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Abstract 

Background 

Changes in cardiac gene expression due to myocardial injury are usually assessed in whole 

heart tissue. However, as the heart is a heterogeneous system, spatial and temporal 

heterogeneity is expected in gene expression. 

Results 

In an ischemia/reperfusion (I/R) rat model we evaluated gene expression of mitochondrial 

and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod) and thioredoxin reductase 

(trxr1) upon short (4 h) and long (72 h) reperfusion times in the right ventricle (RV), and in 



the ischemic/reperfused (IRR) and the remote region (RR) of the left ventricle. Gene 

expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR). In 

order to select most stable reference genes suitable for normalization purposes, in each 

myocardial region we tested nine putative reference genes by geNorm analysis. The genes 

investigated were: Actin beta (actb), Glyceraldehyde-3-P-dehydrogenase (gapdh), Ribosomal 

protein L13A (rpl13a), Tyrosine 3-monooxygenase (ywhaz), Beta-glucuronidase (gusb), 

Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt), TATA binding box protein (tbp), 

Hydroxymethylbilane synthase (hmbs), Polyadenylate-binding protein 1 (papbn1). According 

to our findings, most stable reference genes in the RV and RR were hmbs/hprt and 

hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for 

normalization purposes; however, in view of experimental feasibility limitations, target gene 

expression could be normalized against the three most stable reference genes 

(ywhaz/pabp/hmbs) without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression 

decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR 

alone. trxr1 expression did not vary. 

Conclusions 

This study provides a validation of reference genes in the RV and in the anterior and posterior 

wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should 

be assessed separately in each region. 

Background 

Cardiac muscle is a heterogeneous system and many parameters such as blood flow and 

perfusion [1-3], patterns of ion channel activation [4-6]. As gene expression is concerned, 

spatial heterogeneity between cardiac chambers as well as between left and right ventricle 

have long been recognized [7,8]. However, mounting evidences suggest that also conduction 

velocity, repolarization heterogeneities, and arrhythmia susceptibility in different left 

ventricle (LV) regions can be attributable to regional differences in their protein expression 

pattern and function [9,10]. The spatial, functional and temporal heterogeneity that is 

distinctive becomes especially relevant in the injured heart [11-13]. 

In vivo occlusion of the left anterior descending (LAD) coronary artery followed by 

reperfusion is extensively used as an animal model of ischemic heart disease. Upon coronary 

obstruction, restoration of blood flow to the ischemic myocardium modulates the size of 

myocardial infarct and the chance of cell survival. However, this process, termed reperfusion, 

per se can also induce injury. The exact mechanism of reperfusion injury has not yet been 

clarified, although it probably involves cellular overload of calcium, mitochondrial 

impairment and oxidative stress-induced damage [14]. The role of endogenous antioxidants 

in reperfusion injury has been studied extensively, although results are not always consistent 

(for a review see [15,16]). In fact, activity or gene expression of antioxidant enzymes has 

been reported to either increase or decrease upon ischemia/reperfusion (I/R) [17-23]. This 

may be due to different experimental conditions and/or to variation of cardiac endogenous 

antioxidant expression at different times of reperfusion [20]. 

Although experimental in vivo ischemia most commonly involves mono-vasal occlusion, 

very few investigations have been addressed to comparative analysis on tissues from different 



LV regions [9,11-13], as most reports on small animal models analyzed the total or partial 

left ventricular tissue [24-26] or even both ventricles combined [27]. 

The working hypothesis of the present study is that gene expression analysis performed 

separately in LAD territory and in the remaining cardiac regions is required as a prior 

condition for an accurate study of the effects of ischemia and reperfusion. 

Real-time reverse-transcription quantitative PCR (RT-qPCR) is the method of choice for 

analyzing gene expression [28]. However, selection of appropriate internal reference genes or 

housekeeping genes is necessary for reliable results in RT-qPCR. Reference gene expression 

should remain constant in the tissues of interest [29] and in the established experimental 

conditions. The lack of these requirements may lead to erroneous or inaccurate results [30-

33]. 

Previously, single reference genes have been widely used to normalize expression of the 

target genes. However, numerous reports have stated that classic reference genes may vary 

extensively in different experimental conditions and tissues and are therefore unsuitable for 

normalization purposes in the absence of an accurate validation [32,34,35]. For example, one 

of the most traditionally used genes for normalization has been gapdh although several 

publications show that its expression is variable and not suitable for normalizing mRNA 

levels [36-38]. 

Normalization against multiple internal reference genes has now become a prerequisite for 

correct expression analysis [39] and software programs devoted to evaluation of expression 

stability and selection of the most suitable reference genes under different experimental 

conditions have been developed [40,41]. This requirement is paramount in a complex tissue 

such as the myocardium that is composed by multiple cell types and especially during 

ischemia-reperfusion where also not specific RNA degradation can take place. 

In an in vivo rat model of myocardial I/R we focused on gene expression of three antioxidant 

enzymes ubiquitously expressed—mitochondrial and cytosolic superoxide dismutase (MnSod 

and Cu-ZnSod respectively) and cytosolic thioredoxin reductase (trxr1)—whose role in the 

protection of ischemia/reperfusion injury has been investigated extensively [16,42,43]. Short 

(4 h) and long (72 h) reperfusion times were considered in order to evaluate the role of these 

antioxidant enzymes during two different phases of cardiac wound healing: the 

necrosis/apoptosis and the proliferation phase respectively [44,45]. 

The first endpoint of our study was to evaluate a set of candidate reference genes for their use 

in normalizing RT-qPCR data in three distinct regions of the heart, namely the right ventricle, 

the central LAD ischemic/reperfused area of the left ventricle, and its undamaged posterior 

wall. 

The second endpoint of the study was to verify alterations in MnSod, Cu-ZnSod and trxr1 

gene expression level upon ischemia/reperfusion-induced oxidative stress in the different 

heart areas at the two different times of reperfusion. 



Results and discussion 

Selection of reference genes 

geNorm software was used to test the candidate reference genes in order to rank them on the 

basis of their expression stability value (M). The M value is the average pairwise variation of 

a particular gene with all other reference genes [40]. The lowest M value corresponds to the 

most stable reference gene, while the highest corresponds to the least stable. geNorm analysis 

of expression stability showed differences in gene expression in the three myocardial regions 

(Figure 1). In all cases, stability gene values were always below the 1.5 cut-off set by the 

algorithm, thereby signifying stable expression levels for all genes. In particular, analysis 

showed that in the RV most stable genes were hmbs/hprt (M = 0.38). In the RR of the left 

ventricle the highest stability was achieved by hmbs/tbp (M = 0.42) while IRR had the highest 

M values, and the most stable genes were ywhaz/pabp (M = 0.64). 

Figure 1 Average expression stability values of the candidate reference genes in the 

different myocardial regions. Average expression stability values (M) of nine candidate 

reference genes as calculated by geNorm software. RV, Right Ventricle; RR, Remote Region 

of the left ventricle; IRR, Ischemic/Reperfused Region of the left ventricle 

It is noteworthy that, as previously reported by Brattelid et al., [37] in a rat model of post-

infarction heart failure, the highest stability was observed in genes encoding proteins 

involved in DNA synthesis/transcription, independently of the myocardial area analyzed, thus 

confirming that they are a suitable alternative to the widely used metabolic gene gapdh as 

reference genes 

The optimal number of reference genes recommended as normalization factor in the distinct 

cardiac regions was calculated with pairwise variation and is shown in Figure 2. 

Vandesompele et al. [40] set 0.15 as a cutoff value below which inclusion of additional genes 

is not required. According to this analysis, two genes were sufficient for adequate 

normalization in the RV (hmbs and hprt) and three in the RR (decreasing rank of stability: 

hmbs, tbp, hprt). In the IRR the number of reference genes to be included was higher, as 

expected for the area most affected by biochemical and cellular changes, and the use of six 

reference genes was recommended for normalization purposes (decreasing rank of stability: 

ywhaz, pabp, hmbs, tbp, hprt, actb). However, as highlighted by Vandesompele and 

colleagues, 0.15 is an arbitrary value and the number of genes used for geometric averaging 

is a trade-off between accuracy and practical considerations such as cost limitations and 

limited amount of sample. Therefore, in order to increase experimental feasibility of regional 

gene expression analysis, target genes were normalized not only with the six reference genes 

computed by geNorm, but also with a reduced number of genes obtained by the progressive 

exclusion of the least stable, down to the three best reference genes. 

Figure 2 Pairwise variation of candidate reference genes. Pairwise variation (Vn/n+1) was 

analyzed between the normalization factors NF(n) and NF(n + 1) by geNorm software to 

determine the optimal number of reference genes required for RT-qPCR data normalization 

the Right Ventricle (RV) (n = 20), Left Remote Region (RR) (n = 20) and 

Ischemic/Reperfused Region (IRR) (n = 20). In the RV, V2/3 is 0.135, well below the 0.15 

value, indicating that the two genes hmbs and hprt would be sufficient for normalizing gene 

expression data. In the RR, analysis of pairwise variation shows that three reference genes 



should be included for gene expression studies in order to obtain a value below 0.15 (V3/4 = 
0.137). Reference genes in the RR therefore should be hmbs, tbp, hprt. Finally, in the IRR, 

analysis of pairwise variation shows that six reference genes should be included for gene 

expression studies in order to obtain a value below 0.15 (V6/7 = 0.148). Reference genes in the 

IA should therefore be ywhaz, pabp, hmbs, tbp, hprt, and actb 

Target gene expression analysis 

Expression of MnSod, Cu-ZnSod and trxr1 was evaluated in the three different cardiac 

regions in sham-operated and in the short and long reperfused animals, according to the 

reference genes as indicated by geNorm (Figure 3). As far as the sham group is concerned, 

we found a significant heterogeneity in the expression level within the two LV areas for both 

mitochondrial and cytosolic SOD, with the higher levels expressed in IRR (p < 0.05 for both). 

trxr1 expression did not vary among the three ventricular regions. 

Figure 3 MnSod, Cu-ZnSod and trxr1 expression levels at different reperfusion times. 
MnSod (A), Cu-ZnSod (B) and trxr1 (C) expression levels in short and long reperfusion times 

upon 30 min of ischemia. Sham animals were pooled together as there were no evident 

differences between short and long reperfusion times (sham n = 5; short n = 9; long n = 6). 

Results are expressed as mean ± SE. *p < 0.05; ** p < 0.01; ***p < 0.001 

Regarding MnSod, there was an evident drop in expression level in all three cardiac regions 

upon long reperfusion time only (Figure 3A). In the RV and in the RR MnSod expression 

decreased of 54 and 40% with respect to sham (p < 0.01 and p < 0.05 respectively). In the 

IRR, expression level decreased of 83% with respect to sham (p < 0.001). 

A decrease in MnSod activity upon ischemia and reperfusion has been previously described 

[46,47]. However, our experimental setting disclosed that although a decrease of expression 

occurs in all cardiac regions, it is greater in the IRR and occurs only in the long reperfusion 

time, corresponding to the proliferative phase of wound healing during which fibroblasts and 

endothelial cells proliferate and matrix proteins are produced [44]. On the contrary, Cu-

ZnSod expression did not vary with respect to sham in the RV and RR at all times. However, 

in the IRR, after long reperfusion there was a drop of 83% (p < 0.01 vs sham) (Figure 3B). 

Finally trxr1 expression levels did not vary significantly upon I/R during either short nor long 

reperfusion with respect to sham in all cardiac regions (Figure 3C). 

To explore the influence of the normalization strategy used we compared the expression of 

the two target genes that are modulated by I/R normalized either to the subset of genes 

selected according to geNorm analysis (Figure 3), or to gapdh (Figure 4), one of the most 

frequently used reference gene in the literature. Figure 4 shows that normalization with gapdh 

modified the pattern of expression thereby altering the results observed in Figure 3. 

Figure 4 MnSod, Cu-ZnSod and trxr1 expression levels normalized according to gapdh. 

MnSod (A), Cu-ZnSod (B) and trxr1 (C) expression levels normalized to gapdh in sham 

operated animals and in short and long reperfusion times upon 30 min of ischemia (sham n = 
5; short n = 9; long n = 6) 

We tested whether results obtained by normalization in the IRR against the six reference 

genes retained significance also when normalizing with a progressively reduced number of 



genes. Analysis was performed only on mitochondrial and cytoplasmic SOD that exhibited a 

significant variation of expression. 

Figure 5 shows expression levels of MnSod (panel A) and Cu-ZnSod (panel B) normalized 

with 6, 5, 4 and 3 genes. Results did not change when normalization was performed with a 

reduced number of genes, and when observed, the degree of statistical significance remained 

the same. 

Figure 5 Normalization of MnSod and Cu-ZnSod in the IRR with decreasing number of 

reference genes. Relative expression of MnSod (A) and Cu-ZnSod (B) expression level in the 

IRR with 6, 5, 4 and 3 of the most stable reference genes as indicated by geNorm analysis. 

(sham n = 5; short n = 9; long n = 6) 

These data suggest that in the rat model of in vivo cardiac I/R, expression analysis may be 

accurately performed by selecting the appropriate reference genes for each region and even 

reducing the number of reference genes suggested by geNorm analysis. This becomes 

reasonable considering the hands-on implications (laboratory costs and time) and in 

consideration of the limiting quantity of the sample that occurs when a spatial analysis is 

carried out on small-sized experimental models (rats and mice). 

Conclusions 

In summary, gene expression of both reference and target genes reflects cardiac heterogeneity 

in the ischemic and reperfused heart. 

geNorm analysis has shown that reference gene stability varies among the three myocardial 

regions analyzed: hmbs, hprt and hmbs, tbp, hprt are suitable reference genes in the right 

ventricle and in the Remote region respectively. Although in the ischemic reperfused region 

instability is higher, three reference genes could be sufficient for adequate normalization 

(ywhaz, pabp, hmbs). 

We show that Cu-ZnSod and MnSod, but not trxr1 expression, varies in the different heart 

regions during the proliferative phase of post-ischemic wound healing. 

Previous investigations report differences in gene expression of antioxidant enzymes in post-

infarcted myocardium of rats [13,23,47,48]. However, excluding a few cases [13,48], gene 

expression is most commonly studied in the whole heart in spite of specific spatial 

differences in gene expression of both reference and target genes. Whenever a region-specific 

variability in gene expression occurs, as is the case of Cu-ZnSod reported in our study, 

analysis of the heart as a whole could lead to misleading results by either an over- or under-

estimation bias. 

A more general survey of spatial and temporal expression of antioxidant-coding genes could 

offer useful knowledge of the relation between the different phases of cardiac repair as well 

as constitute possible therapeutic targets. 

Although our study was limited to the assessment of antioxidant gene changes related to 

ischemia-reperfusion, it has a more general value addressing the challenging problems of 



choice and validation of reference genes which apply to other target genes as well, involved 

in cardiac pathological processes. 

Methods 

Ischemia/reperfusion model 

All experiments were performed according to the guidelines of D.Lgs 116 (1992) and 

conformed to the ―Guiding Principles for Research Involving Animals and Human Beings,‖ 

approved by the American Physiological Society. 

Twenty male Wistar rats (8–10 weeks, 250–300 g) were anesthetized by intraperitoneal 

injection of Zoletil 100 ® + xylazine (50 mg/Kg and 3 mg/Kg respectively). The heart was 

exposed through a left lateral thoracotomy and LAD coronary was occluded for 30 min in 15 

animals. Then the knot around the vessel was opened and unrestrained reperfusion allowed. 

At the end of reperfusion, animals were killed. Under deep anesthesia, hearts were arrested in 

diastole by lethal KCl injection. The hearts were then excised and washed for 10 min with 

cold Krebs-Henseleit bicarbonate buffer in Langendorff configuration. 

Reperfused animals were divided into two groups: ―short reperfusion time‖, which were 

reperfused for 4 h after the reopening of the LAD (n = 9) and ―long reperfusion time‖, which 

were reperfused for 72 h after the reopening of the LAD (n = 6). 

A control group of sham-operated animals underwent all surgical procedures except for the 

occlusion of the LAD and were killed in correspondence with the short (n = 3) and the long (n 
= 2) reperfusion times. 

Tissue harvesting 

Hearts were cut below the plane of LAD occlusion and tissue samples were obtained from a) 

the right ventricle wall (RV), b) the core of the LAD territory, i.e., the ischemic reperfused 

region (IRR) in the left ventricular wall, c) the left ventricular free wall remote to LAD 

region (RR). In sham-operated animals tissues were harvested from analogously termed 

corresponding regions; IRR of sham-operated animals corresponded to the area beside the 

LAD in the left ventricle. Samples were snap frozen in liquid nitrogen and stored at −80°C 

until RNA purification was undertaken. 

RNA extraction, quantification and retrotranscription 

Frozen samples were transferred to Tri Reagent (Sigma) and homogenized using TissueLyser 

(Qiagen) according to manufacturer’s instructions. 

Concentration of RNA was determined by measuring optical density at 260 nm. Integrity of 

total RNA was assessed by electrophoresis on 1.2% agarose gels. cDNA was obtained from 1 

μg of total RNA using the iScript (Bio-Rad Laboratories, Hercules, CA, USA) 

retrotranscription kit. 



Reference gene selection and real-time PCR 

Nine candidate reference genes were selected from those most commonly used in literature 

and belonging to different functional classes in order to avoid co-regulation. Primers were 

synthesized by BioFab Research (Roma, Italy). Primer characteristics are described in Table 

1. 



Table 1 Primer sequences of target genes and candidate reference genes for normalization 

Gene 

symbol 

Gene name Accession 

number 

Reference Forward primer (5′-3′) Reverse primer (5′-3′) Amplic 

on 

length 

PCR 

efficiency 

(%) 

Tm (°C) 

actb Actin, beta V01217 [49] AAGTCCCTCACCCTCCCAAAAG AAGCAATGCTGTCACCTTCCC 97 106 82.9°C 

ywhaz tyrosine 3-

monooxygenase/tryptophan 5-

monooxygenase activation 

protein zeta polypetide 

NM_013011.2 [49] GATGAAGCCATTGCTGAACTTG GTCTCCTTGGGTATCCGATGTC 117 94 77.6°C 

rpl13a Ribosomal protein L13A NM_173340 [49] GGATCCCTCCACCCTATGACA CTGGTACTTCCACCCGACCTC 132 104 83.5°C 

gapdh glyceraldehyde-3-phosphate 

dehydrogenase 

NM_01708  CTACCCACGGCAAGTTCAAC CCAGTAGACTCCACGACATAC 138 102 57°C 

gusb Glucuronidase, beta NM_017015  TCACCATCGCCATCAACAACAC GCTTATGTCCTGGACGAAGTAACC 92 94,9 59°C 

hprt Hypoxantine guanine 

phosphoribosyl transferase 

NM_012583  CCCAGCGTCGTGATTAGTGATG TTCAGTCCTGTCCATAATCAGTCC 110 104 59°C 

tbp TATA box binding protein NM_001004198  CACCGTGAATCTTGGCTGTAAAC CGCAGTTGTTCGTGGCTCTC 124 104 58°C 

hmbs Hydroxymethylbilane synthase NM_013168 [50] TCTAGATGGCTCAGATAGCATGCA TGGACCATCTTCTTGCTGAACA 76 95,8 60°C 

Pabpn1 poly(A) binding protein, 

nuclear 1 

116697 http://medgen.uge

nt.be/rtprimerdb 

TATGGTGCGACAGCAGAAGA TATGCAAACCCTTTGGGATG 110 95 60°C 

MnSod Manganese Superoxide 

dismutase 

NM_017051.2  ATCTGAACGTCACCGAGGAG TAGGGCTCAGGTTTGTCCAG 141 96 59°C 

Cu.ZnSod Copper-Zinc Superoxide 

dismutase 

NM_017050 http://medgen.uge

nt.be/rtprimerdb 

CGAGCATGGGTTCCATGTC CTGGACCGCCATGTTTCTTAG 101 96 50°C 

txnr1 Thioredoxin reductase 1 NM_031614.2  GGTGAACACATGGAAGAGCA GGACTTAGCGGTCACCTTGA 111 98 60°C 

Reference and antioxidant-coding gene primer sequences, original references, amplicon sizes, amplification efficiency values and accession 

number for the PCR analyses in the present study 

http://medgen.ugent.be/rtprimerdb
http://medgen.ugent.be/rtprimerdb
http://medgen.ugent.be/rtprimerdb
http://medgen.ugent.be/rtprimerdb


Real-time PCR was performed using iQ SYBRGreen Supermix (Bio-Rad Laboratories). 

Reactions contained 1X SYBR Green SuperMix (BioRad), 300nM of each primer and 100 ng 

of template in a 25 μl final volume reaction. After an initial denaturation step at 95°C for 3 

min, amplification was performed with 40 cycles of denaturation at 95°C for 15 s and 

annealing at 60°C for 30 s. Amplification was followed by melting curve analysis: a single 

homogeneous peak confirmed specific amplification for each primer pair. 

Relative expression levels of reference genes were determined with the comparative 

threshold cycle (Cq) method. Relative expression levels of target genes were normalized to 

the geometric mean of most stable genes as indicated by geNorm software. All samples were 

run in duplicate and the mean value of each duplicate was used for all further calculations. 

Serial cDNA dilution curves were produced to calculate the amplification efficiency for all 

genes. A graph of threshold cycle vs log10 picograms of diluted sample series was produced. 

The slope of the curve was used to determine the amplification efficiency according to Pfaffl 

[51]: Efficiency = 10
(−1/slope)

. Amplification efficiency values are reported in Table 1. 

Gene expression stability and selection of the most suitable reference genes were evaluated 

with geNorm analysis. To determine the number of optimal genes required for normalization 

the software calculated pairwise variation (Vn/n+1) between Normalization Factor NFn and 

NFn+1 [40]. 

Statistical analysis 

Data are expressed as mean ± SE. Comparisons were made by two-way repeated measures 

ANOVA. When a significant effect of a factor was indicated, the post-hoc Bonferroni test 

was used to isolate the statistical differences. Analyses were performed using SPSS 13 (SPSS 

Inc. Chicago, Il, USA), and a p-value of less than 0.05 was considered statistically 

significant. 
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