratagene, La Jolla, CA, USA) mixed

with the uracil–DNA-glycosylase (Fermentas, M-Medical, Mi-

lan, Italy) and fluorescein (Biorad, Hercules, CA, USA).

For each primer pair, we tested the amplification efficiency

by using five serial dilutions of cDNA carried out in duplicate:

all primer pairs displayed an efficiency between 85% and

100%.

The stability of three housekeeping genes (PGK1, PDA1 and

ORC5) was evaluated by using geNorm software.22 Only two of

them, PGK1 and PDA1, were used to normalise the expression

values of the target genes because the third one, ORC5, did not

show a M stability parameter value higher than 1.5 (threshold

established by geNorm).

Each sample was run in triplicate to calculate the standard

deviation (SD) for the three experimental replicates. We con-

sidered only the experiments with SD < 0.4 for each group of

replicates.

The relative expression levels for the target genes in BRCA1

mut+ cells with respect to BRCA1 wt+ cells were calculated by
Table 3 – Real-time PCR primer pairs and corresponding gene

Gene SGD code Forward pri

RNR1 YER070W 5 0 CGAACCAGTCACTTC

POL30 YBR088C 5 0 ACCCTGTCATTGCCA

SKM1 YOL113W 5 0 CTGGTCAAGGAGCAA

HHF2 YNL030W 5 0 GCTAGAAGAGGTGGT

ADE1 YAR015W 5 0 CCAAGGCTGAACAA

PGK1 YCR012W 5 0 TCACTCTTCTATGGT

PDA1 YER178W 5 0 TTGCTAAGGACTGGT

ORC5 YNL261W 5 0 AAGGTAAGGCGGAG
the Pfaffl method23 with the Gene Expression MacroTM 1.1

application (Bio-Rad, Hercules, CA, USA). They were reported

as fold increase or decrease.

3. Results

3.1. Microarray results

Data analysis was performed by grouping the BRCA1 variants

(Y179C, S1164I, I1766S, M1775R and A1789T) into three sets:

Recombination (R)-set (Y179C and S1164I), Recombination

and Proliferation (RP)-set (M1775R and I1766S) and Prolifera-

tion (P)-set (A1789T), according to their effects on yeast cell

phenotype observed by functional assays,13 which are sum-

marised in Table 1.

The analysis revealed 470, 740 and 1136 differentially

expressed genes in R-, P- and RP-set, respectively (Fig. 1;

Supplementary Tables S1–S3); 353 (207+146) genes were mod-

ulated by both P- and RP-mutations (P \ RP), 320 (174+146) by

R- and RP-mutations (R \ RP), 185 (39+146) by R- and P-muta-

tions (R \ P) and 146 by R-, RP- and P-mutations (R \ RP \ P)

(Fig. 1). Complete information about the microarray experi-

ments and results can be retrieved from the ArrayExpress
s.

mer Reverse primer

CAATATG 3 0 5 0 TCATCCCAAATACCTAAATCAACC 3 0

TCTTC 3 0 5 0 TTAGCTCCGAACGTCAAGTC 3 0

GTGGTG 3 0 5 0 CTACGACTCGGTGGCAATGTG 3 0

GTCAAG 30 5 0 GTTCAGTGTAAGTAACAGAGTCC 3 0

GGTGAAC 3 0 5 0 TTAGTGTCTGCGATGATGATGC 3 0

CGGTTTCG 3 0 5 0 AATGGTCTGGTTGGGTTCTCC 3 0

GTCTATC 3 0 5 0 AATCTCGTCTCTAGTTCTGTAGG 3 0

AGTGG 3 0 5 0 CGTGAATATCGCTGAAGTAATCG 3 0

http://pathwayexplorer.genome.tugraz.at/
http://www.yeastgenome.org
http://www.ensembl.org
http://www.ihop-net.org/UniPub/iHOP/
http://MIPS.gsf.de
http://MIPS.gsf.de
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
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database at the European Bioinformatics Institute (EBI)

(http://www.ebi.ac.uk/arrayexpress/) by using the following

accession number: E-MEXP-1867.

Pathway Explorer mapped about 20% of each set of differen-

tially expressed genes (Supplementary Tables S4–S6).

3.2. Microarray data validation by real-time PCR

Five transcripts among those identified as differentially ex-

pressed by microarray analysis were selected for validation

by real-time PCR: Ribonucleotide-Diphosphate Reductase,

Large Subunit (RNR1), Proliferating Cell Nuclear Antigen

(POL30), STE20/PAK Homologous Kinase Related to Morpho-

genesis (SKM1), Histone H4 protein (HHF2) and N-Succinyl-5-

Aminoimidazole-4-Carboxamide Ribonucleotide Synthetase

(ADE1), (Table 3). By microarray experiments, RNR1 and

POL30 resulted down-regulated in all three sets of variants,

SKM1 up-regulated in all three sets and HHF2 and ADE1

down-regulated in R- and RP-set (Fig. 2).

Real-time PCR analysis was performed by considering the

variants one by one and the differential expression was con-

sistently confirmed for all the five examined genes (Fig. 2).
Fig. 2 – Microarray (open bars) and real-time PCR (dashed

bars) log-fold changes of genes validated by real-time PCR.
4. Discussion

To investigate the molecular mechanisms that are activated

in yeast by potentially deleterious BRCA1 variants, in this

study we hybridised the RNA obtained from yeast cells trans-

formed with five variants exhibiting a phenotypic effect either

on proliferation and/or on HR on microarrays,13 in compari-

son with the RNA from yeast cells transformed with wild-type

BRCA1 (Tables 1 and 2).

Microarray data relative to the five BRCA1 variants were

analysed by grouping them into three sets, based on the phe-

notypes described by Caligo et al.13 We assumed that the

genes that are consistently induced or repressed by different

variants producing the same phenotype would be function-

ally correlated with the phenotype itself.

That only 20% of the differentially expressed genes were

mapped by Pathway Explorer is due to the fact that pathway

analysis of yeast genes is still little informative, as a very

small number of yeast genes have been placed on KEGG

(http://www.genome.jp/kegg/) pathways by means of their

homology to human genes, and most of them are involved

in metabolism. This is why most differentially expressed

genes placed by Pathway Explorer were assigned to metabolic

pathways, including nucleotide metabolism. Other interest-

ing pathways such as cell cycle, and DNA replication and re-

pair emerged from the analysis, but the small numbers of

homologous genes till now assigned to these pathways did

not allow for the detection of meaningful differences among

the three lists of differentially expressed genes. Thus, the

gene lists were analysed by screening the literature and some

groups of functionally related genes, which might be more di-

rectly involved in the induction of the observed phenotypes,

were identified.
4.1. Genes potentially involved in the induction of
homologous recombination

Chromatin assembly – HHF2, HTA2 and HTB2, encoding histone

proteins H4, H2A and H2B, respectively, were down-regulated

by R- and RP-set variants. HTB2 was also down-regulated by

the A1789T (P) variant. Interestingly, partial depletion of his-

tone H4 has been shown to induce an increase in HR in

yeast.24 H2Ax, the mammalian homologue of H2A, facilitates

the assembly of specific DNA repair-complexes on damaged

DNA.25

The genes encoding for two components of histone acetyl-

transferase B, HIF1 and HAT1, turned out to be down-regu-

lated by RP-set variants only and by all three sets,

respectively. Acetylation of newly synthesised histone H4 by

histone acetyltranferase B plays a role in telomeric silencing

and double-strand break (DSB) repair.26

Nucleotide metabolism – An alteration of nucleotide metab-

olism can contribute to HR as suggested by Yuen et al.,27

who, in a systematic screen for genes associated to chromo-

some instability, showed that several genes coding for en-

zymes of the adenosine biosynthetic pathway, when

deleted, lead to an increased frequency of chromosomal

rearrangements. In the present work, three ADE genes

(ADE1, ADE13 and ADE17) turned out to be down-regulated

http://www.ebi.ac.uk/arrayexpress/
http://www.genome.jp/kegg/
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by R- and RP-set BRCA1 variants. ADE6 was down-regulated

by RP-set variants. ADE4 was down-regulated by all three

sets of variants.

URA2, which was down-regulated by RP-set variants, and

URA3, which was down-regulated by both RP- and P-set vari-

ants, are structural genes involved in the de novo biosynthesis

of uridine monophosphate (UMP).28

DCD1, which was down-regulated by RP-set variants, is a

dCMP deaminase required for dCTP and dTTP synthesis.29

PRS4, which was down-regulated by RP-set variants, is a

phosphoribosylpyrophosphate synthetase required for nucle-

otide, histidine and tryptophan biosynthesis.30

DUT1, which was down-regulated by all three sets of vari-

ants, encodes a dUTPase: by hydrolysing dUTP to dUMP and

PPi, DUT1 prevents incorporation of uracil into DNA during

replication, thus participating in the maintenance of genome

integrity.31

Transcription – SUB2 and RPB8 are down-regulated by R- and

RP-set variants. SUB2 protein is a putative RNA helicase

which promotes transcriptional elongation and suppresses

transcription-associated recombination.32 SUB2 inactivation

has been shown to increase the recombination rate 800-

fold.33 RPB8 is a highly conserved subunit present in all three

eukaryotic RNA polymerases. Although its function is still un-

clear, both yeast and human RPB8 proteins can bind single-

stranded oligonucleotides,34,35 and human RPB8 is polyubiq-

uitinated by BRCA1 in response to DNA damage.36

DNA replication and repair – POL30, whose expression is

down-regulated by all three sets of variants, encodes the Pro-

liferative Cell Nuclear Antigen (PCNA), a homotrimeric com-

plex that functions as a sliding clamp and processivity factor

for DNA polymerases;37 it is also required for sister chromatid

cohesion38 and multiple forms of DNA repair.39 Interestingly,

ectopic expression of wild-type BRCA1 in human cell lines

up-regulates PCNA, the human homologue of POL30.40

The genes coding for three subunits of replication factor C,

RFC3, RFC4 and RFC5, were down-regulated by both RP- and P-

set variants: replication factor C is a DNA-binding protein and

ATPase that acts as a clamp loader of the proliferating cell nu-

clear antigen (PCNA).41

PCNA interacts with RAD27 (whose mRNA is down-regu-

lated by all three sets of variants)42 and POL32 (whose mRNA

is down-regulated by RP-set variants),43 among other pro-

teins. RAD27 is a flap endonuclease which, in cooperation

with the product of RNH201 (down-regulated by RP-set vari-

ants) removes RNA primers from Okazaki fragments during

DNA lagging strand synthesis, a critical process for the main-

tenance of genome integrity.44 POL32 is the third subunit of

DNA polymerase delta; pol32delta mutants show severe de-

fects in DNA repair, replication and mutagenesis.45

R-set variants up-regulated SOH1, which encodes a protein

interacting with factors involved in DNA repair and transcrip-

tion,46 and down-regulated NHP6B, a member of the high-

mobility group box (HMGB) superfamily whose loss leads to

genomic instability and hypersensitivity to DNA-damaging

agents in yeast; mouse fibroblasts lacking NHP6B homologue,

HMGB1, display higher rates of DNA damage after UV irradia-

tion and chromosomal instability.47

The product of SEM1 (down-regulated by RP-set variants) is

one of the components of the regulatory cap of 26S protea-
some, a complex involved in protein degradation and DNA

DSB repair.48 The human SEM1 homologue, DSS1, interacts

with BRCA249 which, in turn, has been shown to interact with

BRCA1 at sites of DNA damage.50 Given the conserved role of

SEM1/DSS1 in HR, its down-regulation might represent a pos-

sible mechanism through which some mutant forms of

BRCA1 lead to cancer development.

4.2. Genes potentially involved in proliferation recovery

Cell cycle – The expression of several cell cycle genes was al-

tered by the P-set variant. These include CDC6, encoding a

component of the pre-replicative complex,51 some cyclin

genes (CLN1 and CLB6)52,53 and some genes coding for pro-

teins involved in cell cycle checkpoints (RFC5, DRC1, DDC1

and IPL1),54–57 all down-regulated, and the G1 cyclin gene

CLN,58which is up-regulated. The transcription of CDC6,

DRC1, CLN1, CLB6 and IPL1 is regulated by MBF and SBF tran-

scription complexes,57,59 suggesting that BRCA1 might inter-

act, directly or indirectly, with these complexes.

Interestingly, in mammalian cells, BRCA1 interacts with hyp-

ophosphorylated RB which, in turn, interacts with the E2F

transcription factor, a functional homologue of MBF and SBF

which coordinates the transcription of cell cycle genes.7,9,60

Nucleotide metabolism – The ribonucleotide reductase small

subunit genes RNR2 and RNR4,61 are up-regulated by RP-set

variants. The human homologue of RNR2 promotes malignant

progression in mammalian cells and is up-regulated in pre-

malignant breast disease.62,63 The gene coding for the large

subunit of ribonucleotide reductase, RNR1, was down-regu-

lated by all three sets of BRCA1 variants.64 Interestingly, over-

expression of mouse RNR1 suppresses the tumourigenicity of

ras-transformed cells.65

Invasive and pseudohyphal growth – A group of genes related

to invasive (haploid) and pseudohyphal (diploid) growth was

up-regulated by the P-set variant: FLO11, MEP2, GPA2, HMS1

and ASH1. FLO11 encodes a surface mucin, and represents a

key gene of both invasive (haploid) and pseudohyphal (dip-

loid) growth pathways;66 MEP2, GPA2, HMS1 and ASH1 are all

implicated in a number of signal transduction cascades lead-

ing to the activation of FLO11 transcription.67–69 Consistently,

DIG2, a negative regulator of FLO11 transcription,70,71 is down-

regulated in cells transformed with the P-set variant.

SKM1, coding for a Ste20/PAK (p21-activated-kinase)-like

serine/threonine protein kinase presumably involved in the

activation of polarised growth,72 is up-regulated by all BRCA1

variant sets. Invasive growth and pseudohyphal growth are

characterised by polarised growth, and alterations of motility,

cell–cell and cell–substrate adhesiveness and substrate inva-

siveness.73 These morphological changes recall those of can-

cer cells; indeed, several homologues of yeast genes involved

in cytoskeleton remodelling and cell motility are overexpres-

sed in human cancer cells.74 The mucin family is conserved

among eukaryotes and overexpression of one mucin or more

mucins has been observed in many types of cancers,75,76 and

the expression level of several human mucins correlates with

tumour invasiveness.75

Human proteins belonging to the PAK family act down-

stream of RHO-GTPases, like Cdc42 and Rac proteins, and play

a role in modulating the actin cytoskeleton.77 Overexpression
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of RAC proteins is directly correlated with tumour invasive-

ness and cellular motility in breast cancer.78 In addition, in

breast cancer cell lines the human protein PAK1 interacts

with histone H379 and its overexpression leads to abnormal

assembly of the mitotic spindle.80
4.3. Genes potentially involved in both induction of
homologous recombination and proliferation recovery

Chromatin remodelling – ARP7, ARP9 and SFH1 were down-regu-

lated by RP-set variants. Arp7, Arp9 and Sfh1 are components

of the chromatin remodelling complexes SWI/SNF and

RSC,81,82 which promote transcription elongation,83 take part

in DNA DSB repair84 and control progression through the cell

cycle.85 Interestingly, in human cells, there is evidence that

BRCA1 controls transcription via a direct interaction with a

SWI/SNF-related complex.86 Yeast SFH1 is the homologue of

the human tumour suppressor gene SNF5.87

Cell cycle checkpoints – TOP2 (down-regulated by RP-set vari-

ants) encodes a type II topoisomerase which prevents chro-

mosome aberrations by facilitating the separation between

replicated sister chromatids and by preventing recombination

between rDNA repeats.88,89 Both yeast TOP2 and its human

homologue are involved in the G2/M decatenation check-

point, which, in human cells, requires BRCA1.8,90

The protein encoded by MSH2, also conserved in mam-

mals, forms two protein complexes, with either MSH6 or

MSH3, which are able to recognise base-base mispairs and

single-base insertions/deletions, or larger insertions/dele-

tions, respectively, to initiate the repair process.91 In human

cells, MSH2 takes part in the BRCA1-associated surveillance

complex,92 and cooperates with BRCA1 in activating the G2-

M checkpoint following DNA damage.93 MSH2 was down-reg-

ulated by all three sets of variants.
5. Concluding remarks

The present work highlights a number of genes and molecu-

lar pathways which are affected in yeast by five BRCA1 mis-

sense mutations in comparison with wild-type BRCA1.

These data point to some molecular mechanisms which

might be responsible for the effects of BRCA1 variants on

yeast phenotype: transcriptional elongation, and DNA repli-

cation and repair, whose alterations might contribute to the

rise in HR rate; cell cycle checkpoint control and growth reg-

ulation, whose alterations probably contribute to proliferation

recovery; chromatin assembly and remodelling and nucleo-

tide metabolism, as pathways which might be implicated in

both phenomena. The alteration of molecular mechanisms

critical for the control of cell proliferation and of genome

integrity provides further support to the hypothesis of a path-

ogenic role of the analysed mutations, already suggested by

the results of Caligo et al.13 It also supports a dual role of

BRCA1 in cancer protection, both as a caretaker and a gate-

keeper gene.94

Finally, our results confirm that yeast, despite the absence

of a BRCA1 homologue, represents a valid model system to

examine BRCA1 molecular functions, as the molecular path-

ways activated by BRCA1 variants are conserved in humans.
Thus, information acquired in the yeast model may contrib-

ute to understand the molecular events that occur in human

cells as a consequence of BRCA1.
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