Major Congenital Anomalies in Babies Born With Down Syndrome: A EUROCAT Population-Based Registry Study

Joan K. Morris,1* Ester Garne,2 Diana Wellesley,3 Marie-Claude Addor,4 Larraitz Arriola,5 Ingeborg Barisic,6 Judit Beres,7 Fabrizio Bianchi,8 Judith Budd,9 Carlos Matias Dias,10 Miriam Gatt,11 Kari Klungsoyr,12 Babak Khoshnood,13 Anna Latos-Bielska,14 Carmel Mullaney,15 Vera Nelen,16 Amanda J. Neville,17 Mary O'Mahony,18 Annette Queisser-Luft,19 Hanitra Randrianaivo,20 Judith Rankin,21 Anke Rissmann,22 Cath Rounding,23 Antonin Sipek,24 Sylvia Stoianova,25 David Tucker,26 Hermien de Walle,27 Lyubov Yevtushok,28 Maria Loane,29 and Helen Dolk29

1Queen Mary University of London, London, United Kingdom
2Paediatric Department, Hospital Lillebaelt, Kolding, Denmark
3Faculty of Medicine, University of Southampton and Wessex Clinical Genetics Service, Southampton, United Kingdom
4Division of Medical Genetics, Lausanne, Switzerland
5Subdirección de Salud Pública, San Sebastian, Spain
6Children’s Hospital Zagreb, Clinical Hospital Centre Sisters of Charity, Medical School University of Zagreb, Zagreb, Croatia
7Department of Hungarian Congenital Abnormality Registry and Surveillance, National Institute for Health Development, Budapest, Nagyvárad tér 2, Hungary
8CNR Institute of Clinical Physiology, Pisa, Italy
9University of Leicester, Leicester, United Kingdom
10Registo Nacional de Anomalias Congénitas, Escola Nacional de Saúde Pública, Lisbon, Portugal
11Department of Health Information and Research, Guardamangia, Malta Martin Haesler, Medical University of Graz, Guardamangia, Australia
12Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen Norway and Department of Global Public Health and primary Care, University of Bergen, Bergen, Norway
13INSERM U953, Paris, France
14Polish Registry of Congenital Malformations, Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
15Health Service Executive, Kilkenny, Ireland
16Provincial Institute for Hygiene, Antwerp, Belgium
17Registro IMER, Universitaria di Ferrara, Ferrara, Italy
18Health Service Executive, Cork, Ireland
19University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
20Chu la Reunion, Ile de la Reunion, St Pierre, Reunion
21Institute of Health & Society Newcastle University, Newcastle upon Tyne, United Kingdom
22Malformation Monitoring Centre Saxony-Anhalt, Medical Faculty Otto-von-Guericke University Magdeburg, Magdeburg, Germany
23National Perinatal Epidemiology Unit, University of Oxford, Oxford, United Kingdom
24Thomayer University Hospital, Prague, Czech Republic
25St Michaels Hospital, Bristol, United Kingdom
26Public Health Wales, Swansea, United Kingdom

Conflict of interest: none.
*Correspondence to:
Joan K. Morris, Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom. E-mail: j.k.morris@qmul.ac.uk
Article first published online in Wiley Online Library (wileyonlinelibrary.com): 00 Month 2014 DOI 10.1002/ajmg.a.36780
Previous studies have shown that over 40% of babies with Down syndrome have a major cardiac anomaly and are more likely to have other major congenital anomalies. Since 2000, many countries in Europe have introduced national antenatal screening programs for Down syndrome. This study aimed to determine if the introduction of these screening programs and the subsequent termination of prenatally detected pregnancies were associated with any decline in the prevalence of additional anomalies in babies born with Down syndrome. The study sample consisted of 7,044 live births and fetal deaths with Down syndrome registered in 28 European population-based congenital anomaly registries covering seven million births during 2000–2010. Overall, 43.6% (95% CI: 42.4–44.7%) of births with Down syndrome had a cardiac anomaly and 15.0% (14.2–15.8%) had a non-cardiac anomaly. Female babies with Down syndrome were significantly more likely to have a cardiac anomaly compared to male babies (47.6% compared with 40.4%, P < 0.001) and significantly less likely to have a non-cardiac anomaly (12.9% compared with 16.7%, P < 0.001). The prevalence of cardiac and non-cardiac congenital anomalies in babies with Down syndrome has remained constant, suggesting that population screening for Down syndrome and subsequent terminations has not influenced the prevalence of specific congenital anomalies in these babies. © 2014 Wiley Periodicals, Inc.

Key words: Down syndrome; cardiac anomalies; prenatal diagnosis

INTRODUCTION

Population-based studies based on data from 1976 to 2004 have shown that over 40% of babies with Down syndrome have a major cardiac anomaly, the most common being atrioventricular septal defects (AVSD) [Kallen et al., 1996; Freeman et al., 1998, 2008; Stoll et al., 1998; Torfs and Christianson, 1998; Bell et al., 2003; Rankin et al., 2012]. Other major congenital anomalies, particularly digestive system anomalies, were also more frequent than in babies without Down syndrome [Kallen et al., 1996; Bell et al., 2003; Freeman et al., 2009; Rankin et al., 2012]. In 1999 measuring the nuchal translucency (NT) of the fetus with ultrasound, in combination with several serum markers, was found to be an adequate method of screening for Down syndrome in the first trimester of pregnancy [Spencer et al., 1999; Wald et al., 2003]. Measuring the NT of the fetus is also considered as a potential antenatal screening test for cardiac anomalies [Hyett et al., 1999; Bruns et al., 2006; Müller et al., 2007; Mogra et al., 2011]. Many cardiac and other congenital anomalies are detectable during fetal anomaly ultrasound scans performed at 18–22 weeks gestation. Hence it might be expected that fetuses with Down syndrome and cardiac or other structural congenital anomalies may be more likely to be detected than those without. By 2010, 12 of 14 countries providing data to EUROCAT (a European network of population-based registries for the epidemiologic surveillance of congenital anomalies) had widespread availability of antenatal screening for Down syndrome including NT measurements and ultrasound scans performed at 18–22 weeks [EUROCAT, 2005a, 2010; Boyd et al., 2008]. As the presence of major congenital anomalies has implications for subsequent morbidity and mortality and provision of services, it is important to know the prevalence of cardiac and other congenital anomalies in babies with Down syndrome [Rankin et al., 2012].

This study aimed to quantify the prevalence of cardiac and other anomalies in babies born with Down syndrome from 2000 to 2010 and to determine if the widespread availability of antenatal screening for Down syndrome was associated with any decline in the prevalence of specific anomalies in these babies over this time period.

METHODS

Data for this study were extracted from the European Surveillance of Congenital Anomalies (EUROCAT) Central Register. In 2011 EUROCAT had 41 population based member registries in 20 countries covering 31% of all births in Europe [Boyd et al., 2011]. Information on member registries and their methods of case ascertainment are available [Greenlees et al., 2011]. Each registry sends an anonymized uniformly coded dataset to EUROCAT Central Registry containing information on cases of major congenital anomaly registered in the local population. Cases include live births, fetal deaths at or after 20 weeks of gestation, and terminations of pregnancy for fetal anomaly...
severity of cardiac anomalies

Severity I (SI): single ventricle, hypoplastic left heart, hypoplastic right heart, Ebstein anomaly, and tricuspid atresia (univentricular cardiac anomalies).

Severity II (SII): pulmonary valve atresia, common arterial trunk, AVSD, aortic valve atresia/stenosis, transposition of great vessels, tetralogy of Fallot, total anomalous pulmonary venous return, and coarctation of aorta, without additional cardiac anomalies classified as SI.

Severity III (SIII): ventricular septal defect (VSD), atrial septal defect (ASD), pulmonary valve stenosis, without additional cardiac anomalies classified as SI or SII. Isolated Patent ductus arteriosus (PDA) in term infants.

All anomalies were coded using the EUROCAT guide 1.3 [EUROCAT, 2005b].

For this study, the criteria for including registries were that: maternal age was recorded for ≥80% of all births in the registry population; and ≥75% ascertainment of Down syndrome according to an adapted version of the Down Syndrome Data Quality Indicator (DQI) [Loane et al., 2011] for 2005–2009. This Down syndrome DQI calculates the ratio of the number of observed to number of expected cases of Down syndrome for each registry based on the maternal age profile, external standard maternal age-specific rates and fetal survival correction factors to 20 weeks of gestation (see appendix Loane et al., 2013). The final study population consisted of 27 registries in 18 countries covering seven million births during 2000–2010. Cases of Down syndrome (ICD10 codes: Q90, ICD9 code: 7580) were extracted from the central database in June 2012. The study years were chosen because from 2000 standard prenatal care in many European countries included having a fetal echogram and therefore cardiac anomalies were likely to be detected antenatally [EUROCAT, 2005a; Boyd et al., 2008]. This study did not distinguish between Down syndrome arising as a trisomy, translocation or mosaic. Although most of the registries indicated that they consult or receive direct notification of all Down syndrome cases from cytogenetic laboratories in their region, some registries identified potential problems beyond their control; hence some cases may be missed. Saxony-Anhalt (Germany) and East Midlands & South Yorkshire (UK) have notifications from some but not all of the cytogenetic labs in their region. Wielkopolska (Poland) has complete information on live birth cases, but TOPFAs are missed as the registry does not register TOPFAs; however, these are likely to be few as TOPFAs is only allowed in Poland for “severe, irreversible damage of the fetus.” Norway receives cases through the medical birth notification form from delivery units and neonatal intensive care units and misses about 20% of Down syndrome cases [EUROCAT, 2010]. In Cork and Kerry (Ireland) and South East Ireland case finding was mainly via obstetric or pediatric records. Four registries do not provide any information on whether a postmortem examination was performed or not and several other registries have a high proportion of missing information on whether a postmortem examination was performed or not. The proportion of TOPFAs with gestations of at least 15 weeks that had a postmortem reported varies considerably from 79% in South Portugal down to only 12% in East Midlands and South Yorkshire.

Statistical methods

Trends in the prevalence of cardiac anomalies and non-cardiac congenital anomalies were analyzed using multilevel logistic models to take account of differences among the registers. Ninety five percent confidence intervals for proportions were calculated using the binomial distribution. Sensitivity analyses were performed excluding Malta and Ireland (where TOPFA is not legal) and Poland (where TOPFA is only available for “severe, irreversible damage of the fetus”) to ensure that these three countries were not influencing the overall results. Statistical analyses were performed using STATA version 10 (Statacorp LP, College Station, TX).

Results

There were 14,109 cases with Down syndrome of whom 6,738 were live births, 306 fetal deaths, and 7,065 TOPFAs. Table I shows the proportions of births (live births and fetal deaths) and TOPFAs with Down syndrome with a cardiac anomaly diagnosed according to the severity of the anomaly. Table I also shows the proportion of TOPFAs that had a postmortem examination reported. Overall, 43.6% (42.4–44.7%) of births with Down syndrome had a cardiac anomaly, while only 8.1% (7.7–8.7%) of TOPFAs had a diagnosed cardiac anomaly. This increased to 18.1% (16.0–20.4%) when only those TOPFAs with a postmortem examination reported were included. As expected the more severe the diagnosis, the more likely that it was recorded for the TOPFAs. The proportion with a cardiac anomaly with high perinatal mortality was similar in both births and TOPFAs with a postmortem examination reported 0.3% (0.2–0.5%) and 0.5% (0.2–1.1%), respectively.

Table I shows a similar pattern with non-cardiac congenital anomalies. Overall, 15.0% (14.2–15.8%) of births with Down syndrome had a non-cardiac congenital anomaly, while only 7.3% (6.7–7.9%) of TOPFAs had a diagnosed non-cardiac congenital anomaly. However, this increased to 16.8% (14.8–19.1%) when only those TOPFAs with a postmortem examination reported were included, which was significantly higher than in live births and fetal deaths. The most common non-cardiac congenital anomalies
recorded in cases with postmortem examinations included limb anomalies and digestive system anomalies (both over 5%).

Table I demonstrates that there was under-reporting of medium and low mortality cardiac anomalies in TOPFAs, even when a postmortem examination had been performed. When examined according to gestation, TOPFAs occurring at earlier gestations (particularly before 20 weeks) had significantly fewer cardiac anomalies reported. Figure 1 shows that the proportion of all cases with Down syndrome that were TOPFAs occurring prior to 15 weeks gestation increased significantly since 2000 from 6% to 25% in 2010, with the median gestational age decreasing from 18 to 15 weeks. The proportion of all Down syndrome cases that were TOPFAs occurring after 15 weeks gestation decreased from 41% down to 36%.

Trends over time were examined using multi-level models to allow for differences between registers. There was no evidence of a trend in the proportions of births with Down syndrome with any associated cardiac anomaly, severe cardiac anomaly (severity 1 and 2) or non-cardiac congenital anomaly since 2000. This is illustrated in Figure 2, which shows the unadjusted proportions of births with Down syndrome with any associated cardiac anomaly over time.

![FIG. 1. Terminations of pregnancy for a fetal anomaly as a proportion of all diagnoses of Down syndrome (live births, fetal deaths from 20 weeks of gestation, and TOPFA at any gestation) according to gestation, 2000–2010.](image)

FIG. 2. The proportion of live births and fetal deaths from 20 weeks of gestation with Down syndrome with associated congenital anomalies according to severity of the cardiac anomaly and year of birth, 2000–2010. **Severe cardiac anomalies** include single ventricle, hypoplastic left heart, hypoplastic right heart, Ebstein anomaly, tricuspid atresia, pulmonary valve atresia, common arterial truncus, atrioventricular septal defects, aortic valve atresia/stenosis, transposition of great vessels, tetralogy of Fallot, total anomalous pulmonary venous return, and coarctation of aorta.

<table>
<thead>
<tr>
<th>Type of congenital anomaly</th>
<th>Proportion of births (%)</th>
<th>Proportion of TOPFAs (%)</th>
<th>Proportion of TOPFAs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Any cardiac anomaly</td>
<td>3,068 43.6 (42.4–44.7)</td>
<td>570 8.1 (7.4–8.7)</td>
<td>220 18.1 (16.0–20.4)</td>
</tr>
<tr>
<td>Severity of cardiac anomaly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High perinatal mortality</td>
<td>21 0.3 (0.2–0.5)</td>
<td>14 0.2 (0.1–0.3)</td>
<td>6 0.5 (0.2–1.1)</td>
</tr>
<tr>
<td>Medium perinatal mortality</td>
<td>1,111 15.8 (14.9–16.6)</td>
<td>322 4.7 (4.2–5.2)</td>
<td>115 9.4 (7.9–11.2)</td>
</tr>
<tr>
<td>Low perinatal mortality</td>
<td>1,661 23.6 (22.6–24.6)</td>
<td>153 2.4 (1.8–2.5)</td>
<td>84 6.9 (5.5–8.5)</td>
</tr>
<tr>
<td>Any non-cardiac anomaly</td>
<td>1,056 15.0 (14.2–15.8)</td>
<td>517 7.3 (6.7–7.9)</td>
<td>205 16.8 (14.8–19.1)</td>
</tr>
<tr>
<td>No associated anomaly</td>
<td>3,503 49.7 (48.6–50.9)</td>
<td>6,113 86.5 (85.7–87.3)</td>
<td>875 71.9 (69.3–74.4)</td>
</tr>
</tbody>
</table>

TABLE I. Associated Congenital Anomalies Present in Cases With Down Syndrome

- **TOPFA:** termination of pregnancy for fetal anomaly.
- **Cases with both a cardiac anomaly and a non-cardiac anomaly will be present in both rows of the table.
- **High perinatal mortality includes single ventricle, hypoplastic left heart, hypoplastic right heart, Ebstein anomaly, and tricuspid atresia (univentricular cardiac anomalies).** Medium perinatal mortality includes pulmonary valve atresia, common arterial truncus, atrioventricular septal defects, aortic valve atresia/stenosis, transposition of great vessels, tetralogy of Fallot, total anomalous pulmonary venous return, and coarctation of aorta, without additional cardiac anomalies classified as high perinatal mortality. Low perinatal mortality includes ventricular septal defect, atrial septal defect, pulmonary valve stenosis, without additional cardiac anomalies classified as medium or high perinatal mortality. Isolated Patent ductus arteriosus in term infants.
TABLE II. Associated Congenital Anomalies Present in Live Births and Fetal Deaths from 20 Weeks of Gestation With Down Syndrome According to Sex, 2000–2010

<table>
<thead>
<tr>
<th>Type of congenital anomaly</th>
<th>Males with Down syndrome (n = 3,905)</th>
<th>Females with Down syndrome (n = 3,120)</th>
<th>Odds male versus female (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neural tube defects</td>
<td>38 [0.08–0.22]</td>
<td>0 [0–0.12]</td>
<td>—</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>11 [0.14–0.50]</td>
<td>9 [0.13–0.55]</td>
<td>0.98 [0.41–2.3]</td>
</tr>
<tr>
<td>Microcephaly</td>
<td>11 [0.14–0.50]</td>
<td>3 [0.02–0.28]</td>
<td>2.94 [0.88–9.78]</td>
</tr>
<tr>
<td>Eye</td>
<td>63 [1.24–2.06]</td>
<td>52 [1.25–2.18]</td>
<td>0.97 [0.67–1.4]</td>
</tr>
<tr>
<td>Anophthalmos/microphthalmos</td>
<td>3 [0.08–0.22]</td>
<td>0 [0–0.12]</td>
<td>—</td>
</tr>
<tr>
<td>Congenital cataract</td>
<td>11 [0.28–0.50]</td>
<td>17 [0.32–0.87]</td>
<td>0.52 [0.25–1.08]</td>
</tr>
<tr>
<td>Congenital glaucoma</td>
<td>1 [0.01–0.14]</td>
<td>2 [0.01–0.23]</td>
<td>0.40 [0.01–3.05]</td>
</tr>
<tr>
<td>Ear, face, and neck</td>
<td>45 [0.84–1.54]</td>
<td>36 [0.81–1.59]</td>
<td>1.00 [0.64–1.55]</td>
</tr>
<tr>
<td>Cardiac anomalies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac anomalies</td>
<td>1,579 [38.9–42.0]</td>
<td>1,485 [45.83–49.37]</td>
<td>0.75 [0.68–0.82]^b</td>
</tr>
<tr>
<td>Severe cardiac anomalies</td>
<td>557 [13.2–15.4]</td>
<td>574 [17.05–19.8]</td>
<td>0.74 [0.65–0.84]^b</td>
</tr>
<tr>
<td>Common arterial truncus</td>
<td>5 [0.04–0.30]</td>
<td>1 [0.00–0.18]</td>
<td>4.00 [0.55–29.1]</td>
</tr>
<tr>
<td>Transposition of great arteries</td>
<td>5 [0.03–0.33]</td>
<td>4 [0.03–0.33]</td>
<td>1.33 [0.35–5.04]</td>
</tr>
<tr>
<td>Single ventricle</td>
<td>1 [0.00–0.14]</td>
<td>2 [0.06–0.14]</td>
<td>0.40 [0.01–3.05]</td>
</tr>
<tr>
<td>Ventricular septal defect</td>
<td>518 [12.2–14.4]</td>
<td>500 [14.75–17.36]</td>
<td>0.80 [0.70–0.92]^b</td>
</tr>
<tr>
<td>Atrial septal defect</td>
<td>665 [15.9–18.2]</td>
<td>580 [17.24–20.0]</td>
<td>0.90 [0.79–1.02]</td>
</tr>
<tr>
<td>Respiratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>47 [11.1–13.1]</td>
<td>506 [14.94–17.56]</td>
<td>0.71 [0.62–0.81]</td>
</tr>
<tr>
<td>Choanal atresia</td>
<td>68 [1.35–2.20]</td>
<td>47 [1.11–2.00]</td>
<td>1.16 [0.80–1.68]</td>
</tr>
<tr>
<td>Oro facial clefts</td>
<td>5 [0.03–0.33]</td>
<td>3 [0.02–0.28]</td>
<td>1.33 [0.35–5.04]</td>
</tr>
<tr>
<td>Cleft lip with or without palate</td>
<td>20 [0.44–1.07]</td>
<td>22 [0.44–1.07]</td>
<td>0.72 [0.40–1.32]</td>
</tr>
<tr>
<td>Cleft palate</td>
<td>5 [0.03–0.33]</td>
<td>3 [0.02–0.28]</td>
<td>1.33 [0.35–5.04]</td>
</tr>
<tr>
<td>Digestive system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal atresia</td>
<td>35 [0.63–1.24]</td>
<td>33 [1.06–1.48]</td>
<td>0.85 [0.53–1.36]</td>
</tr>
<tr>
<td>Duodenal atresia or stenosis</td>
<td>117 [2.48–3.58]</td>
<td>90 [2.33–3.53]</td>
<td>1.04 [0.79–1.37]</td>
</tr>
<tr>
<td>Abdominal wall defects</td>
<td>8 [0.12–0.47]</td>
<td>8 [0.11–0.50]</td>
<td>1.00 [0.41–2.46]</td>
</tr>
<tr>
<td>Bilateral renal agenesis adding including Potter syndrome</td>
<td>2 [0.01–0.18]</td>
<td>2 [0.01–0.23]</td>
<td>0.90 [0.14–4.52]</td>
</tr>
</tbody>
</table>

[Continued]
anomaly, severe cardiac anomaly (severity 1 and 2) or non-cardiac congenital anomaly. The same lack of trend was evident when Malta, Ireland and Poland were excluded from the analysis. There was no observed change in prevalence of ASD and VSD among births with Down syndrome over the 10 years. However, before 2005 the EUROCAT definition of ASD included a minor form whereas after 2005 these cases were excluded. Therefore there may have been a slight increase in ASD that was not detected due to the coding change.

Table II demonstrates the high prevalence of other major congenital anomalies in babies with Down syndrome and also highlights the prevalence differences according to sex. The most common cardiac anomalies were ASD, VSD, AVSD, patent ductus arteriosus, and tetralogy of Fallot with one of these present in over 99% of births with cardiac anomalies. Female babies with Down syndrome were significantly more likely to have a cardiac anomaly compared with male babies (47.6% compared with 40.4%, P < 0.001) and significantly less likely to have a non-cardiac anomaly (12.9% compared with 16.7%, P < 0.001). Digestive system anomalies were more common in males than females. In particular, Hirschsprung disease was almost five times more common in males than females (P = 0.001). The most common screening tests for Down syndrome in the first trimester involve measuring the NT of the fetus between 11 and 13 weeks gestation. A large NT value has also been shown to be predictive of a cardiac anomaly [Hyett et al., 1999; Bruns et al., 2006; Muller et al., 2007]. Fetuses detected through this screening method might be expected to have a higher prevalence of cardiac anomalies than other fetuses with Down syndrome. However, Mogra et al. [2011] reported that among fetuses with Down syndrome, the presence of structural cardiac anomalies was not associated with an increased NT. Also the detection rates of screening tests including an NT measurement are over 85% for the commonly used 3% false positive rate [Spencer et al., 1999; Wald et al., 2003] and therefore offsetting decreases in more severe cardiac anomalies.

The recorded prevalence of all associated congenital anomalies is lower in pregnancies with Down syndrome that resulted in a TOPFA and significantly lower in TOPFAs occurring prior to 15 weeks gestation compared with later TOPFAs (data not shown). One explanation is that many congenital anomalies can be diagnosed during the routine fetal anomaly ultrasound scan, which generally occurs at around 18–22 weeks gestation rather than earlier in gestation. If first trimester screening is done, followed quickly by a diagnostic test and subsequent TOPFA occurring prior to 15 weeks gestation, it is unlikely that these congenital anomalies will have been diagnosed and also less likely that a postmortem examination will be carried out. The proportion of TOPFAs occurring prior to 15 weeks gestation has increased continually from 2000 (see Fig. 2), reflecting the increased use of first trimester screening tests in Europe. For women who have received a fetal anomaly ultrasound scan before they have a TOPFA, the more severe forms of cardiac and non-cardiac congenital anomalies are searched for and reported, while the less severe congenital anomalies are not detectable by ultrasound and are only investigated after the birth of the infant with Down syndrome.

The most common screening tests for Down syndrome in the study period, indicating that the constant prevalence of cardiac anomalies was not due to increases in less severe cardiac anomalies offsetting decreases in more severe cardiac anomalies.

DISCUSSION

The prevalence of all cardiac anomalies, severe cardiac anomalies and non-cardiac congenital anomalies has remained constant in babies born with Down syndrome from 2000 to 2010. Also the observed prevalence of ASD and VSD remained constant over the study period, indicating that the constant prevalence of cardiac anomalies was not due to increases in less severe cardiac anomalies offsetting decreases in more severe cardiac anomalies.

The recorded prevalence of all associated congenital anomalies is lower in pregnancies with Down syndrome that resulted in a TOPFA and significantly lower in TOPFAs occurring prior to 15 weeks gestation compared with later TOPFAs (data not shown). One explanation is that many congenital anomalies can be diagnosed during the routine fetal anomaly ultrasound scan, which generally occurs at around 18–22 weeks gestation rather than earlier in gestation. If first trimester screening is done, followed quickly by a diagnostic test and subsequent TOPFA occurring prior to 15 weeks gestation, it is unlikely that these congenital anomalies will have been diagnosed and also less likely that a postmortem examination will be carried out. The proportion of TOPFAs occurring prior to 15 weeks gestation has increased continually from 2000 (see Fig. 2), reflecting the increased use of first trimester screening tests in Europe. For women who have received a fetal anomaly ultrasound scan before they have a TOPFA, the more severe forms of cardiac and non-cardiac congenital anomalies are searched for and reported, while the less severe congenital anomalies are not detectable by ultrasound and are only investigated after the birth of the infant with Down syndrome.

The most common screening tests for Down syndrome in the first trimester involve measuring the NT of the fetus between 11 and 13 weeks gestation. A large NT value has also been shown to be predictive of a cardiac anomaly [Hyett et al., 1999; Bruns et al., 2006; Muller et al., 2007]. Fetuses detected through this screening method might be expected to have a higher prevalence of cardiac anomalies than other fetuses with Down syndrome. However, Mogra et al. [2011] reported that among fetuses with Down syndrome, the presence of structural cardiac anomalies was not associated with an increased NT. Also the detection rates of screening tests including an NT measurement are over 85% for the commonly used 3% false positive rate [Spencer et al., 1999; Wald et al., 2003] and therefore...
almost all fetuses with Down syndrome are being detected and not just the 44% with a cardiac anomaly. This confirms our results that increases in prenatal detection have not altered the prevalence of associated congenital anomalies in births with Down syndrome.

Population screening in Europe has not reduced the live birth prevalence of Down syndrome [Loane et al., 2013] and therefore the contribution of Down syndrome with cardiac anomalies to the total pediatric cardiac anomaly caseload will have remained constant in Europe. Dolk et al. [2011] estimated this contribution to vary from 3% to 4% (Italy, France, and Switzerland) to 15–19% (Ireland and Malta) from 2000 to 2005, consistent with the 6.4% reported by Dadvand et al. [2008] in Northern England.

The birth prevalence of specific cardiac anomalies among babies with Down syndrome in this study is in agreement with the prevalence observed in other studies [Kallen et al., 1996; Freeman et al., 1998, 2008; Stoll et al., 1998; Torfs and Christianson, 1998; Bell et al., 2003; Mogra et al., 2011; Rankin et al., 2012]. In particular, the proportion of cardiac anomalies that are severe was similar to that observed by Kallen et al. [1996] in data from 1976 to 1991.

In a meta-analysis from the results of five population-based studies of all births (not just those with Down syndrome), Tennant et al. [2011] showed that VSDs, ASDs, and AVSDs were more common in females and the other cardiac anomalies were more common in males. Our findings in births with Down syndrome are consistent with these results. Due to the large proportion of VSDs, ASDs, and AVSDs, overall cardiac anomalies are more common in females than males with Down syndrome in this study, as has been observed in other studies [Kallen et al., 1996; Freeman et al., 1998]. Similarly the observations in this study that digestive system anomalies (particularly Hirschsprung disease and atresia or stenosis of parts of the small intestine excluding the duodenum), urinary anomalies (in particular renal dysplasias) and limb anomalies were all more common in males has been reported in other studies for live births with Down syndrome [Badner et al., 1990; Kallen et al., 1996; Freeman et al., 2009; Leirí et al., 2009] and for all live births [Tennant et al., 2011]. Potential mechanisms for these sex-specific differences have been proposed [Lary and Paulozzi, 2001].

The strengths of this study are that it uses recent population-based data across Europe covering a time period with a generally high prenatal detection rate and a high number of TOPFAs in countries where TOPFA is legal. All the members of EUROCAT use similar inclusion criteria and have a consistent approach to data collection, coding, and recording.

The weaknesses of this study are that for babies with a cardiac anomaly and a prenatal diagnosis, we do not know if the prenatal diagnosis refers to Down syndrome or to the cardiac anomaly. The information on which anomalies were diagnosed prenatally and which were only diagnosed after birth will not be available until 2015. In addition, many registries provided EUROCAT central registry with incomplete information on whether a postmortem examination had been performed or not. This means that there were more TOPFAs with postmortem examinations than reported in Table I. However, the prevalence of the anomalies in the TOPFAs with postmortem examinations in Table I is unlikely to be a biased sample of all TOPFAs with postmortem examinations. A further weakness is that not all registers send the precise karyotype to central registry and therefore this study could not distinguish between Down syndrome arising as a trisomy, translocation, or mosaic.

The birth prevalence of associated cardiac anomalies and non-cardiac congenital anomalies among babies with Down syndrome remained unchanged from 2000 to 2010 and was similar to that observed in much earlier studies before the occurrence of high levels of TOPFA. Although both first trimester screening tests and second trimester fetal anomaly ultrasound scans are likely to detect cardiac and other congenital anomalies, this has not altered the prevalence of associated congenital anomalies in births with Down syndrome.

REFERENCES

EUROCAT, member registries http://www.eurocat-network.eu/ABOUT-US/MemberRegistries/MembersAndRegistryDescriptions/FullMembers.

StataCorp 2007. Stata Statistical Software: Release 10, College Station, TX: Stata Corp LP.

