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In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is
presented. A viscoelastic force describing the interaction between the polymer network and the
bounded water present in such materials is introduced. The model is tested by means of ultrasound
wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and
experiments show that ultrasound attenuation decreases linearly with the increase in the water
volume fraction B of the hydrogel. The introduction of the viscoelastic force between the bounded
water and the polymer network leads to a bi-phasic theory, showing an ultrasonic fast wave
attenuation that can vary as a function of the frequency with a non-integer exponent in agreement
with the experimental data in literature. When 3 tends to 1 (100% of interstitial water) due to the
presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than
that of pure water. The ultrasound speed gap at S=1 is confirmed by the experimental results,
showing that it increases in less cross-linked gel samples which own a higher concentration of
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bounded water. © 2010 Acoustical Society of America. [DOI: 10.1121/1.3293000]

PACS number(s): 43.20.Jr, 43.20.Bi, 43.80.Cs, 43.80.Ev [ADP]

I. INTRODUCTION

The present work is motivated in defining a reliable
model for ultrasound (US) wave propagation both in
hydlrogelsl_5 and in extra-cellular matrices of natural soft
tissues.®™®

In fact, even if the structure of a synthetic hydrogel is
somehow different from that one of extra-cellular matrices
with proteoglycans exists a strong analogy between the mac-
roscopic response of charged hydrogels and that one of natu-
ral matrices, such as that one of derma,9 in the diffusional
wave limit.

On this basis, the US model for hydrogels can be a the-
oretical tool for the study and the characterization of tissue-
mimicking phantom for US thermal therapy and for the de-
velopment of non-invasive assessment method of soft tissue
stiffness.'*"?

This possibility is confirmed by the current research in-
vestigations that clearly show how the knowledge of the link
between the poroelastic characteristics of a biological tissue
and its acoustical behavior is a source of information that can
be used for non-invasive investigation techniques.13 14

On the other hand, the US propagation in natural hydro-
gels, mostly composed of water, is usually modeled by
means of the wave equation that holds for liquids.5 Even if
this approach is sufficiently satisfying, it does not completely
explain the experimental behavior of US.

There are many discrepancies between US propagation
in water and in natural hydrogels of soft tissues both for
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transverse and longitudinal acoustic waves.
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As far as longitudinal waves in biological gels are con-
cerned, in the US absorption frequency law »'*9 (where v is
the US frequency) o ranges between i and 1, while it holds
that 8=1 for water."

The fractional value of & cannot also be explained by
means of the established bi-phasic theories that lead to a
frequency dependence equal to that of water with 6= 1.1617

The bi-phasic models of the acoustic wave propagation
were born in geology and engineering sciences'* ™ from
where they received a clear imprinting. All proposed
theories'®** do not abandon the scheme of a solid matrix
permeated by a well distinguishable fluid.

Actually, it is quite evident that gels constitute a possible
exception where the solid phase and the liquid one are
chemically interacting and the boundary is not simply de-
fined. As a matter of fact, the presence of the bounded water
around the polymer chains creates a bearing whose thickness
and viscous force do not follow the fluid dynamics laws.'*?°

In order to solve this theoretical leak, in the present pa-
per, a viscoelastic matrix-fluid interaction specific for hydro-
gels is introduced.

The hydrogel structure is somewhere between a solid
and a liquid. It consists of polymers, or long chain mol-
ecules, which are cross-linked to create an entangled network
immersed in a liquid medium that fills the intra-molecular
interstices.

The properties of gels are strongly influenced by the
interaction of these two components.

First, gels were conceptualized as porous media consist-
ing of two interpenetrating macroscopic substances (an elas-
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tic and porous solid matrix and a fluid). An elegant and sat-
isfying theory based on this approach is the poroelastic
model developed by Biot,'¢:1723:24

One of the main characteristics of the Biot theory is that
the dissipative relaxation is mainly ascribed to the relative
motion of fluid against solid, while dissipations within fluid
and solid are neglected.

At low frequencies, the friction of the fluid that moves
against the solid network leads to a “diffusional” wave, giv-
ing theoretical forecasts that well agree with many experi-
mental results.”? >’ Instead, this solid-fluid interaction
scheme becomes inadequate at high frequencies.

In order to obtain a more satisfying model to describe
how ultrasounds propagate in hydrogels, we propose a new
mechanism of interaction between the fluid (water) and the
solid matrix (polymer network).

The main mathematical statement, introduced here,
takes into account the presence of the bounded water at-
tached to the polymeric network of the hydrogel. The fluid-
matrix interaction is modeled by ascribing a viscoelastic
force between the polymer matrix and the bounded water
around it, while a viscous force between the “polymer-
bounded water aggregate” and the interstitial free water is
assumed.

This assumption leads to relevant outcomes concerning
the US propagation in gels. As confirmed by the experi-
ments, the effect of the bounded water in hydrogels on the
US speed is quite relevant as well as the frequency depen-
dence of their attenuation. The model of the US propagation
in hydrogels can lead to the understanding of their behavior
and how it takes origin from the poroelastic structure. The
possibility to describe the US propagation in terms of the
poroelastic characteristics of both cells and extra-cellular
matrix may lead to US non-invasive technique for the evalu-
ation of the tissue physiology since the permeability and
elasticity of the cell structures are directly related to their
state and functionality.

In the following we derive the phase velocity of longi-
tudinal US plane waves and their attenuation in hydrogels
(Sec. II) by using the proposed fluid-matrix interaction.

Then, in Sec. III, we compare the theoretical forecasts
with the outcomes of experimental measurements.

Il. POROELASTIC WAVES IN HYDROGELS

Biot’s'®! theory is carried out by assuming that the

fluid motion in the pores follows the Poiseuille flow. In this
case, the characteristic boundary, where the velocity attains a
certain percentage of its maximum, is known as the viscous
skin depth'*?" (5,/mvp,)"2, where p; and 7, are the fluid
mass density and its dynamic viscosity, respectively. In the
low frequency limit, this layer becomes larger than the pore
diameter and the velocity profile can be assumed parabolic.
At higher frequencies, when the viscous skin depth is smaller
than the pore size, Biot'" added a compensating factor F, to
the fluid-solid friction coefficient f to take into account for
the divergence by the Poiseuille flow. He stated that F,,
increases according to the law lim,,. .. F(, < (v/v,)"?,

1198 J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010

where v.=f/p; and f is the zero frequency friction
coefficient™ (i.c., the inverse of the hydraulic permeability of
the medium).

Given that pore dimensions are very small in gels, the
crossover frequency v, is very high [for instance, polyviny-
lalcohol  (PVA)-polyacrylic acid hydrogels30 show v,
~ 10" Hz, close to the maximum frequency allowed in ma-
terial media]. Therefore, for usual US frequencies the factor
F(,) in hydrogels should be always used in the low frequency
limit (i.e., F(,)=1). This fact gives the US attenuation'’ pro-
portional to »* while the experimental results follow the
law" =" with n ranging between 1,25 and 1,50.

In the frame of the bi-phasic approach one possible way
out is to consider a different fluid-network interaction for
hydrogels.

If we look at the hydrogel structure, it shows water mol-
ecules that are bounded to the matrix polymer chains by
means of chemical interactions. The local polymer field or-
ganizes the water molecules around itself in a way that they
can be assumed radially bounded to its chains, while rela-
tively free to move along the perpendicular direction in a
viscous manner. Due to the fact that in an isotropic gel the
polymer chains are oriented in all directions, under the elas-
tic wave action, the bounded water molecules will respond in
an elastic and viscous manner as a mean. Thence, a more
appropriate matrix-fluid interaction scheme is assumed:

(1) a viscoelastic interaction between the bounded water
and the polymer matrix (with an elastic constant k and
a friction coefficient 7) and

(ii)  a pure viscous interaction between the bounded water
molecules (surrounding the polymer network) and the
free water.

A. Compressional waves for dilute poroelastic media

Since the percentile content of water in gels is often very
high (up to 99%), in the low frequency limit the poroelastic
theories for hydrogels make historically use of the dilute
matrix approximation® > [i.e., B~1, where B=V,/(V,
+V,), where V,, and V, are the volumes of water and poly-
mer, respectively]. Such an approximation works very well
even for gels with a remarkable polymer content (owing 3
down to 0.50).

For the high frequency limit, the dilute matrix approxi-
mation does not work so well especially for the US wave
speed that shows to be sensibly dependent on the polymer
content for values of 8 up to 0.7. Nevertheless, the dilute
matrix approximation is still physically meaningful for 8
bigger than 0.8 where it clearly defines the behavior of the
US wave speed.

Before introducing the specific hydrogel fluid-matrix in-
teraction, we derive the poroelastic longitudinal wave equa-
tions in the limit of very dilute matrix with incompressible
solid and liquid constituents.

In this case the compressional elastic moduli of the fluid
and the solid matrix can be assumed to be greater than all the
other elastic moduli in the poroelastic longitudinal wave
equ21ti0ns16’]7’23’24 that read
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VZ(PSHCY + Qeaa) = &z(pl 1€aat plZeuza)/atz
+ BfF () 9 (84— €4a)! 1, (1)

Vz(Qsaa + Reaa) = &Z(pIZSaa + p22eaa)/07l2
- BfF(V) d (8aa - eaa)/ﬁt’ (2)

where g;; is the solid strain tensor, e, is the trace of the
liquid strain tensor, B is the pore volume fraction (equating
the fluid volume fraction), and p;;, p2, and p,, are the mass
density parameters for the hydrogel that are related to the
solid and fluid mass densities p, and py, respectively, by the
identities

pi+pia=(1-PB)p;,
pi2+ P2 = Bpy,

pio=(1- @) Bpy,

where a> 1 is a molecular shape factor which is independent
of the solid or fluid mass densities. For a matrix built up by
spherical particles, Berryman34 showed to be a:%(,B‘ '+1).

Furthermore, p;; is the inertial mass density of the solid
matrix when it accelerates while the fluid is contemporarily
prevented to move, and p;, is the mass density parameter for
the force that the fluid exerts on the solid as the latter is
accelerated relative to the former.”® This happens since the
fluid and the solid in the poroelastic media are coupled to
each other. If fluid and solid would be independent of each
other (i.e., p;,=0) the inertial mass density of solid and fluid
in the bi-phasic medium would result just equal to their spe-
cific ones (p, and p;) multiplied by their volume fractions
(1-) and B, respectively.

Moreover, P, Q, and R are the poroelastic coefficients of
the medium that can be measured by means of jacketed and
unjacketed experiments.24 In the jacketed rheological mea-
surements, the solid matrix is subject to compressional tests
carried out maintaining the pore fluid at constant pressure,
while in the unjacketed ones, the specimen dilatation is mea-
sured as a function of the fluid pressure in the pores, leaving
the solid matrix free from external forces.**

In the limit of high liquid phase content (8=1) and
incompressible constituents, the following conditions over
the poroelastic coefficients and mass density parameters
hold: 161723

R>Q>P, 3)
QR=(1-p)/p=(1-p), 4)
pP12==p11 < P2 (5)

By introducing the above approximations into the longitudi-
nal wave equations we obtain

VzQeaa = ﬂzpll(gaa - eaa)/’?tz + BfF(V) d (Saa - eaa)/ata
(6)
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Vz(Qsaa + Reaa) = 32(p128aa + p22eaa)/&t2

_BfF(V) &(Saa_eaa)/aL (7)

Given that the friction coefficient f is very high25‘27’30"33 it

follows that the displacement |&,,—e,,| of the “slow” wave
(liquid and solid in counter-phase) is very small compared to
that of the fast wave |e,,| so that it is possible to pose
|€ 0al =|€4al and, hence

(p128aa + p22€aa) = (P22 + plZ)eaa = ﬁpfeaa’ (8)

that introduced in Eq. (7) leads to

R
VZEeaa = az(ﬁpfeaa)/atz - BfF(V) d (Saa - eaa)/at'

(10)

Assuming for dilute matrices Berryman’s34 formula (that cal-
culates p;; for coil-like polymer molecules as those ones of
the PVA hydrogel), p;, reads

pi=(1-P)p,—3(1-B"Bp;

from where for =1 it follows that p,;;=0. Hence, Egs. (6)
and (10) approximately read as

VzQeaa = BfF(V) a(saa_eaa)/&t’ (11)

V2%em = P(Bpeaa) 1. (12)

Moreover, by introducing Eq. (12) into Eq. (11), the follow-
ing relation between the “slow wave” and the fast wave dis-
placements,

‘9(801(1_ eaa) ~ lgaz(lgpfeaa)
at  fR o

F(v) , (13)
is obtained.

Finally, by introducing Eq. (13) into Eq. (10), at first
order in (1-/3), we obtain

R
v gean = BT (Bpread) 9 (14)
that, under the hypothesis of 8 constant, reads
V2Re 4o = B (pre na) 1. (15)

Equation (15) represents a purely elastic wave of the first
type that propagates in a medium with a speed ¢ according to
the law

¢ =Rl(pB)) = cjIB’, (16)

where ¢, is the wave velocity in the fluid phase. Since 8 is
smaller than but close to 1 in Eq. (16) we can observe that, in
dilute poroelastic media, the compressional wave has a ve-
locity that is close but always higher than that one in the pure
fluid phase.

Since Eq. (14) is a completely elastic wave equation, to
take into account for the US energy dissipation, the highest
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order of approximation must be considered. In order to do
that, we put Eq. (6) into Eq. (10) and, with the help of Eq.
(4), we obtain the wave equation

Vzgeaa = B (Bpyead)/ 08 + (1= B)

X(pll/ﬁfF(V))a:&(pfeaa)aﬁ' (17)

1. Phase velocity and attenuation of “fast” plane
wave

kx—

Equation (17) for plane waves e, o e~ *¢/**=) gives the

characteristic equation
(k+ia)* = @®p BRI - iw(Q/R) (p1i/fF)].  (18)

By solving k and a and by using the purely elastic phase
velocity c(%:R/ pf,82, the speed and the attenuation per cycle
are obtained, respectively, to be

2= c(z)(l + a2k, (19)

27alk =— m(c/co) (1 = B)(p11/ BfF () (20)

B. Compressional fast wave in hydrogels

Introducing a new constituent such as the bounded wa-
ter, we must pay attention to the definition of the fluid vol-
ume fraction of the hydrogel.

Since the bounded water phase is not a fluid phase, it
must be subtracted from the water volume fraction S that is
the total volume fraction of the water.

The effective free water volume fraction 3, can be ob-
tained on the hypothesis that the number of bounded water
molecules is proportional to the polymer-water contacts.

Since the probability of a polymer-polymer contact at
very low polymer concentration [near S=1, let us say for
(1-A)< B<1]is practically null, the bounded water volume
fraction By, is proportional to the polymer volume fraction
(1-pB) in that range.

When the polymer concentration is high [let us say for
0<B<(1-A)], where A represents the parameter that marks
the boundary between the two regimes, due to the high prob-
ability of polymer-polymer contacts, the increase in polymer
content does not cause a proportional increase in bounded
water so that B, must approach a constant value ¢ as 8
goes to zero.

If we approximate the approaching of the bounded water
volume fraction to this constant value ¢ by means of an
exponential law, we can write

Bow= ¢(1 —exp[- (1 - B)/A]), (21)

where 0<<A <1 and 0< ¢ <1 are empirical parameters to be
deduced from the experimental data.
Therefore, the free water volume fraction reads as

B.=B- (1 —exp[- (1 - B)/A]). (22)

By introducing the free water volume fraction f3,, the pure
elastic acoustic fast wave (15) and its speed, respectively,
read as
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V’Re,, = ﬁz’ﬁz(pfem)/o"tz, (23)

2

2 r

0= (5= (1 —expl—(1- BYAD)" 24
where co=(R/p;B})"? is the pure elastic longitudinal wave
velocity, c;=(R/py)"? its velocity in the intermolecular fluid
(free water), R is Biot’s compressional modulus of the
fluid,'®*! and €.q 18 the trace of the free water stress tensor.

It is worth noting that for vanishing A and for B=(1
—¢&), where €>A is a positive number (smaller than 1), it
holds that By, = ¢, B.=(B—-¢), and Eq. (24) leads to the
relation

2
c

o = —r
0B (B- )

Therefore, the amount of bounded water ¢ can be evaluated
by means of the best-fitted value limg_,; co(g) of the experi-
mental data ¢ By for B;)=(1-¢) following the equation

23
p=1- —L—) (26)
lim CO(B)
p—1

(25)

It is noteworthy to note that the presence of the bounded
water generates a velocity gap between the US velocity in
pure water and that one extrapolated for hydrogels at 8=1 (a
hydrogel made up by 100% of water).

1. Bounded water-polymer network viscoelastic
interaction

The bounded water-polymer network viscoelastic inter-
action can be introduced in the poroelastic equations by add-
ing to Biot’s viscous force (with F(,)=1)

Bef 9(€" = €aa)/ 1, (27)
the viscoelastic one due to the bounded water
OTACH e )0t + Kk(eqq—€" ), (28)

where ¢, is the trace of the bounded water stress tensor.

Actually, introducing the bounded water stress tensor
variable, the bi-phasic approach disembogues into a three-
phasic one that is out of the purpose of this work. Neverthe-
less, the bi-phasic model can be retained since the bounded
water mass density is not much different from that one of the
polymer. It is much like the bounded water “inflates” the
polymer chains, creating a bearing around them. In this case,
the bi-phasic medium can be conceived composed of the
“polymer-bounded water aggregate,” as matrix, plus the in-
terstitial free water. Thence it is possible to introduce the
following approximations.

(1) The mass density of the solid aggregate approximates
that one of the polymer.

(ii)  The trace of the strain tensor of the polymer &,, ap-
proximates that one of the solid aggregate.

(iii) P, Q, and R are the poroelastic coefficients of the new
bi-phasic medium. Moreover, since not the whole
bounded water is involved in the fluid-solid shear pro-
cess.
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(iv)  The inertial effect of bounded water involved in the
fluid-solid shear process can be disregarded.

By means of the fourth hypothesis, the force between
the free water and the bounded water can be equated to that
one between the bounded water and the polymer matrix,
leading to the additional equation needed to solve the three
stresses that reads

:BafF(V) d (e*aa - eaa)/at = M) d (Saa - E*Qa)/at
+ Kk(Eqq—€" 4p)- (29)

Moreover, under hypotheses (i)—(iii) the system of poroelas-
tic equations (1) and (2) reads as

Vz(Psaa + Qeaa) = 32(P118aa+ plZecwz)/[?t2
+Bf (e 40— €ad) it (30)

VZ(Qsaa + Reaa) = &2(p128aa + pZZeaa)/atz
- Bf (e = aa)Ot. (31)

In dilute bi-phasic media the compressional plane wave of
interstitial fluid, e,, e “e/*“)  induces a planar slow
wave, as shown in Eq. (13), that leads to

(Saa - eaa) == (inBgZ/Rf)eaom

where w=27v.
In this case Eq. (29) reads as

Bef& (e*aa - eaa)/at = (7](1)) +.](K/w)) d (Saa - e*aa)/at’

(32)
leading after simple manipulation to the relation
(& aa = €ad)/ I ={(Bef + 1) + j(K/ @)/ (77,
+j(Klw))} (€ 4o — a1, (33)
where that can be recast as
Bef (€ o= €aa) 1= F (4 3 (€ 0a = €0a)/ 91, (34)

where the complex “friction” coefficient F*, reads as

F oy =[(BN "+ () + (k)T (35)
Hence, by introducing Eq. (34) into Egs. (30) and (31) for

plane waves, the dilute matrix equation (17) reads as

Vzgem = BP(Bpeas)! I + (1 - P)

X (pll/I?>‘<(c()))(}‘;(pfeowz)/&t3 (36)

so that for the fast plane wave e, * e e/ ™= it leads to
the characteristic equation

(k+ia)*= o’ pd B IR[1 - iw(l - B)(p11/F'(,)]  (37)

that solved in « and ¢ gives

c=d(1+a/)] [1 +(1 - Bopy Im{F?,;;}/Bf],
(38)
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alk=—1/2(clcp)* (1 - B,)p;; Re{F(,)'}, (39)

where
Re{F ()} = (7)1 + 0/ Bef) + (171 Bef ™)V (9,
+(klw)?), (40)
Im{F(,} =~ (k/w)/(7,)* + (K )?). (41)

In the following we consider the case when the bounded
water-network interaction is prevalently viscous such as

7> (kppw) "2, (42)

where py,, is the mass density of the bounded water that we
assume close to that of free water py.

At high  frequencies such  w>w,=(27n/p))
> (k/pyy)? (far away from bounded water resonance)
hence, it holds that

klon < klw,n<1. (43)

Moreover, in order that the crossover frequency v,=7/p; is
much smaller than the unattainable Biot’s one v,=f/p; in
the high frequency limit, it must hold

lim <f. 44)
N(v)

If the high frequency behavior of the bounded water viscos-
ity 7,) is modeled by a dimensionless coefficient as

M) = Mo @/ w) ° (45)

it follows that wg=277Vg=2777/(,,=,,g)/pf=277770/pfr and that
conditions (43) and (44) hold contemporarily by requiring
0<8=1. In such a case, by introducing them into Egs. (40)
and (41) it follows that

lim Re{F,)} = (k/wn)*+[(1+ 50,/ BL) 0]

w/wg>1
lim Im{F{;} =0, (47)
w/wg>1

where v=27/ w. Equations (46) and (47) introduced into Eq.
(38), in a dilute polymer hydrogel (8= 1 and p,; << 1), lead to

= cé(l + PIK%) = c%, (48)
being typically (a/k)? very small (of order of 107 in our
experiments) and to the specific US attenuation per cycle

2mratk = - m(clco)(w/wy) (1 - B+ (1 —exp[- (1

- BIA] o,y (49)

where o,=py,/py.
For hydrogels with small A, and for (1-8)/A>1, fi-
nally, Eq. (49) leads to

2malk = — W(c/co)z(w/wg)l+5(l - B+ d)o,,. (50)

From Fig. 1, that shows the acoustic US fast wave absorp-
tion, it can be observed that the bounded water raises the
linear behavior, while A smooths the curve in the interval
1-A>pB>1.
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FIG. 1. Theoretical behavior of acoustic US fast wave absorption in a hy-
drogel given by Eq. (52) as a function of the water volume fraction for
various values of the parameters: ¢=0 and A=0 (full line), ¢=0.2 and A
=0.0006 (dashed line), and $=0.2 and A=0.1 (dashed-dotted line).

From Fig. 2, depicting the theoretical behavior of the
acoustic speed of US fast wave, it can be seen that

(1) the bounded water leads to an upward shift in the
wave speed,

(ii)  that A smooths the curve upward in the region 1—-A
<B<1, and

(iii) when A<<1 there is a speed jump at B=1.

C. High polymer concentration

The characteristic equation for slow and fast plane
waves stemming from Egs. (30) and (31) turns out to be
formally the same as that one given by Biot'" where the
friction term SBfF |, is substituted by F *<w) [see Eq. (34)] that
at high frequency is given by Egs. (46) and (47).

Nevertheless, it must be observed that Biot’s'’ model
assumes that the poroelastic coefficients are constants (or at
least very smoothly varying) while in hydrogels they actually
may change very much when they are partially dried up.33

Moreover, since we wish both to build up a model that
can be applied to biological tissues, where the solid concen-
tration as well as that one of the bounded water can be very
high (up to 60%), and to improve the experimental fitting of
data beyond the range of validity of the dilute matrix ap-

7

2800
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24001
2200+
2000
1800+
1600+
1400+

c [m/s]

04 06 08 1,0

FIG. 2. Theoretical behavior of the acoustic speed of propagation of US fast
wave in a hydrogel given by Eq. (24) as a function of the water volume
fraction for various values of the parameters: ¢=0 and A=0 (full line), ¢
=0.1 and A=0 (dashed line), and ¢=0.1 and A=0.1 (dashed-dotted line).
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FIG. 3. Theoretical behavior of the acoustic speed of propagation of US fast
wave in a hydrogel given by Eq. (52) as a function of the water volume
fraction for various values of the parameters: ¢=0.1, A=0, y=0.7, and x
=-0.4 (dashed line); $=0.1, A=0.1, y=0.7, and y=-0.4 (full line); ¢
=0.031, A=0, y=0.44, and x=-0.25 (dotted line).

proximation at intermediate water volume fraction values
(but not to validate the model), we opt for a more direct
semi-empirical approach.

In order to do that, we observe that for vanishing =0
values, the speed of propagation of the US is finite and equal
to that of polymeric solid c,, while the law (24) diverges to
infinity at 8=¢ and gives negative values for S=0.

The contribution that cancels the divergence of the de-
nominator of Eq. (24) (let us call it G(g in the dilute matrix
approximation) can be put in the form

2 CIZC ( 5 l)

7 (B- 1 —expl- (1- UADY + Gy

where the conditions required to Gg) are

lim G =0,
P B
lim G5 > 0.
0 B

For this reason it is appropriate to use the series approxima-
tion

G(B) =y1-p)+x(1-B)* with y+x>0
that in Eq. (29) leads to

2
2 Cr
© T (B= (1 —expl- (1= BIAD)Y + A1 - B+ x(1 - B)?
(52)
and that for (1-8)/A>1 gives
2
e r (53)

T B+ y1-B+x(1-p)

From Fig. 3 we can see the change in the US wave speed
following the introduction of the polynomial expression G g):
the polymer network cancels the divergence of US speed at
(B—¢)=0 and lowers it at the intermediate values of 8 in a
progressive manner.
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Finally, for B close to 1 we observe that the increase in
the bounded water in Eq. (53) increments the US speed
through the term (8- ¢)* while the elasticity of the polymer
network lowers it mainly through the vanishing term (1

-p) (if y>0).

lll. EXPERIMENTAL
A. Materials and methods

Gel samples were prepared in parallelepipeds of 2 X2
X1 cm?® using PVA with a degree of hydrolysis of 99+%
and an average molecular weight of 115.000 = 30.000 (Ald-
rich, Milan, Ttaly) dissolved into de-ionized water in a con-
centration of 10% by weight. The homogeneous solution was
refrigerated at —80 °C starting from room temperature
23*1 °C. The freezing-thawing procedure was repeated
two, three, four, and six times. The samples were left to
equilibrate in de-ionized water for 72 h.

The experimental tests were carried out at different hy-
dration conditions down to a minimum of about 50%, taking
care that the drying was gradual and homogeneous.

The reversibility of the de-hydration treatment was
checked at the end after the drying steps.

The ultrasonic pulses were generated by a Panametrics®
Pulser model 5052PR (Waltham, MA) coupled with a poly-
vinylidene fluoride piezoelectric transducer assembled in our
laboratory following the procedure of Naganishi et al

A cylindrical chamber immersed in a water bath consti-
tutes the experimental cell. The US transducer/receiver is
fixed on a planar side-wall. An inner flat counter-wall, free to
translate inside the cylinder and put in contact with the back
surface of the samples, is used as reflecting surface.

The ultrasonic disk-like transducer used in the experi-
ment has an aperture size of 1.5 cm. The measurements are
carried out in the near field condition with the front surface
of the gel samples in contact with the transducer surface. All
the volume in front of the transducer is occupied by the
sample (so that there is no problem about US focalization)
and US echoes are very well detected up to 10 cm far apart
from the transducer.

The Pulser voltage spike of —270 V induces an ultra-
sonic pulse of 250 kHz of frequency through the transducer.

The distance between the transducer and the reflecting
stainless steel layer behind the samples was measured with
an accuracy of =0.01 cm and maintained constant through
the whole experiment.

Echo signal registration and conditioning data were col-
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FIG. 4. Experimental acoustic US speed of propagation of fast wave in PVA
hydrogels, with best fit (full line), as a function of the water volume fraction
(0< B<1) for a hydrogel sample obtained by means of 2 cycles of cross-
linking.

lected with a routine and carried out with the LABVIEW
software on a computer through a National Instruments® data
acquisition device.

Finally, the samples were totally dehydrated in an oven
at 40 °C with desiccant silica gels to measure their polymer
content and the US speed in the dry solid.

The US absorption coefficient & was deduced by using
the mathematical relation a=(1/2d)In(Ay/A(,), where A,
and A, represent both the initial and final wave amplitudes,
respectively, and where d is the sample thickness.

The water volume fraction of the hydrogel samples S
was obtained by means of the respective weight fractions P,,
and P, such as g=P,/(P,+P,) since the water and PVA
specific densities are very close to each other.

After the samples were left to fully hydrate themselves
in distilled water, the fractional water volume was measured
to be $=0.917*=0.001 for all the samples.

The fitting of the experimental results was carried out by
means of a multiple parameter best fit utilizing an appropri-
ate routine in MATLAB® 7.0.

The error bars are obtained both from theoretical calcu-
lation (taking into account all the experimental errors in
space, time, and temperature) and from experimental evalu-
ation. The mean square root deviation of data resulted much
smaller than the theoretical errors.

B. Ultrasound phase velocity

Experimental data of US wave speed with the best-fitted
curve are shown in Fig. 4 for the hydrogel sample submitted
to 2 cycles of cross-linking. The most probable values of the
model parameters for all samples are given in Table L.

TABLE 1. Most probable values of the model parameters ¢, A, v, x, and y+ y obtained from the best fit of the
experimental data by means of expression (31) as a function of the number of cross-linking cycles (first

column).
lim ¢
B—1 Cs
Number of cross-linking cycles ¢ A vy X V+Xx (ms™)  (ms™)

2 0.131 0.0006 0.742 —0.453 0.289 1830 2755
3 0.075 0.0006 0.570 —0.363 0.206 1667 3266
4 0.063 0.0006 0.445 —0.247 0.197 1636 3339
6 0.020 0.0006 0.307 —0.109 0.198 1528 3340

J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010

Chiarelli et al.: Poroelastic waves in hydrogels

1203

Author's complimentary copy



2800

-

— ]
T 2400/ -
ETT)] OTREL
© 2000 }%\\ﬁ\
1 BN 1
1600 o
0,60 0,70 0,80 0,90 1,00

B

FIG. 5. Experimental acoustic US speed of propagation of fast wave in PVA
hydrogels as a function of the water volume fraction at various degrees of
polymer matrix cross-linking: 2 cycles () and 6 cycles (%) of cross-
linking, with the best fit (dashed line and full line, respectively). In this case,
the detail of the US speed behavior for high water volume fraction values
(0.6<B<1) is shown.

From Fig. 4 we can see that at intermediate values of S,
the US wave speed progressively departs from the model
dependence (8—¢)~>? toward the value of the dry solid
polymer in agreement with the theoretical behavior (52)
shown in Fig. 3. The measurements show that the effect of
the polymer matrix starts to influence the US speed of propa-
gation for values of B as high as 0.8.

For B close to zero, the US speed of propagation con-
verges to the speed of the dry polymer which rises when the
number of cross-linking cycles increases because of the
greater polymer stiffness, as shown in Table 1.

For B equal to 1, the US speed is extrapolated by means
of a best-fit procedure and reported in Table I. The data re-
ferring to the samples with 2 and 6 cycles of cross-linking
have been reported in Fig. 5. The data show that the US
phase velocity is sensibly higher than that of pure water (that
in our experimental condition has been measured to be 1483
m/s). In Fig. 6 the bounded water volume fraction ¢ is
shown as a function of the number of cross-linking cycles of
the sample. The evaluation of ¢ is obtained by introducing
into Eq. (26), being A=0, the limiting velocity values of
Table I. The bounded water volume fraction ¢ ranges from
2% in the PVA samples with six cross-linking cycles to 13%
for the PVA samples with two cross-linking cycles.

As shown in Table I, we can observe that the lower the
gap speed at B=1, the bigger the number of the cross-linking
cycles and the lower the measured bounded water fraction ¢
present in the hydrogel. This agrees with the characteristics
of PVA hydrogel synthesized by means of freezing-thawing
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FIG. 6. Estimated bounded water fraction in PVA hydrogel as a function of
the number of cross-linking cycles.
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FIG. 7. Experimental acoustic US fast wave attenuation in PVA hydrogels
as a function of the water volume fraction at various degrees of polymer
matrix cross-linking: 4 cycles (A) and 6 cycles (+) of cross-linking with
best fit (dashed-dotted line and dotted line, respectively).

cycles where the number of polymer-polymer contacts
(cross-links) grows as the number of freezing-thawing cycles
increases.*® Moreover, since lower values of ¢ in samples
with higher cross-linking correspond to lower values of the
US speed, this behavior cannot be ascribed to the elasticity
of the polymer network that leads to a variation in opposite
sign.

In fact, as shown in Table I, both vy and (y+y) (that
account for the effect of the polymer network elasticity on
the US speed [y contributes prevailing in the region of high
B=1, while (y+Y) in the region of small B=0]) decrease
as the network cross-linking increases so that by looking at
Eq. (53) it comes clearly out that in such a case they would
cause an increase in the US speed.

Moreover, since both y and (y+ y) are positive for the
intermediate values of 3, the effect of the polymer network is
to decrease the US speed and to eliminate the US speed
divergence due to the dilute matrix approximation for small
values of 8.

From experimental data we can also see that the value of
the parameter A obtained from the last square fit procedure is
equal to 0.0006 (practically null) for all PVA gel samples so
that ¢ effectively represents the bounded water concentration
and (B- ¢) the free water concentration. This fact says that
the bounded water concentration remains practically un-
changed inside the PVA gel samples (as a function of B) so
that primarily free water is subtracted when they are (mildly)
dried.

C. Ultrasound wave attenuation

Some of the experimental data as well as the fits of the
theoretical expression (49) are shown in Fig. 7. For the at-
tenuation measurements as well as for the velocity ones, the
value of the fitted parameter A resulted practically null.

A linear decrease in the US wave attenuation « is mea-
sured as a function of g for all samples with a mean value
dal IB=-24+04 cm™".

The pure water attenuation has also been measured to be
0.022 cm™' and found to be much smaller than that one of

the gel in the order of 1 cm™.
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IV. DISCUSSION

The US propagation in natural hydrogels and soft tissues
is currently described by a single-phase wave equation‘w’38
where the medium is conceived as a fluid “solution” in
which dissolved molecules can introduce processes of both
dissipation and resonance. Even if this scheme completely
ignores the liquid-solid arrangement, it gives appreciable re-
sults that are able to explain many aspects of tissue acousti-
cal behavior. This probably happens because of the high
built-in flexibility of such an equation that is able to compre-
hend a wide class of acoustical media thanks to a number of
parameters that can be empirically adjusted to describe the
propagation of acoustic waves.

Yang and Cleveland™ showed that it is possible to re-
produce the frequency dependence of the absorption with an
exponent equal to 1.1 by supposing two juxtaposed relaxing
processes that may or may not be real. In this way some
information about the material medium (e.g., a natural gel or
a tissue) is lost from the US behavior.

The model presented here discloses how the behavior of
the US propagation is linked to the arrangement of the solid
and liquid phases of the medium.

More recently Kowalski*’ developed a theory for the
propagation of US in a dilute suspension. Even if conceptu-
ally different from a polymeric gel, a fluid suspension can be
assimilated to a bi-phasic medium with a solid matrix (with
its own elasticity and permeability) and a fluid that perme-
ates the interstices. Obviously, the Kowalski model is ex-
pressed in terms of the viscoelastic parameters of the suspen-
sion that do not correspond fout court to those of the bi-
phasic approach, except for the fluid fraction volume .

The theoretical dependence of the US velocity as a func-
tion of the water volume fraction found by Kowalski is of the
same type obtained in the present paper with the same good
experimental agreement. The main difference is that the sus-
pension does not have bounded water (i.e., ¢$=0) so that at
B=1 the US speed converges to that of the pure fluid.

Hence, the following features of the US propagation in
hydrogels can be ascribed to their state of aggregation.

(i)  The speed of propagation of US in highly hydrated
gels is always a little bit higher than that of water
(1480 m/s) since in Eq. (26) B<1 and ¢>0.

(i)  The US specific attenuation 27/ « in natural hydro-
gels can follow a non-integer frequency law »1+9
with 0<d=1, where ¢ is the exponent of the
polymer-bounded water viscous interaction.

This outcome well agrees with the attenuation data of
US in natural gels where J is typically about 0.25-0.50 while
the value for pure water is 1.

As far as it concerns the applicability of the diluted ma-
trix approximation, we observe that the polymer content sen-
sibly influences the US wave speed up to values of S as high
as 0.7. For B higher than 0.70 the polymer effect on the US
speed becomes smaller and smaller and the behavior ap-
proaches that one of dilute gels depicted in Fig. 1. By using
Eq. (53) for 8=0.917, the variation in the US speed due to
the polymer network can be evaluated to be about 3.5% (for
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the PVA samples submitted to four cross-linking cycles) with
a maximum value of 5.2% for the samples submitted to two
cross-linking cycles.

It must also be noted that the development of tissue-
mimicking US phantoms can take advantage by a model that
discloses the relation between the medium organization and
the US behavior.

In principle, even though living tissues, or organs, have
their own complex morphology and anisotropy, a simplified
bi-phasic model of soft (isotropic) natural tissue can be con-
ceived by modeling biological cells as poroelastic spheres,
endowed by internal and superficial elasticity and permeabil-
ity, dispersed in a hydrogel environment.

Although the polymer and the bounded water contents
of living tissues can reach much higher concentrations than
in PVA gels, the present model can be used to describe the
behavior of each type of biological hydrogel of a soft tissue
(e.g., extra-cellular matrix, internal body of the cell, and so
on). In this case, the “free water fractional content” is given
by the effective B [given by Eq. (22) with A=0] while the
polymer-bounded water aggregate constitutes the solid part
of the hydrogel matrix.

Even considering this simplest case, there are some limi-
tations derived from the increased complexity of the archi-
tecture of the medium. First of all, in order to maintain the
continuum approach, the US wave must not resolve the
structure of the single cell. As a consequence of this, the
theory is limited to US frequencies whose wavelength is
much bigger than the cell dimensions. For instance, for cells
of order of 30 wm and wave speed of order of 2
X 10° m/s, the upper frequency limit for the theory is
smaller than 66 MHz.

It must also be pointed out that the number of material
parameters of the model increases. In addition to 8 and f of
the extra-cellular medium, the model would require 8 and f
of the inner volume of the cells, the superficial elasticity as
well as permeability of their membrane, and the percentage
of the cellular volume. Such a relatively large number of
material parameters will give rise to many possible tissue
configurations. In this case, the major problem is to identify
the appropriate set of values of those coefficients for each
real tissue and how experimentally to measure them. Al-
though the complexity of the model increases, it can defi-
nitely describe the US propagation in terms of collective
cells and extra-cellular matrix poroelastic characteristics.

This opens up the way to US non-invasive tissue physi-
ology evaluation since the permeability and elasticity of the
cell structures depend on their state and functionality.

Once the model is validated, then it could be refined by
introducing capillaries and blood vessels in the tissue as
tubes filled by fluid (with their own internal 8 and wall elas-
ticity and permeability).

V. CONCLUSIONS

In the present work a continuum model for US acoustic
longitudinal waves in hydrogels has been presented. The
model shows that a speed gap, at the hydrogel water volume
fraction B=1, is generated by the presence of the bounded
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water around the hydrogel polymer matrix: the bigger the
bounded water concentration, the higher the US speed gap at
B=1.

The poroelastic model also shows that in natural hydro-
gels the US attenuation follows a non-integer frequency law
1+9 with 0< 5=1 depending on the exponent & describing
the polymer-bounded water viscous interaction.

The experimental measurements confirm the gap be-
tween the US speed of propagation in the gel samples and
that one of pure water at B close to 1 (100% water). Further-
more, the gel samples with a lower degree of cross-linking
(and hence, with higher bounded water volume fraction)
show a higher US speed gap at S8=1. The evaluated bounded
water fraction ranges from 2% in the PVA samples with six
cross-linking cycles to 13% for the PVA samples with two
cross-linking cycles.

In the range of experimental conditions (8>0.4), the
bounded water volume fraction ¢ inside each type of PVA
hydrogel does not depend on the free water amount. More-
over, as the gel water fraction S is lowered toward zero, the
US propagation speed is more and more influenced by the
matrix elasticity and increases in samples with higher net-
work cross-linking in agreement with the classical rheologi-
cal law.

The experimental data also show that the US attenuation
in hydrogels decreases with the increase in the water volume
fraction $ in a linear way in agreement with the theoretical
forecast.

All these results have been obtained by introducing into
the bi-phasic theory the interaction of the bounded water
around the polymer network that is peculiar of hydrogels. As
a consequence of that, the proposed bi-phasic model has the
capability to describe more appropriately the US propagation
both in artificial hydrogels and in soft biological tissues, re-
sulting in a promising tool in the biomedical field either for
the development of non-invasive tissue-typing techniques or
for the realization of phantoms for experimental tests such as
those regarding the thermal therapy.
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