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Metabolic effects of muraglitazar in type 2 diabetic subjects
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Aim: To assess the effect of muraglitazar, a dual peroxisome proliferator-activated receptor (PPAR)γ -α agonist, versus placebo on metabolic
parameters and body composition in subjects with type 2 diabetes mellitus (T2DM).
Methods: Twenty-seven T2DM subjects received oral glucose tolerance test (OGTT), euglycaemic insulin clamp with deuterated glucose,
measurement of total body fat (DEXA), quantitation of muscle/liver (MRS) and abdominal subcutaneous and visceral (MRI) fat, and then were
randomized to receive, in addition to diet, muraglitazar (MURA), 5 mg/day, or placebo (PLAC) for 4 months.
Results: HbA1cc decreased similarly (2.1%) during both MURA and PLAC treatments despite significant weight gain with MURA (+2.5 kg) and
weight loss with PLAC (−0.7 kg). Plasma triglyceride, LDL cholesterol, free fatty acid (FFA), hsCRP levels all decreased with MURA while plasma
adiponectin and HDL cholesterol increased (p < 0.05–0.001). Total body (muscle), hepatic and adipose tissue sensitivity to insulin and β cell
function all improved with MURA (p < 0.05–0.01). Intramyocellular, hepatic and abdominal visceral fat content decreased, while total body
and subcutaneous abdominal fat increased with MURA (p < 0.05–0.01).
Conclusions: Muraglitazar (i) improves glycaemic control by enhancing insulin sensitivity and β cell function in T2DM subjects, (ii) improves
multiple cardiovascular risk factors, (iii) reduces muscle, visceral and hepatic fat content in T2DM subjects. Despite similar reduction in A1c with
PLAC/diet, insulin sensitivity and β cell function did not improve significantly.
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Introduction
Type 2 diabetes mellitus (T2DM) is a common metabolic
disorder characterized by insulin resistance in muscle and
liver and impaired insulin secretion [1–4]. The insulin
resistance is manifested early in the natural history of
T2DM, but glucose tolerance remains normal because of
a compensatory increase in insulin secretion [1–7]. With
time, β cell failure ensues and overt diabetes becomes
manifest [1–4]. Multiple intracellular defects, including
decreased insulin signal transduction, impaired glucose
transport/phosphorylation, diminished glucose oxidation and
reduced glycogen synthesis, all contribute to the insulin
resistance [1,2,8–10]. Type 2 diabetic individuals also manifest
adipocyte resistance to the antilipolytic effect of insulin [11–13]
and the resultant increase in plasma free fatty acid (FFA)
concentration impairs insulin secretion [14,15] and exacerbates
insulin resistance in liver and muscle [16–18]. Fat cells
in T2DM also release a number of insulin-resistance-
provoking and atherogenic adipocytokines and fail to
secrete normal amounts of insulin-sensitizing adipocytokines,
such as adiponectin [12,19]. Elevated plasma FFA levels,
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in combination with excessive caloric intake, lead to the
intracellular accumulation of toxic lipid metabolites (FACoA,
diacyglycerol, ceramides), which can exacerbate the insulin
resistance by impairing insulin signal transduction [20–22].
In addition to intracellular fat accumulation in muscle [23,24]
and liver [25,26], type 2 diabetic subjects are characterized
by visceral adiposity, which has been linked to insulin
resistance [27,28], accelerated atherosclerotic cardiovascular
disease (ASCVD) and an atherogenic plasma lipid profile [29].

Thiazolidinediones are insulin-sensitizing oral agents that
initiate their effects by binding to PPAR receptors [30,31].
There are three PPAR receptors: γ , α and δ. PPARγ

receptors primarily are located on fat cells and vascular
tissue/macrophages [32], but they are also present in muscle in
low abundance and in β cells [33]. PPARγ agonists enhance
insulin sensitivity in muscle and liver [34–36], improve β cell
function [37,38], and sensitize the adipocyte to the antilipolytic
effect of insulin [34]. PPARγ agonists also reduce liver [26,27]
and intramyocellular [39] fat and cause a redistribution of
abdominal fat from visceral to subcutaneous depots [25,40].
PPARα receptors primarily are located in the liver [41].
In contrast to PPARγ agonists, PPARα agonists, such as
fenofibrate, when given to man, have a potent effect to
reduce plasma triglycerides, but they do not lower plasma
FFA, augment muscle or liver insulin sensitivity, or redistribute
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fat within the body [42]. Because of these different metabolic
effects of PPARγ and PPARα agonists on insulin sensitivity,
fat distribution and plasma lipid levels, new drug development
has focussed on dual PPARs which possess PPARγ , as well
as PPARα activity. Currently, no prior study has evaluated
the effect of any dual PPAR agonist on glucose and lipid
metabolism or fat distribution in man. In the present study
we examined the effect of muraglitazar, a dual PPARγ /PPARα

agonist, on tissue (muscle, liver, adipose) sensitivity to insulin,
β cell function, fat topography and lipid metabolism in type 2
diabetic patients.

Methods
Subjects

Twenty-seven patients with T2DM and with no evidence
of microvascular complications were recruited from the
outpatient clinic of the Texas Diabetes Institute. The
clinical, anthropometric and laboratory characteristics in the
muraglitazar and placebo-treated groups prior to initiation
and after 4 months of therapy are summarized in Table 1.
All patients were in good general health without evidence of
cardiac, hepatic, renal or other chronic diseases, as determined
by medical history, physical examination, and screening
blood tests. All subjects had stable body weight for at least
3 months before study, and none participated in any exercise
program on a regular basis. No subject ever had taken insulin
or a thiazolidinedione. Other antidiabetic medications were
stable for at least 6 months and included metformin alone
(n = 5), sulfonylureas alone (n = 1) and metformin plus
sulfonylureas alone (n = 4); 17 diabetic subjects were drug

naive. In addition, two subjects were taking a statin, three
were on an angiotensin converting enzyme inhibitor and one
was taking a calcium channel antagonist. The protocol was
approved by the Institutional Review Board of the University
of Texas Health Science Center at San Antonio, and all
subjects gave their written voluntary, informed consent before
participation.

Experimental Protocol

The study design was double-blind, placebo-controlled with
parallel muraglitazar and placebo arms with 3 : 1 randomization
(muraglitazar : placebo). A third arm with pioglitazone was not
included because the metabolic effects of this thiazolidinedione
have been extensively studied. Subjects who were taking
metformin or sulfonylurea had the medication discontinued
6 weeks before study, and fasting plasma lipids, glucose
and HbA1c were measured every 2 weeks during the run-
in period. The fasting plasma glucose (FPG) concentration
differed by less than 10 mg/dl between weeks 4 and 6 in the
nine subjects in whom the sulfonylurea or metformin was
discontinued. During the week before randomization, subjects
received: (i) 2-h 75 g oral glucose tolerance test (OGTT);
(ii) quantitation of muscle [39] and liver [26,42] fat content
by magnetic resonance spectroscopy (MRS) and abdominal
visceral and subcutaneous fat content by MRI [25,27,42];
(iii) quantitation of total body fat mass (FM) and fat free
mass (FFM) by dual energy x-ray absorption (DEXA); (iv)
measurement of hepatic and peripheral tissue (muscle) insulin
sensitivity with the euglycaemic insulin clamp [43] performed
in combination with 6-6,2H-glucose. Studies were carried
out in the postabsorptive state at 08:00 h after a 10–12-h

Table 1. Baseline clinical, anthropometric, and laboratory characteristics of subjects with type 2 diabetes prior to randomization and following therapy
with either muraglitazar or placebo.

Muraglitazar Placebo

Pre Post Pre Post p Value

Number 20 7
Ethnicity (MA/C) (17/3) (6/1) NS
Gender (F/M) (13/7) (4/3) NS
Diabetes duration (years) 3.7 ± 2.2 3.1 ± 2.5 NS
Age (years) 50 ± 2 54 ± 3 NS
BMI (kg/m2) 33.0 ± 0.7 34.0 ± 0.6∗ 29.4 ± 1.4 28.7 ± 1.3∗ <0.001
Body weight (kg) 84.3 ± 2.0 86.8 ± 1.9∗ 75.1 ± 4.0 73.2 ± 3.6∗ <0.0005
Fat mass (kg) 32.1 ± 1.5 33.8 ± 1.5∗ 26.4 ± 2.2 24.6 ± 2.6∗ <0.0004
HbA1c (%) 8.5 ± 0.4 6.6 ± 0.3∗ 9.3 ± 0.7 7.2 ± 0.6∗ NS
Visceral fat (kg) 0.73 ± 0.06 0.62 ± 0.04∗ 0.77 ± 0.11 0.71 ± 0.11 NS
Subcutaneous fat (kg) 1.79 ± 0.14 1.99 ± 0.15∗ 1.57 ± 0.40 1.48 ± 0.38∗ <0.005
Liver fat (%) 15 ± 2 6 ± 1∗ 11 ± 4 9 ± 4 NS
Intramuscular fat (AU) 0.42 ± 0.07 0.21 ± 0.05∗ 0.32 ± 0.18 0.12 ± 0.04 NS
Triglycerides (mg/dl) 152 ± 12 119 ± 18∗ 157 ± 28 143 ± 16 <0.05
LDL cholesterol (mg/dl) 103 ± 5 89 ± 7∗ 123 ± 11 116 ± 15 NS
HDL cholesterol (mg/dl) 41 ± 3 45 ± 4∗ 47 ± 6 38 ± 5 <0.01
VLDL particle size (nm) 50.2 ± 1.5 52.0 ± 1.5 38.8 ± 11.4 41.5 ± 6.8 NS
LDL particle size (nm) 20.1 ± 0.2 21.2 ± 0.2∗ 20.5 ± 0.2 20.4 ± 0.5 <0.03
HDL particle size (nm) 8.6 ± 0.1 8.7 ± 0.1 8.5 ± 0.1 8.4 ± 0.1 NS

p < 0.05–0.01 versus baseline; p value refers to comparison of muraglitazar versus placebo; NS, non-significant.
∗p < 0.05 vs. baseline.
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overnight fast. Following completion of these studies, subjects
participated in a 10-h ADA-approved diabetes education
course and received one-on-one dietary education for 2 h
with a dietitian. Subjects were instructed to consume a
weight-maintaining diet containing 50% carbohydrate, 30%
fat and 20% protein. Following completion of the diabetes
education program, subjects were randomized to receive 16
weeks of muraglitazar, 5 mg/day (n = 20), or placebo (n = 7)
at breakfast for 4 months. After the start of treatment, subjects
returned to the Clinical Research Center (CRC) monthly and
fasting plasma glucose (FPG), lipids, HbA1c and blood pressure
were measured and body weight was recorded. Dietary advice
was reinforced by a dietician on each visit. During the last
week of the double-blind period, the OGTT, euglycaemic
insulin clamp, MRS, MRI and DEXA measurements were
repeated.

Oral Glucose Tolerance Test

Subjects were asked to refrain from eating or drinking anything
except water after 20:00 h on the evening prior to study. At
07:30 h, subjects reported to the CRC and a catheter was
placed in an antecubital vein for all blood withdrawal. At −30,
−15 and 0 min, baseline blood samples were collected for the
measurement of FPG, FFA, C-peptide, insulin, lipid, TNFα,
leptin, adiponectin and hsCRP concentrations. At time zero,
subjects ingested 75 g of flavoured glucose solution. Blood for
plasma glucose, FFA, insulin and C-peptide determinations was
obtained every 15 min after glucose ingestion for 120 min. One
week later, subjects returned to the CRC for a euglycaemic
hyperinsulinemic clamp study [43] which was performed
with deuterated glucose infusion [44,45]. Total body fat
content was determined using a DEXA whole body scanner
(Hologic, Bedford, MA, USA). Hepatic, muscle, visceral and
subcutaneous abdominal fat contents were determined by
MRS/imaging (MRI) within 3–5 days after the insulin clamp,
as previously described [25,26,39,42].

Euglycaemic Hyperinsulinemic Clamp

Insulin sensitivity was assessed with a 3-h euglycaemic
insulin clamp [11,43]. At 08:00 h (−180 min), a primed
[(28 μmol/kg) − (fasting glycaemia/5 μmol/l)]-continuous
(0.28 μmol/min/kg) infusion of [6,6-2H2]-glucose was started
via a catheter placed into an antecubital vein and continued
throughout the study. A second catheter was inserted
retrogradely into a vein on the dorsum of hand, which was
placed in a heated box (60◦C). Baseline arterialized blood for
determination of plasma [6,6-2H2]-glucose enrichment and
plasma glucose/insulin/FFA concentrations was drawn at −30,
−20, −10, −5 and 0 min. At time zero, a prime-continuous
(60 mU/min·m2) infusion of regular insulin (Novolin, Novo
Nordisk, Princeton, NJ, USA) was started and continued for
180 min. Plasma glucose was allowed to drop to 100 mg/dl, at
which level it was maintained by adjusting a 20% dextrose
infusion. To minimize the changes in plasma [6,6-2H2]-
glucose enrichment, 2 g of tracer were added to 500 ml of
the 20% glucose solution while the constant [6,6-2H2]-glucose
infusion was turned down to 20% of baseline value, i.e.,

to 0.056 μmol/kg min, in a stepwise fashion (by 20% every
20 min). Throughout the insulin clamp, blood was drawn every
5 min for plasma glucose determination, and every 15 min for
plasma insulin and FFA concentrations and [6,6-2H2]-glucose
enrichment.

Blood Analyses

Plasma glucose was measured using the glucose oxidase
method (Glucose Analyzer, Beckman Instruments, Fuller-
ton, CA, USA), plasma insulin (Diagnostic Products, Los
Angeles, CA, USA) and C-peptide (Diagnostic Products) by
radioimmunoassay, HbA1c by affinity chromatography (Bio-
chemical Methodology, Drower 4350; Isolab, Akron, OH,
USA) and plasma FFA by enzymatic colorimetric quantification
(Wako Chemicals, Neuss, Germany). Plasma total cholesterol
and triglyceride were measured enzymatically (Boehringer-
Mannheim, Indianapolis, IN, USA) on Hitachi 704 autoan-
alyzer. Plasma HDL cholesterol was measured enzymatically
on Hitachi 704 autoanalyzer after precipitation of chyomi-
cron, and VLDL and LDL cholesterol by phosphotungstic
acid. LDL cholesterol was calculated from the Friedwald
equation. Plasma TNFα concentration was determined with
sandwich ELISA kit (detection limit = 0.5 pg/ml; intra-assay
and inter-assay coefficient of variation = 5.7 and 7.5%, respec-
tively; Quantikine, R&D Systems, Minneapolis, MN, USA) and
plasma adiponectin by radioimmunoassay (Linco Research,
St Charles, MO, USA). Interleukin (IL)-6 and intracellular
adhesion molecule (ICAM) were measured by ELISA (R&D
Systems). High sensitive c-reactive protein (hsCRP) was mea-
sured by ELISA (ALPCO Diagnostics, Salem, NH, USA).

[6,6-2H2]-glucose enrichment was determined in plasma
according to the validated gas chromatography mass spec-
trometry method of Wolfe [44] with modified and validated
gas chromatography-mass spectrometry (GC-MS) conditions.

Body Composition

To determine overall FM and FFM, DEXA (Hologic) was
performed using software version 1.3Z.

Localized proton nuclear magnetic resonance (NMR)
spectra of tibialis anterior muscle [39] and liver [26,42] were
acquired on a 1.9-T MRI scanner (Elscint Prestige, Elscint,
Haifa, Israel) as previously described. Visceral subcutaneous
adipose volumes were analysed by MRI on a 1.9-T Elscint
Prestige MRI system as previously described [25,27,46].

Calculations

Tracer infusion rate (IR) during baseline was calculated
by multiplying the tracer concentration (determined by the
glucose oxidase method) by the pump rate and dividing by the
body weight:

IRbaseline (μmol/min kg) = [tracer conc (μmol/ml) ×
pump rate (ml/min)] ÷
body weight (kg). (1)

Tracer IR during the clamp was calculated by multiplying the
tracer concentration by pump rate divided by body weight
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and adding the tracer infused with the exogenous glucose
[calculated as % tracer in the glucose infusate (GINF) × glucose
infusion rate (GIR)].

IRClamp (μmol/min kg) = [tracer conc (μmol/ml) ×
pump rate (ml/min)] ÷
body weight (kg) +
TTRGINF/(1 + TTRGINF) ×
GIR (μmol/min kg). (2)

Calculation of Glucose Production and Disposal

During the last 20 min of the basal tracer equilibration
period, plasma glucose concentration and [6,6-2H2]-glucose
enrichment were stable (<5%) in all subjects. Therefore, total
endogenous glucose production (EGP) was calculated as the
ratio of the [6,6-2H2] GIR to the plasma tracer enrichment
(tracer-to-tracee ratio, TTR6,6; mean of 3 determinations).
During the baseline state, EGP = rate of glucose appearance
(Ra) = rate of glucose disappearance (Rd):

EGPbaseline = IRbaseline

TTRbaseline
(3)

During the euglycaemic insulin clamp, the TTR was stable
(<5%) and the glucose rate of appearance (Ra) was calculated
using the steady-state equation:

RAClamp = IRClamp

TTRClamp
(4)

where TTR represents the mean value of samples obtained
during the last 30 min of the insulin clamp and IR was calculated
as described in the previous paragraph.

EGP during the insulin clamp was calculated by subtracting
the GIR (corrected by the tracer amount) from Ra as:

EGPClamp = RAClamp − GIRClamp ×
(

1 − TTRGINF

1 + TTRGINF

)

(5)

The coefficient of variation of the TTR during the last 30 min of
the clamp was less than 5%, allowing the use of the steady-state
equation.

Oral Glucose Tolerance Test

Areas under the curve for plasma glucose, insulin, C-
peptide and FFA concentrations during the OGTT were
determined using the trapezoidal rule. The mean plasma
glucose, insulin, C-peptide and FFA concentrations during
the OGTT were calculated by dividing the area under the
curve by 120 min. The insulin secretion/insulin resistance
(disposition) index during the OGTT [6] was calculated as
the incremental plasma insulin response (�I0 – 120 min) divided
by the incremental plasma glucose response (�G0 – 120 min)
factored by the severity of insulin resistance, where IR =
steady state plasma insulin (SSPI)/TGD during the insulin
clamp and TGD = insulin-stimulated total body glucose
disposal rate during the euglycaemic insulin clamp. The
insulin secretory rate during the OGTT was calculated by
deconvolution to the plasma C-peptide concentration [46,47].

Statistics

Statistical analyses were performed with StatView for
Windows (SAS Institute, Cary, NC, USA). All values before and
after treatment within each group were analysed using paired
Student’s t-test. Comparison between groups was performed
using analysis of variance with Bonferroni/Dunn post hoc
testing. Pearson’s correlations between continuous variables
were used as a measure of association. Stepwise multiple
linear regression analysis was performed to examine multiple
correlations among variables. Data are presented as mean ±s.e.
p Value < 0.05 was considered statistically significant.

Results
FPG, Lipids, HbA1c and Anthropometric Measurements

All subjects tolerated the diet and medications well and
there were no significant adverse events, including peripheral
oedema. In the group that received muraglitazar the mean body
weight increased from 84.3 ± 2.0 to 86.8 ± 1.9 kg and the body
mass index (BMI) from 33.0 ± 0.7 to 34.0 ± 0.6 kg/m2, whereas
in the placebo-treated group the body weight decreased from
75.1 ± 4.0 to 73.2 ± 3.6 kg and the BMI decreased from 29.4
± 1.4 to 28.7 ± 1.3 kg/m2 (all p < 0.01–0.001 vs. baseline and
vs. each other). In the muraglitazar group the FPG decreased
from 183 ± 9 to 129 ± 6 mg/dl (p < 0.001 vs. baseline) and
in the placebo group from 190 ± 15 to 160 ± 20 mg/dl (p <

0.05) (p = NS between groups). HbA1c decreased significantly
(p < 0.001) in both groups from 8.5 ± 0.4 to 6.6 ± 0.3%
in the muraglitazar group (p < 0.001) and from 9.3 ± 0.7
to 7.2 ± 0.6% in the placebo group (p < 0.001) (p = NS,
muraglitazar vs. placebo). In the muraglitazar group, plasma
triglycerides decreased from 152 ± 12 to 119 ± 18 mg/dl and
HDL cholesterol increased from 41 ± 3 to 45 ± 4 mg/dl (both
p < 0.05). LDL cholesterol decreased from 103 ± 5 to 89 ±
7 mg/dl, but this did not reach significance. LDL particle size
increased mildly in the muraglitazar group (20.1 ± 0.2 to 21.2 ±
0.2, p < 0.0001) and did not change in the placebo group (20.5
± 0.2 to 20.4 ± 0.5 nm, p < 0.03 muraglitazar vs. placebo).
VLDL and HDL particle size did not change significantly in
either the muraglitazar or placebo groups. After 4 months of
muraglitazar treatment, there was a modest but non-significant
decrease in both aspartate transaminase (AST) (31 ± 4 to 21 ±
2, p < 0.02) and alanine transaminase (ALT) (30 ± 3 to 18 ± 2
IU, p < 0.002). In the placebo groups both AST (29 ± 3 to 24
± 3, p = NS) and ALT (32 ± 5 to 20 ± 3, p < 0.04) decreased
or tended to decrease. Blood pressure did not change in either
the muraglitazar (122 ± 4/71 ± 2 to 122 ± 4/68 ± 3 mmHg)
or placebo (118 ± 3/70 ± 4 to 122 ± 3/70 ± 4 mmHg) group.

Oral Glucose Tolerance Test

During the OGTT, the mean plasma glucose decreased from
288 ± 11 to 211 ± 9 mg/dl in the muraglitazar group (p <

0.0001), and a similar decline from 303 ± 16 to 262 ± 21 mg/dl
was observed in the placebo group (p = NS , muraglitazar
vs. placebo). During the OGTT performed after 4 months,
the increment in plasma glucose concentration above baseline
was significantly reduced in the muraglitazar (105 ± 7 to
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82 ± 6 mg/dl, p < 0.03) but not in the placebo-treated groups
(113 ± 9 to 102 ± 9 mg/dl, p = NS). The fasting plasma
insulin concentration fell significantly by ∼4 μU/ml in the
muraglitazar group and tended to decrease in the placebo
group (p = NS , muraglitazar vs. placebo). The mean plasma
insulin concentration (0–120 min) during the OGTT did not
change significantly in the muraglitazar (41.3 ± 6.6 vs. 35.5
± 4.5 μU/ml) or placebo (26.2 ± 8.7 vs. 34.5 ± 13.5 μU/ml)
groups. The mean plasma C-peptide concentration during
the OGTT increased slightly (p = NS) in the muraglitazar
group and rose significantly in the placebo group (Table 2).
Following muraglitazar therapy, the incremental AUC for
C-peptide divided by the incremental AUC for plasma glucose
concentration (figures 1, 2; Table 2) increased significantly
from 3.1 ± 0.5 to 6.4 ± 0.7 pmol/l per mg/dl (p < 0.001);
in the placebo group there was a smaller, non-statistically
significant increase from 1.8 ± 0.6 to 3.5 ± 1.4. The insulin
secretion (�ISR/�G)/insulin resistance (measured with the
insulin clamp) index increased significantly in the muraglitazar
group (2.7 ± 0.7 to 10.1 ± 1.7, p < 0.0001) and tended
to increase in the placebo group (1.6 ± 0.5 vs. 4.7 ±
1.6, p < 0.07, muraglitazar vs. placebo). In the combined
muraglitazar plus placebo groups the natural log of the insulin
secretion/insulin resistance index correlated strongly with the
natural log of the FPG (r = −0.74, p < 0.0001) and with the
natural log of the 2-h plasma glucose concentration (r = −0.66,
p < 0.0001) during the OGTT. These correlations also were
highly significant (p < 0.01) if the muraglitazar and placebo
groups were analysed separately.
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Body Composition

The percent total body fat (DEXA) increased slightly with
muraglitazar therapy and decreased slightly in the placebo
group (p = NS). FM increased significantly in the muraglitazar
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tolerance test.
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Table 2. Changes in plasma glucose and insulin concentrations and insulin sensitivity indices during the OGTT and the euglycaemic clamp in T2DM
patients treated with muraglitazar versus placebo for 4 months.

Muraglitazar Placebo

Pre Post Pre Post p Value

Fasting
Fasting glucose (mg/dl) 183 ± 9 129 ± 6∗ 190 ± 15 160 ± 20 NS
Fasting insulin (μU/ml) 13.9 ± 2.3 9.5 ± 1.8∗ 10.8 ± 4.2 8.8 ± 2.4 NS
Fasting FFA (μmol/l) 700 ± 37 523 ± 41∗ 720 ± 45 593 ± 60∗ NS
IR adipose tissue (mmol/l × pmol/l) 50 ± 8 26 ± 4∗ 41 ± 15 25 ± 7 NS
Fasting EGP (μmol/kgffm min) 16.7 ± 1.5 14.9 ± 1.2∗ 14.1 ± 0.7 16.6 ± 3.3 <0.05
IR liver (μmol/kgffm × min/pM) 956 ± 119 576 ± 59∗ 780 ± 213 665 ± 318 NS
OGTT (mean 0–120 min)
Mean plasma glucose (mg/dl) 288 ± 11 211 ± 9∗ 303 ± 16 262 ± 21 NS
Mean plasma insulin (μU/ml) 41.3 ± 6.6 35.5 ± 4.5 26.2 ± 8.7 34.5 ± 13.5 NS
Mean plasma c-peptide 7.0 ± 0.7 8.1 ± 0.7 5.2 ± 1.0 7.4 ± 1.1* NS
Mean ISR 373 ± 41 451 ± 33∗ 299 ± 61 452 ± 69∗ NS
�AUC-I/�AUC-G 25.7 ± 4.4 33.3 ± 4.1∗ 13.5 ± 6.8 25.1 ± 10.4∗ NS
�AUC-C-Pep/�AUC-G 3.1 ± 0.5 6.4 ± 0.7∗ 1.8 ± 0.6 3.5 ± 1.4∗ NS
(�AUC-ISR/�AUC-G)/IR 2.7 ± 0.7 10.1 ± 1.7∗ 1.6 ± 0.5 4.7 ± 1.6 NS
Clamp
Clamp EGP (μmol/kgffm min) 4.2 ± 0.2 3.9 ± 0.8 3.5 ± 0.3 3.3 ± 0.4 NS
Total glucose disposal (μmol/kgffm min) 31 ± 4 54 ± 5∗ 30 ± 6 34 ± 6 <0.01
Total glucose disposal/SSPI (μmol/kgffm min/nM) 78 ± 15 135 ± 13∗ 66 ± 16 95 ± 19 0.09
Glucose clearance/SSPI (μmol/kgffm min/pM) 14.4 ± 3.0 24.6 ± 2.4∗ 12.0 ± 2.9 16.9 ± 3.4 NS

FPG, fasting plasma glucose; EGF, endogenous glucose production; IR, insulin resistance; FFA, free fatty acid; OGTT, oral glucose tolerance test; NS,
non-significant.
∗p < 0.05 versus baseline.

group (32 ± 1 to 34 ± 1 kg, p < 0.001) and decreased
in the placebo group (26 ± 2 to 25 ± 3, p < 0.0004 vs.
muraglitazar). Liver fat content decreased from 15 ± 2 to 6 ± 1
following muraglitazar therapy (p < 0.01) and did not change
significantly in the placebo group (11 ± 4 to 9 ± 4%). Visceral
abdominal total fat content decreased significantly (p < 0.001)
in the muraglitazar group and tended to decrease (p = NS)
in the placebo group (Table 1). The subcutaneous abdominal
total fat content increased significantly in patients receiving
muraglitazar (p < 0.001) and decreased significantly in subjects
receiving placebo (p = 0.04) (Table 1). The intramyocellular
fat content in the muraglitazar group decreased from 0.42 ±
0.07 to 0.21 ± 0.05 (p = 0.006), while the observed decrease
in intramyocellular fat content in the placebo group was not
significant (from 0.32±0.18 to 0.12±0.04, p = N S) (figure 3).

Inflammatory Markers

Treatment with muraglitazar caused a 2.5-fold increase in
plasma adiponectin concentration from 8.4 ± 1.2 to 18.6 ±
1.9 μg/ml (p < 0.001), whereas plasma adiponectin did not
change in the placebo group (9.2 ± 2.6 to 7.3 ± 0.9 μg/ml) (p <

0.0005 vs. muraglitazar). The plasma TNF-α concentration did
not change significantly in either the muraglitazar (1.6 ± 0.2
to 1.6 ± 0.3 pg/ml) or placebo (1.2 ± 0.2 to 1.6 ± 0.2 pg/ml)
groups. Plasma IL-6 did not change significantly in either
the muraglitazar (3.2 ± 0.3 to 3.4 ± 0.6 pg/ml) or placebo
(2.4 ± 0.4 to 2.9 ± 0.5 pg/ml, p = NS) groups. Plasma ICAM
decreased in the muraglitazar (249 ± 15 to 231 ± 12 ng/ml,
p < 0.04) group and did not change in the placebo (241 ± 25

to 234 ± 17, p = NS) group. The hsCRP fell significantly in the
muraglitazar group (4.4 ± 0.7 to 2.5 ± 0.5 ng/ml, p < 0.01)
but not in the placebo group (2.2 ± 0.7 to 2.1 ± 0.5, p = NS).

Muscle, Liver and Adipose Insulin Sensitivity

Total body (primarily reflects muscle) insulin-stimulated TGD
and TGD/SSPI increased by 74 and 73%, respectively, following
muraglitazar treatment (both p < 0.001) (Table 2). In the
placebo group TGD and TGD/SSPI increased modestly but not
significantly from baseline (Table 2). The changes in glucose
clearance in both groups paralleled the changes in TGD.

Basal endogenous (primarily reflects liver) glucose pro-
duction declined significantly in the muraglitazar group and
rose slightly in the placebo group (p < 0.05 vs. muraglitazar)
(Table 2). The hepatic insulin sensitivity index decreased by
40% in the muraglitazar group (p < 0.01) and fell slightly but
not significantly in the placebo group (Table 2).

Mean baseline plasma FFA concentration decreased from
700 ± 37 to 523 ± 41 μmol/l (p < 0.0003) after muraglitazar
treatment, and decreased modestly in the placebo group (720 ±
45 to 593 ± 60 μmol/l, p = 0.03). The basal (fasting) adipocyte
insulin resistance index (fasting plasma FFA × FPI) decreased
significantly in the muraglitazar group from 50 ± 8 to 26
± 4 μmol/l × pmol/l (p < 0.01) and decreased modestly in
the placebo group (41 ± 15 to 25 ± 7 μmol/l × pmol/l,
p = NS). Suppression of the plasma FFA concentration during
the insulin clamp performed prior to the start of therapy
was similar in both groups and decreased significantly after
4 months of muraglitazar treatment (from 123 ± 10 to 57 ±
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Figure 3. Changes in visceral (upper left) and subcutaneous (lower left) fat contents, percent liver fat (upper right) and percent intramyocellular fat
(lower right) before and after muraglitazar (black bars) and placebo (white bars) treatments.

6 μmol/l, p = 0.008) but not in the placebo group (from 132
± 22 to 117 ± 33 μmol/l, p = NS).

Discussion
Type 2 diabetic individuals are at increased risk for
both microvascular and macrovascular complications [48–50].
Although the microvascular complications clearly are related
to both the duration and severity of hyperglycemia [48,49,51],
the macrovascular complications are more related to the
classic risk factors for ASCVD including dyslipidemia,
hypertension and obesity [29,52]. Collectively these have
been referred to as the metabolic or insulin resistance
syndrome [13,53,54]. A characteristic feature of the metabolic
syndrome is the underlying insulin resistance [13,53,54], and
many studies have shown that insulin resistance predicts
the subsequent development of ASCVD [55–60]. Therefore,
there has been great interest in the development of oral
antidiabetic medications which effectively reduce the elevated
plasma glucose levels in T2DM, simultaneously correct
the underlying insulin resistance, a core defect in diabetic
patients, and reverse known cardiovascular risk factors. PPARγ

agonists are potent insulin sensitizers in liver, muscle and
adipocytes [25,26,36,39,42] and cause a redistribution of fat
from visceral to abdominal areas [25,40,42], while PPARα

agonists correct the underlying diabetic dyslipidemia [42].
Muraglitazar is a dual PPAR agonist that possesses both PPARα

and PPARγ activities [61]. In the present study, we examined
the effect of muraglitazar on the multiple components of
the insulin resistance (metabolic) syndrome and compared
the results to placebo-treated T2DM patients who received
intensive dietary intervention. Although both groups were
instructed to maintain their caloric intake and body weight

constant, the placebo-treated group lost a mean of 1.9 kg
over 4 months, while the muraglitazar group gained 2.5 kg
(p < 0.001). Body FM declined by a mean of 1.8 kg in the
placebo group and increased by 1.7 kg in the muraglitazar
group (p < 0.001). These results indicate that only 30% of
the weight gain in the muraglitazar group could be accounted
for by fluid retention and is consistent with the absence of
edema in any patient in this group. Both the murglitazar-
and placebo-treated groups experienced similar declines in the
HbA1C (2.1%), despite the divergent changes in body weight
and body fat content. Despite the similar decline in HbA1c
in both groups, it is noteworthy that muraglitazar-treated
T2DM subjects had a nearly twofold increase in insulin-
stimulated glucose disposal compared to the placebo group
(Table 2). In contrast, placebo-treated T2DM subjects had
no improvement in insulin sensitivity despite the modest
reduction in body weight and body fat content. During the
euglycaemic insulin clamp, the majority of glucose uptake
occurs in muscle [62]. Of note, intramyocellular fat content
decreased mildly in the muraglitazar-treated group. Although
MRS measures the amount of muscle triglyceride, which is
metabolically inert, the decreased muscle triglyceride content
is paralleled by a decrease in muscle long-chain fatty acyl-
CoA esters (FACoAs) [39] which have been implicated in
the development of insulin resistance [2,8,20–24,39,53,63]. It
should be noted that increased muscle triglyceride content also
can be observed in insulin-sensitive states, that is well-trained
athletes [64]. But, in this case, the triglyceride is contained
in discrete lipid droplets surrounding the mitochondria, is
not associated with elevated FACoA levels, and is used
efficiently as an energy source. The improvement in insulin
sensitivity with muraglitazar also was closely correlated with
the decrease in plasma FFA concentration (r = 0.42, p < 0.03),
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suggesting an important role for reversal of lipotoxicity in
the insulin-sensitizing effect of muraglitazar. Muraglitazar
also improved the basal hepatic insulin sensitivity index
(Table 2) and reduced hepatic fat content (figure 1), consistent
with previous studies performed with rosiglitazone and
pioglitazone [26,35,36,65,66]. The decrease in hepatic fat
content was correlated with the increase in hepatic insulin
sensitivity index (r = −0.53, p < 0.02). The decrease in liver fat
content with muraglitazar also was associated with a reduction
in liver function tests (AST and ALT).

We previously have shown that thiazolidinediones are associ-
ated with an improvement inβ cell function [37,38]. Consistent
with these prior results, both insulin secretion/insulin resis-
tance indices (�I/�G ÷ IR and �ISR/�G ÷ IR) improved
after muraglitazar treatment, whereas no change was observed
in the placebo-treated group. The improvement in β cell func-
tion following muraglitazar treatment was associated closely
with the decline in plasma FFA concentration (r = −0.47,
p < 0.04), suggesting a potential role for reduced lipotoxic-
ity [67]. As PPARγ receptors are present on the β cell [33], a
direct effect on the β cannot be excluded. The decrease in basal
plasma FFA concentration and FFA turnover is consistent with
previously published studies with PPARγ agonists [31].

Muraglitazar also exerted a beneficial effect on diabetic
dyslipidemia, and a number of other cardiovascular risk factors
including adiponectin, TNFα, hsCRP, and abdominal fat
distribution. Reduced adiponectin levels and increased TNFα

concentration have been associated with insulin resistance and
accelerated atherosclerosis (reviewed in Refs. [12] and [19]).
Muraglitazar treatment was associated with an increase in
the ratio of subcutaneous to visceral fat, a change that is
also consistent with a less atherogenic risk profile [28,29].
Muraglitazar-treated T2DM patients experienced significant
reductions in plasma triglycerides (� = 33 mg/dl) and LDL
cholesterol (14 mg/dl) and a significant rise in plasma HDL
cholesterol (4 mg/dl) (all p < 0.01 vs. baseline) (Table 1).
LDL partial size increased, indicating less atherogenic LDL
particles. Diastolic and systolic blood pressures were normal
in T2DM subjects prior to the start of therapy, and did not
change significantly after 4 months of muraglitazar therapy.
The hsCRP, a well-established risk factor for ASCVD [67],
also decreased significantly after 4 months of muraglitazar
treatment.

Lastly, some comments about the decline in A1c in the
placebo group are indicated because the decrease was more
than expected based upon the amount of total body (1.9 kg)/fat
(1.8 kg) weight loss and cannot be explained by improved
muscle or hepatic insulin sensitivity. As the decline in FPG
was somewhat (although not significantly) less in the placebo-
treated group, this cannot account for the similar reduction in
A1c in the muraglitazar- and placebo-treated groups. During
the OGTT the decline in glucose was also similar in the two
groups. By exclusion, these results suggest that the postprandial
rise in glucose in response to mixed meals during everyday life
must have been greater in the placebo group. With regard to
this, the mean insulin secretory rate during the OGTT was
lower in the placebo group and increased more (although not
significantly more) in the placebo group (Table 2). It is possible

that the weight loss in the placebo-treated group resulted in a
greater insulin secretory response to mixed meals and a greater
reduction in postprandial glucose levels while subjects were
consuming more typical meals at home. The baseline A1c also
was slightly (although not significantly) higher in the placebo-
treated group and, the higher the baseline A1c, the greater is
the decline in A1c with any intervention.

In summary, the dual PPAR agonist muraglitazar augments
insulin sensitivity, improves β cell function, mobilizes fat out of
liver and muscle, increases the ratio of subcutaneous to visceral
fat content, improves diabetic dyslipidemia, and improves
hsCRP and a number of other insulin-resistance-provoking
and atherogenic adipocytokines. With the exception of the
decrease in LDL cholesterol, these effects of muraglitazar are
very similar to those observed with pioglitazone.
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