

IFAC-TSRR-TR-09-010 (65-8) ISSN 2035-5831

IFAC-TSRR vol. 2 (2010) 159-167

	

	

On	a	Java	based	implementation	of	ontology	evolution	
processes	based	on	Natural	Language	Processing	

	

Francesco Gabbanini(1),

(1) IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy

ICT.P10.007.001 – Responsabile Scientifico della Ricerca: Laura Burzagli

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37830504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

160 F. Gabbanini, TSRR vol. 2 (2010) 159-167

1 - Introduction

An architecture was described Burzagli et al. (2010) that can serve as a basis for the design of a
Collective Knowledge Management System. The system can be used to exploit the strengths of collective
intelligence and merge the gap that exists among two expressions of web intelligence, i.e., the Semantic
Web and Web 2.0. In the architecture, a key component is represented by the Ontology Evolution Manager,
made up with an Annotation Engine and a Feed Adapter, which is able to interpret textual contributions that
represent human intelligence (such as posts on social networking tools), using automatic learning
techniques, and to insert knowledge contained therein in a structure described by an ontology.

This opens up interesting scenarios for the collective knowledge management system, which could
be used to provide up to date information that describes a given domain of interest, to automatically
augment it, thus coping with information evolution and to make information available for browsing and
searching by an ontology driven engine.

This report describes a Java based implementation of the Ontology Evolution Manager within the
above outlined architecture.

2 - Specification of building blocks

The Ontology Evolution Manager (sketched in Fig. 1) is designed to take corpora of textual
documents as input, produce a series of RDF statements and use them to enrich an ontology. In order to
achieve these aims, main issues that have to be faced for its implementation consist in:

1. extracting machine readable knowledge from text;
2. transform extracted information in a form that is suitable for insertion into an ontology.

Fig. 1 - Ontology Evolution Manager general scheme

It is to be noted that knowledge to be extracted may in principle regard both assertions about

individuals (as in “hotel X has a good cuisine”, where “hotel X” represents an individual of the “hotels”
entity) and assertions about entities (as in “hotels have bedrooms”). In the first case the problem under
study is named “ontology population”, while in the second it is named “ontology learning”, being the two
terms synthesized by the more general “ontology evolution”.

In the following sections a description will be given about a Java based implementation of
software components used for information extraction from texts (both in the sense of “ontology population”
and “ontology learning”, see the Annotation Engine block in Fig.1) and for growing the knowledge base
(see the Feed Adapter block in Fig. 1).

F. Gabbanini, TSRR vol. 2 (2010) 159-167 161

3 - Annotation Engine: implementation of Natural Language Processing techniques

In order to extract knowledge from texts, Natural Language Processing (NLP) techniques have to
be employed (see Buitelaar and Cimiano, 2008).

Generally, these consist in a series of steps in which text is analysed, and include annotating text
with a variety of information. These steps are typically represented by:

 splitting sentences;
 splitting text into words through tokenization;
 part-of-speech tagging (POS), which consists in a form of grammatical tagging, marking up the

words in a text as corresponding to a particular part of speech, based on both its definition, as well
as its relationship with adjacent and related words in a phrase, sentence, or paragraph;

 term indexing using gazetteers (particular sort of dictionaries);
 user-defined transduction processes to further analyse texts using finite state transducers that operate

over annotations based on regular expressions, for pattern-matching, semantic extraction, and other
operations over syntactic trees produced by the previous steps.

The Annotation Engine block is meant to implement NLP techniques so as to process and annotate
textual contents, in order to provide coherent and structured inputs to the Feed Adapter block, which in turn
uses them to enrich an ontology with new concepts and assertions.

Fig. 2 - UML class diagram of the Ontology Evolution Manager

3.1 - A GATE based implementation of NLP

Although several algorithm implementations exist that perform some of the processing steps
described in the previous section (see LExO (2010), Ontomat (2010), OpenNLP (2010), Text2Onto (2010)),
the Annotation Engine block is based on the General Architecture for Text Engineering (GATE, see
Cunningham et al. (2002), Maynard et al. (2008)).

GATE provides a modular object-oriented framework implemented in Java to embed language
processing functionality in diverse applications. It can be extended and customised for different tasks by
loading plugins, which can in turn contain a number of resources able to hold linguistic data and to process
data. GATE is distributed with an Information Extraction (IE) system called “A Nearly-New IE System”
(ANNIE), which relies on finite state algorithms and the Java Annotation Patterns Engine (JAPE) to process

162 F. Gabbanini, TSRR vol. 2 (2010) 159-167

text corpora and performs operations such as sentence detection, tokenization, POS-tagging, chunking and
parsing, named-entity detection, and pronominal co-reference.

JAPE is a finite state transducer system that operates over annotations based on regular
expressions. Thus it is useful for pattern-matching, semantic extraction and many other operations over
syntactic trees such as those produced by natural language parsers. JAPE operations are described by
grammars which get converted into finite state machines as soon as they are loaded into the GATE
framework.

Functionalities offered by the GATE APIs were reorganized in order for them to be available and
easily usable within the more general framework of the Collective Knowledge Management System.

For this purpose, the GateManager Java class, as sketched in the UML diagram of Fig. 2, was
designed to act as a façade to access various functionalities made available by the GATE API, such as
initializing the GATE system, registering GATE plugins and resources, managing text corpora, parsing text
corpora.

Fig. 3 - An example text processing pipeline

The GateManager class is responsible of managing the annotation process, which is based on a

pipeline approach. A text document enters the pipeline and gets processed by the various registered plug-in
resources, which, in turn, enrich it with a set of annotations. Each plug-in may contain a set of text
annotation resources which can take advantage of annotations taken by means of resources that precede it in
the pipeline. An example pipeline is given in Fig. 3.

As the text document enters the pipeline it first gets cleaned up from previous annotations; then
sentences (through a Sentence Splitter resource) and words (through a Sentence Tokenizer resource) are
identified; then POS tagging is performed. These constitute fundamental steps on which further processing
steps can be based and which may include applying gazetteers to recognize geographic entities, proper
nouns or dates. Finally, user defined elaboration processes are performed at the end of the pipeline, by
means of transducers that use custom JAPE grammars that allow identifying patterns that are relevant for a
certain domain and annotating them. At the end of the text processing pipeline an annotated text document
is obtained and the GATE API includes Java classes that allow going through the annotations.

With reference to the UML diagram in Fig. 2, showing the underlying architecture of the natural
language processing infrastructure, the GateManager class is responsible of managing the annotation
engine: for this purpose it needs plug-ins and resources to be registered for pipeline annotation, each
resource implementing an annotation step (see blocks within the text processing pipeline in Fig. 3). This
process is implemented using a visitor pattern (see Gamma et al., (1995)).

The GateManager is first made aware of which plug-ins to use and of which resources (taken
from previously set plug-ins) to use for the set-up of the pipeline. Each resource is modelled by a register
class which implements a RegisterVisitor interface and is capable of performing self-initialization
steps. Register classes may require or not property maps for initialization purposes: in the latter case they
consist in a generalization of the SimpleResourceRegister class. More complex annotation
processes require custom register classes to be written. As an example, annotations based on custom JAPE
grammars are performed using objects of class OWLIMTransducerRegister. The class can be

F. Gabbanini, TSRR vol. 2 (2010) 159-167 163

initialized by specifying custom JAPE grammars to be used to identify patterns that are relevant for a
certain domain and to annotate texts based on the occurrence of these patterns. Obviously, multiple
instances of OWLIMTransducerRegister may be inserted into the pipeline.

Through the visit method of its interface, each register class is added to a
SerialAnalyserController object, which is defined by a Java class in the GATE API and is used
to manage the text processing pipeline (see code excerpt in Tab. 1).

 Tab. 1 - Code excerpt showing how to implement a text processing pipeline

public class GateManagerTest {
protected GateManager gateManager;
...
public void initializationTest() {
gateManager = GateManager.getInstance();
...
gateManager.registerPlugin("ANNIE");
gateManager.registerPlugin("Tagger_OpenCalais");
...
gateManager.registerResource(new

AnnotationDeleteRegister());
gateManager.registerResource(new

SentenceSplitterRegister());
gateManager.registerResource(new

DefaultTokenizerRegister());
gateManager.registerResource(new

DefaultGazetteerRegister());
gateManager.registerResource(new

OpenCalaisRegister("..."));
...
Corpus elaboratedCorpus =gateManager.elaborateCorpus();

DefaultGazetteerParser gazetteerParser = new
DefaultGazetteerParser();

gateManager.parseAnnotation(gazetteerParser);
gazetteerParser.getAnnotatedResources();
...

}
}

public class GateManager {
private static GateManager instance;
private SerialAnalyserController serialController;
public void registerResource(RegisterVisitor register)

throws GateException {
register.visit(this);

}
...
public void parseAnnotation(AnnotationParserVisitor parser)

throws GateException {
parser.visit(this);

}
}

public class DefaultGazetteerRegister implements

RegisterVisitor {
private String resource = "...";
public void visit(GateManager manager) throws GateException

{
new SimpleResourceRegister(resource).visit(manager);

}
...

}

public class DefaultGazetteerParser implements

AnnotationParserVisitor {
public void visit(GateManager manager) throws GateException

{

164 F. Gabbanini, TSRR vol. 2 (2010) 159-167

//annotation parsing code
...

}
public List<AnnotatedResource> getAnnotatedResources() {
return resources;

}
}

After initialization, the GateManager is ready to perform text processing by running all the

registered resources in cascade. Once text processing is made, the system ends up with a corpus of
annotated documents: these can be parsed using an effective class infrastructure which was setup, again,
using the visitor pattern. A parser interface was created, named AnnotationParserVisitor, to be
implemented by annotation parser classes that have to be set up for each type of annotation. Annotations are
retrieved from the documents by issuing a call to the parseAnnotation method of the GateManager,
which takes a parser object as input.

This class structure efficiently encapsulates various GATE functionalities and allows to
conveniently separate plugin and resources initialization from their usage in the pipeline, and to
conveniently retrieve annotations from the corpus as object of class AnnotatedResource.

Finally, it is to be noted that the whole annotation process can be also managed from a single entry
point, i.e., the AnnotationEngine class, which can be configured using an
AnnotationEngineConfig object and holds a static reference to the GateManager.

Annotations made available from the different resources constitute the basis on which ontology
evolution is performed by the Feed Adapter, as they in principle contain new concepts, relations or
individuals relevant to the domain under study.

4 - Feed Adapter: the ontology evolution block

A number of Java based frameworks exist to create, alter and persist ontologies. As each one has
different characteristics, they suit best for different application scenarios.

Before designing the Feed Adapter block, the most popular semantic web frameworks were
examined. Characteristics of interest that were considered are reported in Tab. 2.

Tab. 2 - Characteristics of semantic web frameworks

Name SPARQ
L
support

OWL
2.0
support

Reasoning features Persistence

Jena 2.6.2 Yes No Unable to reason on data type restrictions
(the API is not compatible with a version of
Pellet that is capable of reasoning on data
type restrictions)

file, database

Protegé OWL
API

No No Unable to reason on data type restrictions
(the API is not compatible with a version of
Pellet that is capable of reasoning on data
type restrictions)

file

OWL API
3.0.0

No Yes Able to reason on data type restriction, if the
HermiT reasoned is used, as Pellet is still not
compatible with OWL API 3

file

AllegroGraph
3.3

Yes ? Able to reason on data type restriction. Uses
a proprietary reasoner (RDFS++), which is a
RDF reasoner and not an OWL reasoner

database

Sesame 2.3.1 Yes Yes Unable to reason on data type restrictions.
OWLIM is compatible with Sesame, but it is
only an OWL Lite reasoned

file,
database
(MySql,
Postgres),

F. Gabbanini, TSRR vol. 2 (2010) 159-167 165

binary files

Desirable features for the Feed Adapter implementations are represented by:
 Support for OWL 2, which represents the most recent recommendation (dated 27th October

2009) of W3C that refines and extends OWL, the Ontology Web Language, see OWL Working
Group at W3C (2009);

 ability to reason and make inference over data type restrictions;
 support for a variety of persistence methods;
 support for SPARQL Protocol and RDF Query Language (SPARQL, see SPARQL Working

Group at W3C (2008)) queries.

Unfortunately, as the table shows, among the most popular products in this sector, no “full

featured” framework is available.
However, the most “promising” frameworks to be adopted within the Collective Knowledge

Management System were identified to be OWL API 3 and Sesame 2.3.1 1 (see OWL API (2010) and
Sesame (2010), respectively, both of them Open Source), also considering the fact that they are supported
by an active community of developers.

In order not to be tied to a particular implementation and to a precise framework, the Feed Adapter
was designed as a middleware block acting as an adapter between annotations, coming from parsers
described in section 0, and an ontology. For the moment only the adapter for the Sesame 2.3.1 framework
was implemented, with the OWL API 3 implementation being in progress.

4.1 - Sesame Adapter implementation details

The Sesame Adapter is designed around the SesameModelHandler and includes the
SesameGazetteerParser and SesameOpenCalaisParser classes.

The SesameModelHandler maintains a reference to a Repository interface, which is part
of the Sesame API and can be used to access various Repository implementations, such as the
SailRepository (also part of the Sesame API), which defines a Sesame repository that contains RDF
data that can be queried and updated and operates on a stack of Sail objects. Sail objects can store RDF
statements and evaluate queries over them.

Through the SesameModelHandler it is therefore possible to get access to statements that are
present in the repository and to modify the repository itself.

As for the SesameGazetteerParser and SesameOpenCalaisParser, these are
extensions, respectively, of the DefaultGazetteerParser and OpenCalaisParser, of which
they override the visit method: this allows mapping annotations coming from the NLP process to
assertions in the ontology. Although implemented only for the previously mentioned parsers, this construct
may be generalised to any kind of parser.

A usage sample of the adapter is given in Tab. 3, which illustrates an excerpt from a JUnit test case
which also represents an example of how to use the framework for an ontology evolution process. It is to be
noted that the natural language processing step is centrally managed through the AnnotationEngine
class, whereas in Tab. 1 it was handled through the GateManager.

Tab. 3. Code excerpt showing how to implement the ontology evolution process

public class OntoEvolutionTest {
 private AnnotationEngine annotationEngine;
 private final String BASE URI =

"http://www.ifac.cnr.it/test#";
 private final String REPOSITORY_PATH = "nativeStore/owlim";

 @Before
 public void setUp() throws Exception {
 GateManager.getInstance();

 SesameModelHandler.getInstance().createOWLIMRepository(REPOSITORY_PA

166 F. Gabbanini, TSRR vol. 2 (2010) 159-167

TH);

 AnnotationEngineConfig config = new

AnnotationEngineConfig.Builder()
 .pluginName("ANNIE")
 .pluginName("Tagger_OpenCalais")
 .resourceRegister(new AnnotationDeleteRegister())
 .resourceRegister(new SentenceSplitterRegister())
 .resourceRegister(new DefaultTokenizerRegister())
 .resourceRegister(new POSTaggerRegister())
 .resourceRegister(new DefaultGazetteerRegister())
 .resourceRegister(new OpenCalaisRegister(...))
 .resourceRegister(new OWLIMTransducerRegister())
 .annotationParser(new

SesameGazetteerParser(BASE_URI))
 .annotationParser(new

SesameOpenCalaisParser(BASE_URI))
 .textToAnnotate(text)
 .build();
 this.annotationEngine = new AnnotationEngine(config);
 }

 @Test
 public void testDoAnnotation() throws Exception {
 this.annotationEngine.doAnnotation();

 RepositoryConnection connection =

SesameModelHandler.getInstance().getRepository().getConnection();
 ValueFactory valueFactory =

SesameModelHandler.getInstance().getRepository().getValueFactory();
 try {
 URI aURI = valueFactory.createURI(BASE_URI, "...");
 RepositoryResult<Statement> statements =

connection.getStatements(aURI, OWL.INDIVIDUAL, null, true);
 ...
 } finally {
 connection.close();
 }
 }
}

5 - Conclusions and future developments

The report illustrates details regarding the Java implementation of an Ontology Evolution
Manager, which is a software that extracts structured information from natural language and uses it for
“growing” ontologies.

As such, it aims at exploiting synergies between Web 2.0 and the Semantic Web, potentially acting
as a bridge from user contributed (unstructured) text to information organized in ontologies.

Future work implementation work related to the processing logic layer of the knowledge
management system will regard enriching the framework with support for relations discovery using
WordNet (see WordNet (2010)) and the Scarlet (see Scarlet (2010)) framework. As for ontology
management, it will be interesting to evaluate Empire (see Empire (2010)), which is an implementation of
the Java Persistence API (JPA) for RDF and the Semantic Web. Adoption of JPA for persistence would
represent a step ahead towards integration of the collective knowledge management framework within Java
Enterprise Edition applications.

References

1. Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. Scientific American 284 (5), 34-

43.
2. Buitelaar, P., Cimiano, P. (Eds.), 2008. Ontology Learning and Population: Bridging the Gap

between Text and Knowledge. Vol. 167 of Frontiers in Artificial Intelligence and Applications. IOS
Press, Amsterdam.

F. Gabbanini, TSRR vol. 2 (2010) 159-167 167

3. Burzagli, L., Como, A., Gabbanini, F., 2010. Towards the convergence of Web 2.0 and Semantic
Web for e-Inclusion. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (Eds.), Computers
Helping People with Special Needs. Vol. 6180 of Lecture Notes in Computer Science. Springer, pp.
343-350.

4. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., 2002. GATE: A framework and graphical
development environment for robust NLP tools and applications. In: Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics.

5. Empire, 2010. Available at http://github.com/clarkparsia/Empire, last visited on 17/09/2010
6. Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: elements of reusable object-

oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
7. LExO, 2010. Available at http://code.google.com/p/lexo/, last visited on 20/09/2010
8. Maynard, D., Li, Y., Peters, W., 2008. NLP techniques for term extraction and ontology population.

In: Proceedings of the 2008 conference on Ontology Learning and Population: Bridging the Gap
between Text and Knowledge. IOS Press, Amsterdam, The Netherlands, pp. 107-127.

9. Ontomat, 2010. Available at http://annotation.semanticweb.org/ontomat/index.html, last visited on
20/09/2010

10. OpenNLP, 2010. Available at http://opennlp.sourceforge.net/, last visited on 20/09/2010
11. OWL API, 2010. Available at http://owlapi.sourceforge.net/, last visited on 17/09/2010
12. OWL Working Group at W3C, 2009. http://www.w3.org/2007/OWL/wiki/OWL_Working_Group,

last visited on 17/09/2010.
13. Scarlet, 2010. Available at http://scarlet.open.ac.uk/, last visited on 17/09/2010
14. Sesame, 2010. Available at http://www.openrdf.org/, last visited on 17/09/2010
15. SPARQL Working Group at W3C, 2008. SPARQL Query Language for RDF Recommendation.

Available at http://www.w3.org/TR/rdf-sparql-query/, last visited on 17/09/2010
16. Text2Onto, 2010. Available at http://sourceforge.net/projects/texttoonto/, last visited on 20/09/2010
17. WordNet, 2010. Available at http://wordnet.princeton.edu/, last visited on 17/09/2010

