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Abstract

We investigated the long-term effect of elevated atmospheric CO2 on isoprenoid emissions from 

adult trees of two Mediterranean oak species (the monoterpene-emitting  Quercus ilex L. and the 

isoprene-emitting  Quercus  pubescens Willd.)  native  to  a  high-CO2 environment.  During  two 

consecutive years, isoprenoid emission was monitored both at branch level, measuring the  actual 

emissions  under  natural  conditions,  and at  leaf  level,  measuring  the  basal emissions  under  the 

standard conditions of 30°C and at light intensity of 1000 µ mol m-2 s-1. Long-term exposure to high 

atmospheric levels of CO2 did not significantly affect the  actual isoprenoid emissions. However, 

when leaves of plants grown in the control site were exposed for short-term to elevated CO2 level 

by  rapidly  switching  the  CO2 concentration  in  the  gas-exchange  cuvette,  both  isoprene  and 

monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory 

effect  of elevated CO2 on isoprenoid emission.  The absence of CO2 effect  on  actual emissions 

might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some 

of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. 

Under elevated CO2,  isoprene emission by  Q. pubescens was also uncoupled from the previous 

day’s air temperature. In addition, pronounced daily and seasonal variations of basal emission were 

observed under elevated CO2 underlining that correction factors may be necessary to improve the 

realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear 

correlation of isoprenoid emission with the photosynthetic electron transport and in particular with 

its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was 

different for isoprene and monoterpenes,  but in either case did not change whether plants  were 

grown in ambient or elevated CO2. This suggests that physiological algorithms may usefully predict 

isoprenoid emission also under rising CO2 levels.

Keywords: isoprene, monoterpenes, oak, elevated carbon dioxide, natural springs, algorithm.
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Introduction

The increase of CO2 concentration in the Earth’s atmosphere is a well-documented and recognized 

part of current global changes caused by human activities (Houghton et al. 1995). The impact of 

CO2 increase  on  plants,  especially  trees,  that  form an  important  terrestrial  carbon reservoir,  is 

receiving  increasing  attention.  In  spite  of  many  studies  carried  out  on  the  effect  of  elevated 

atmospheric CO2 on primary physiological processes such as photosynthesis, transpiration, stomatal 

activity, biomass growth, and allocation, there is still limited knowledge concerning the effect of a 

high  CO2 world  on  biogenic  emissions.  Forests  emit  a  wide  range  of  VOC  (volatile  organic 

compounds), mainly isoprenoids (Isidorov, Zenkevich & Ioffe 1985). It seems that isoprenoids are 

emitted as protective compounds against biotic (Harrewijn, van Oosten & Piron 2001) and abiotic 

stresses (Kesselmeier & Staudt 1999; Sharkey & Yeh 2001; Loreto  et al. 2001). Moreover, these 

natural emissions constitute a significant source of photochemically reactive carbon that affects the 

formation of tropospheric air pollutants and greenhouse gases, such as ozone and carbon monoxide, 

thus having an indirect contribution to global warming (Fehsenfeld et al. 1992; Fuentes et al. 2000). 

Therefore, there is a pressing need to understand the effect of plant diversity and of global changes 

on the forest VOC emission.

Different experimental approaches have been applied to analyze the responses of plants to elevated 

CO2 in terms of VOC emission. Published data differ in species, age of plants, experimental design, 

CO2 enrichment facilities, time of exposure, and water and nutrient supply, thus complicating the 

comparison of the results reported in the literature.  Long-term effects on and adaptations of the 

isoprenoid emissions of natural long-lived trees exposed to increasing atmospheric levels of CO2 are 

less  studied  than the  effect  of  short  exposure to  elevated  CO2,  mainly because  of  the inherent 

difficulty and the cost of the experimental set-up.
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An opportunity to overcome these problems and sources of uncertainty is offered by natural CO2 

springs. All over the world there are sites where CO2 is naturally released to the atmosphere from 

geological sources (Miglietta et al. 1995). Plants living in the vicinity of these natural CO2 springs 

have experienced lifetime exposure, through many generations, to an elevated CO2  environment. 

Therefore, CO2 springs offer an opportunity to study in situ the long-term physiological and genetic 

adaptations of plants to a high CO2 environment, and represent a promising experimental approach 

to gain insight for predicting larger-scale responses that have implications for the global carbon 

cycle or environmental quality (Norby 1996).

The main objective of the present study was to examine in a field-study, the impact of long-term 

exposure to a naturally high-CO2 environment on the isoprenoid emission of two native species of 

mature oak trees in a Mediterranean climate in central Italy, the deciduous downy oak (Quercus 

pubescens Willd.)  and the evergreen holm oak (Quercus ilex L.).  Q. pubescens emits  isoprene, 

while Q. ilex emits monoterpenes that are not stored in secretory tissues but are synthesized from 

photosynthetic carbon (Seufert  et al. 1995; Staudt & Seufert 1995, Loreto et al. 1996), and likely 

stored only in temporary pools in chloroplasts (Ciccioli et al. 1997; Loreto et al. 1998).

Q.ilex and Q. pubescens represent two key plant species for the study of the effect of enhanced CO2 

levels in the Mediterranean area because of their widespread distribution (Bernetti 1998; Gratani 

2000). Under the extreme conditions of the Mediterranean climate, such as high temperature and 

high photosynthetically active radiation (PAR) combined with soil drought, isoprenoid emissions 

could be very high (Loreto & Sharkey 1990, Sharkey & Loreto 1993, Guenther  et al. 1995) and 

may  significantly  affect  the  chemistry  of  the  troposphere  (Fuentes  et  al.  2001).  Moreover, 

Mediterranean-type  ecosystems  are  expected  to  be particularly  sensitive  to  any climate  change 

(IPCC 2001).

In  the  past,  models  were  used  to  predict  isoprene  emissions  as  influenced  by  meteorological 

parameters, namely light intensity and leaf temperature (Guenther et al. 1993). More recently, the 

physiological model developed by Niinemets  et al. (1999, 2002a; b) provided evidence of close 
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relationships between isoprenoid emissions and foliar photosynthetic characteristics. Plants grown 

at elevated CO2 apparently uncouple isoprenoid emissions from photosynthesis (Loreto et al. 2001, 

Rosenstiel et al. 2003) and perhaps also from other environmental factors. A side objective of this 

study was therefore to test  whether the empirical  and the physiological  models may be able to 

describe isoprenoid emission under future CO2 levels. 

Materials and methods

 In situ isoprenoid emission and gas-exchange  measurements

The research was conducted at the Bossoleto natural CO2 spring, situated near Rapolano Terme 

(Siena, central Italy) and at a nearby control site (see Scholefield et al. 2003,).

We  measured  isoprenoid  emissions  of  two  representative  plant  species  of  the  Mediterranean 

vegetation  growing  in  the  spring  and  at  the  adjacent  control  site.  Plants  were  located  facing 

southward at 1.5-2 m above ground in both the spring and the control site. 

During the first year of the project (2000), leaf level measurements were made during June, July, 

August, and September, while branch level measurements were made during June and September. 

During the second year (2001), both leaf and branch measurements were made in June and late 

September. Emissions were estimated approximately every hour during the sampling period (9 am 

to  4  pm),  over  2  or  3  days.  All  the  measurements  were  made  simultaneously  at  elevated  and 

ambient CO2 concentration. 

At the leaf level, basal emission, EB, defined as the emission that occurs when a leaf is exposed to 

30°C  and  1000  µ mol  m-2 s-1 PAR,  was  measured  with  a  leaf  cuvette.  Basal emission, 

photosynthesis (A), and stomatal conductance (gs) were measured by clamping a portion of fully 

expanded leaves of the canopy of adult trees in the cuvette of the portable gas-exchange system Li-

Cor 6400 (Li-Cor, Lincoln, Nebraska, USA), as described by Scholefield et al. (2003). This system 

also allowed immediate switching from elevated to ambient CO2 and vice versa, as explained by 
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Scholefield et al. (2003). EB was measured 30 min after switching CO2, when A and gs had reached 

a new steady-state.

At  the  branch  level,  the  emission  measured  under  actual  environmental  conditions,  EA,  was 

measured by enclosing sun-exposed branches in translucent Teflon bags mounted on an aluminum 

frame with a volume of 12 L. Briefly, the bags, flushed with charcoal-filtered air at a rate of about 

12 L min-1, were equipped with a fan and a sensor for bag air temperature. The difference between 

temperature inside the bag and the outside air temperature was around 2-3°C. A quantum sensor 

mounted outside close to the top of the chamber measured PAR. Air samples were withdrawn from 

the Teflon lines by using an aspirating pump at a flow rate of 100-200 mL min-1. Both inlet and 

outlet air flows were measured with mass-flow meters, and the data were stored using a data logger.

Both in the leaf and branch enclosures, compounds entering and leaving the bag were collected on 

two-stage  traps  consisting  of  glass  tubes   filled  with 0.034 g of  Carbograph 1  and 0.17 g of 

Carbograph 2 (Lara, Rome, Italy).  Isoprenoids retained on carbon traps were thermodesorbed at 

250°C and cryofocused at –150°C on a fused silica liner connected to a 5890 gas chromatograph 

(Hewlett Packard, Palo Alto, CA, USA) and using a 5970 quadrupole mass spectrometer (Hewlett 

Packard)  as  detection  system  (Baraldi  et  al.  1999;  Rapparini  et  al.  2001).  Isoprenoids  were 

transferred to a capillary column (60 m x 0.25 mm I.D.; 0.25 µ m film of polymethylsiloxane; HP1, 

Hewlett Packard). The column was maintained at 40°C for 10 min and then heated to 220°C at 5°C 

min-1. The identity of the compounds of interest was determined by comparison of their retention 

time and mass spectra to that of authentic standards. Quantification of isoprenoids was performed 

after calculation of standard curves and response factors for each compound, and using d14-cymene 

as  internal  standards.  The  biogenic  VOC  emission  rates  were  calculated  by  multiplying  the 

concentration difference between the chamber’s inlet and outlet air with the air flow through the 

chamber divided by leaf area. 

PAR and cuvette air temperature were measured while emission samples were taken. During each 

measuring campaign, the branches enclosed in the bag were cut to determine the leaf area and dry 
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weight. Leaf area was measured by Video Image. For the image acquisition, a CCD camera (JVC 

model TK-880) was used, interfaced with a computer by an ELVIS board and Chameleon software 

(Sky Instr. Ltd., UK). Leaf dry weight was determined after drying at 70°C in a ventilated oven 

until the weight stabilized.

In the July and August 2000 field campaigns, measurements of predawn leaf water potentials were 

used as stress indices. They were measured on 16 fully expanded leaves of different plants with a 

pressure chamber (Model 3005; Soil Moisture Equipment Corp., Santa Barbara, CA, USA).

Emission modelling

Branch-level  isoprenoid  emission  measured  under  experimental  conditions  were  normalized  to 

standard  conditions,  based  on  algorithm  of  Guenther  et  al.  (1993).  This  algorithm  usefully 

described isoprene emission as dependent to PAR and leaf temperature. As  Q. ilex monoterpene 

emissions  has been found to  have temperature  and light  dependencies  very similar  to  those of 

isoprene emissions (Staudt & Seufert 1995), the model of Guenther  et al. (1993) has also been 

applied to monoterpene emissions of  Q. ilex in the field (Ciccioli  et al. 1997; Kesselmeier  et al. 

1996, 1997; Bertin et al. 1997).

In the model of Guenther  et al. (1993) isoprene emission (E) is given as the product of the basal 

emission factor (EB) at temperature of 30°C and a PAR of 1000 µ mol m-2 s-1 and two correction 

factors to account for temperature (CT) and light (CL) dependencies:

E = EBCTCL

To check the possible influence of CO2 air concentration on the temperature dependence of isoprene 

emission, we correlated averaged EA for branches of plants growing at ambient and elevated CO2 

with temperatures of single sampling day and with temperature averaged over a growing number of 

days before measurements.

12

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

13



To model isoprenoid emission at different CO2 levels we also applied the algorithm developed by 

Niinemets et al. (1999; 2002a) using the EB, and the corresponding photosynthetic parameters. 

The rate of photosynthetic electron transport (J) is calculated from leaf gas exchange measurements 

as (Brooks and Farquhar 1985):

Where Rd is the rate of mitochondrial respiration continuing in the light (mmol m-2 s-1), Γ * is the 

CO2 compensation point in the absence of Rd (µ mol mol-1, Laisk 1977), and Ci is the intercellular 

CO2 concentration (µ mol mol-1).

Taking into account the different coenzyme (NADPH and ATP) cost of isoprenoids per mole CO2 

assimilated  as  compared  to  that  for  sugar  synthesis,  and  according  to  the  methyl  erythritol  4-

phosphate  pathway,  the rate  of electron transport  necessary to support  the measured  isoprenoid 

emissions (JE) and the extra photosynthetic electron transport required to increase the reduction state 

from the level of sugar to isoprenoids (Je) are given by:

for isoprene (Niinemets et al. 1999)

for monoterpenes (Niinemets et al. 2002a)

Eqn 2J
E
=

6E(4.67C
i
 + 

9.33Γ *)
(C

i
-Γ *)

Eqn 1

12E(4C
i
 + 8Γ *)

J
E
=

(C
i
-Γ *)

Eqn 3

Eqn 5

J
e
=

(C
i
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6E(0.67C
i
 + 
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Eqn 4
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Where  ϑ   is the NADPH cost of monoterpenes (mol m-1)

From Eqns 1-5, the fraction of photosynthetic electron transport used for isoprenoid emission, ε , is 

determined as the ratio between the rate of electron transport necessary to support the measured 

isoprenoid emission (JE) and the total photosynthetic electron transport (JT). JT is calculated from 

foliar photosynthesis and isoprenoid emission as J (Eqn 1) + Je (Eqn 3 or 5).

Statistical analysis

One-way analysis of variance (ANOVA) was performed for all the parameters to test the effect of 

growth under different CO2 level on physiological characteristics of Q. ilex and Q. pubescens plants 

for  individual  field  campaign  in  2000  and  2001.  Regression  analysis  was  used  to  detect  the 

influence of temperature of the sampling day or averaged over a growing number of days before 

measurements, and of photosynthetic characteristic parameters calculated applying the Niinemets 

algorithm (1999, 2002a) on isoprenoid emission, determining if the parameters of the regression are 

significantly different from zero. All statistical analyses were performed in SAS (SAS System 8.1, 

SAS Institute Inc., Cary, NC, USA).

Results

 In situ isoprenoid emission and physiological measurements

The profile of the emitted monoterpenes by Q. ilex was similar at both branch and leaf level. The 

major emitted compounds were α -pinene,  β -pinene, sabinene and β -myrcene, which accounted 

Je = 2E(ϑ -24)
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for more than 60-70% of the total emission, as commonly found for this species (Bertin et al. 1997; 

Staudt & Seufert 1995; Csiky & Seufert 1999; Sabillon & Cremades 2001). The proportions of the 

main compounds were constant  and independent of daytime, season, environmental conditions and 

CO2 level (data not shown).

Days were cloudless and dry over most of the experiments. During the sampling period (9 am-4 pm 

solar  time),  PAR showed a typical  daily  cycle  with maximum values  at  midday (around 1700 

µ mol-2 m-2 s-1 and 1300 µ mol-2 m-2  s-1 in June and September field campaigns, respectively), and 

minimum values in the late afternoon (approximately 100-250 µ mol-2 m-2 s-1). Bag air temperature 

varied between 25°C and 37°C.

EA were in the range previously reported in literature for the two different oak species (Biogenic 

Emissions in the Mediterranean Area - BEMA project 1997). Only Q. ilex monoterpene emissions 

in September 2000 under ambient CO2 were significantly higher than in the other months (Tab 1). 

During the June 2000 field campaign, monoterpene EA of  Q. ilex  was not affected by long-term 

exposure to high CO2, with a daily average emission rate of 8.2 nmol m-2s-1 under elevated CO2 and 

of 8.6 nmol m-2s-1  under ambient CO2. In September 2000, the monoterpene emissions of plants 

grown under elevated CO2 were comparable to those found in June, but EA was significantly higher 

in plants grown under ambient CO2 than under elevated CO2 (Tab 1). 

During June 2000, EA measured at branch level in  Q. pubescens plants under elevated CO2  were 

significantly lower (3.5 nmol-2 m-2 s-1) than those determined under ambient CO2 (7.8 nmol-2 m-2 s-1), 

while in September 2000 and in both 2001 field campaigns no significant differences between the 

two sites were observed, except in some hours of the day (Tab 1). 

Leaf weight per leaf area was 152 and 72 g m-2 for  Quercus ilex and  Quercus pubescens in the 

control  site  respectively,  and  172  and  81  g  m-2 for  the  same  species  under  elevated  CO2. 

Consequently when isoprene and monoterpene emission rates were expressed on leaf mass basis, 

differences  between ambient  and  elevated  CO2 were maintained  or,  in  some cases,  even  more 

evident.
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The photosynthetic rates (A) of Q. ilex plants were always higher under elevated CO2 with respect 

to ambient CO2 (Tab 1). The percentage of carbon emitted as monoterpenes relative to carbon fixed 

by photosynthesis was always higher under ambient CO2 compared to elevated CO2, reaching 4% in 

September. In Q. pubescens plants the stimulation of photosynthesis at elevated CO2 was observed 

only in September 2000 and in June 2001. As in Q. ilex, the percentage of carbon lost as isoprene 

was higher under ambient CO2 compared to elevated CO2. 

The diurnal trends of EA and EB of isoprene emitting  Q. pubescens plants grown at elevated CO2 

showed  in  September  2001  a  clear  daily  change  with  lower  values  early  in  the  morning  and 

maximum values in the afternoon (Fig. 1a, b). The same trend was observed in plants grown under 

ambient CO2 (data not shown). The diurnal trend of EB and EA was associated to a similar trend of 

photosynthesis, at both CO2 levels (Fig. 1a). In Q. pubescens there was also evidence of seasonality-

related variability in isoprene EB measured along 2000 at both sites, with peaks of emission during 

July and September (Fig. 2a, b). Photosynthesis maximum was also observed in July 2000 (Fig. 2a, 

b). 

At the control site, rapid switches of the CO2 concentration from 350 to 1000 ppm had a strong 

and very rapid negative effect on EB of both species (Fig. 3a, b). Photosynthesis increased (Fig. 3c, 

d) and gs decreased (Fig. 3e, f) in response to CO2 rise. At the Bossoleto site, EB slightly increased 

or  remained  unchanged  in  response  to  CO2 switches  from  1000  to  350  ppm  (Fig.  3a,  b). 

Photosynthesis was also unaffected (Fig. 3c, d), but gs increased in response to CO2 reduction (Fig. 

3e, f) 

Predawn leaf water potentials measured in July and August 2000 were particularly low in both oak 

species compared to values reported for the same species in the same Mediterranean area (Schwanz 

& Polle 1998; Loreto et al. 2001), indicating a high drought stress (Fig. 4a, b). The predawn leaf 

water potential was slightly lower in Q. ilex than in Q. pubescens, reaching mean values of about 

10.3 MPa and 7.2 MPa, respectively, independently of CO2 growth conditions (Fig. 4a, b).
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 Emission modelling 

Normalization of EA according to Guenther (1993) on the basis of meteorological factors (light and 

temperature) (i.e. Tab 1) would not be correct if the relationship between these factors and emission 

is affected by growth at elevated CO2. Day time changes of light intensity should cause only limited 

changes in isoprenoid emission (Guenther  et al. 1993). Temperature represents a more important 

factor in controlling isoprenoid emission and recent works showed the influence of past temperature 

conditions on the temperature dependence of isoprene emission (Guenther et al. 1999; Sharkey et  

al. 1999; Geron et al. 2000; Hanson & Sharkey 2001; Pétron et al. 2001). To test the influence of 

temperature on the EA of Q. pubescens plants, we correlated average isoprene EA (Tab 1) with the 

temperature of the sampling day and the calculated average temperature of 1 to 15 days before 

measurements.  At  ambient  CO2 there  was  a  clear  increase  of  the  correlation  between isoprene 

emission and air temperature by increasing the number of days over which the air temperature was 

averaged, and the strongest relationship was observed when the temperature was averaged over 14 

days (Tab 2). However, no strong relationship was found under elevated CO2.

In alternative to the empirical model based on environmental factors, isoprenoid emission can also 

be estimated with a physiological model based on photosynthesis (Niinemets et al. 1999; 2002a,b). 

For both Quercus species and both field campaigns, EB tended to scale positively with A and the 

photosynthetic electron flux (J) under ambient CO2 concentrations (r2 = 0.43 P < 0.02 and r2 = 0.60 

P < 0.005 for photosynthesis and electron transport, respectively), while no correlation was found in 

plants grown at the Bossoleto site (r2 = 0.04 P > 0.50 and r2 = 0.13 P > 0.20 for photosynthesis and 

electron transport, respectively) (data not shown).

Isoprenoid EB of both species correlated positively with the photosynthetic electron transport rate 

required to sustain the observed isoprenoid emission (JE), independently of the year and of the CO2-

growth conditions (r2 = 0.73 P < 0.0005 and  r2 = 0.92 P < 0.0001 for  Q. pubescens and  Q. ilex, 

respectively) (Fig. 5a). Isoprenoid EB also correlated positively with the fraction of electrons going 

into the isoprenoid synthesis  pathway,  ε  (r2 = 0.77 P < 0.0002 and  r2 = 0.43 P < 0.05 for  Q. 
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pubescens and Q. ilex, respectively) (Fig. 5b). In both species, the intercepts were not statistically 

different from zero, but the slope was higher in  Q. pubescens than in  Q. ilex  plant. We did not 

observe any significant effect of growth under different CO2 conditions on this positive correlation 

(data not shown). 
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Discussion

Exposure to or growth at elevated CO2 often reduces isoprenoid emission by vegetation (Monson & 

Fall. 1989; Loreto & Sharkey 1990; Sharkey et al. 1991; Loreto et al. 2001; Scholefield et al. 2003; 

Rosenstiel et al. 2003), with few exceptions (Tognetti et al. 1998; Constable et al. 1999; Sharkey et  

al. 1991; Buckley 2001; Staudt et al., 2001). A clear enzymological and biochemical regulation has 

been recently demonstrated to occur under elevated CO2 and is likely to account for this effect 

(Loreto  et al. 2001; Scholefield  et al. 2003; Rosenstiel  et al. 2003). We showed that short term 

exposure to elevated CO2 induced in both Quercus species a rapid and clear inhibition of leaf-level 

isoprenoid emission, confirming the results obtained in Phragmites in the same CO2 spring site by 

Scholefield et al. (2003). However, branch-level isoprenoid emissions from trees of Q. ilex and Q. 

pubescens grown in the Bossoleto spring were not significantly different than at ambient CO2, even 

after  normalization,  which indicates  that  both  actual and  basal emissions  were not  reduced by 

growth at elevated CO2. In the Mediterranean region, multiple stresses, such as high temperature 

and irradiance combined with limited water availability (Scarascia-Mugnozza  et al. 2000) could 

have strong effects on isoprenoid emission, especially in summer. Elevated temperatures stimulate 

isoprenoid emission (Loreto & Sharkey 1990), probably because of activation of isoprene synthase 

(Monson et al. 1992). It may be that temperatures in the Bossoleto spring were slightly higher than 

in the control site, therefore compensating for the inhibitory effect of elevated CO2. Certainly the 

night temperature of the spring was higher than in the surrounding since CO2 formed overnight a 

dense layer covering the bottom of the spring (see cover picture). 

Isoprene emission has been found to be scarcely inhibited by environmental stresses, and recovery 

from stresses, particularly drought, can even temporarily stimulate the emission of isoprene (Loreto 

& Delfine,  2000; Sharkey & Loreto 1993;  Llusià  & Penuelas  1998; Bruggemann & Schnitzler 

2002). 

In a Mediterranean area, limited water availability represents a major environmental stress. Loreto 

et  al.  (2001),  in  a  long-term study on  field-grown  Q. ilex plants  growing under  elevated  CO2 
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conditions, did not observe the inhibitory effect of high CO2 on monoterpene emission when plants 

experienced  a  very  severe  summer  drought,  suggesting  that  the  effect  of  these  environmental 

stresses can counteract and overcome the negative effect of elevated CO2. Similar results have been 

reported by M.J. Potosnak, K.L. Griffin, R.K. Monson, R. Murthy,  J. van Haren, A. Wright, B. 

Farnsworth, C.A. Klimas,  T. N. Rosenstiel  and V.C. Engel (2002, personal communication) for 

isoprene emission by poplar plants  grown under elevated CO2 in the mesocosms of  Biosphere-2 

Center.

In  our  experimental  conditions,  very  low  predawn  water  potentials  were  measured,  especially 

during summer 2000. Thus, it may be speculated that severe drought stress conditions stimulated 

the isoprenoid emission and counteracted the negative effect of elevated CO2 in our experiments. 

We have shown that isoprene EB by  Q. pubescens is subjected to daily and seasonal variations. 

Pronounced daily and seasonal variations  of EB were observed by other authors (Fuentes  et al. 

1995; Ciccioli  et al.  1997; Street  et al. 1997) and in few recent models an additional  factor to 

account for seasonal influences on emission has been introduced (Guenther 1997; Pier & McDuffie 

1997;  Guenther  et  al.  1999;  Lehning  et  al. 2001;  Ciccioli  et  al.  2003).  It  is  clear  that  similar 

correction factors should be used also when monitoring emission under elevated CO2. However, at 

least  seasonal  variations  of  EB seems  to  be  similar  under  ambient  and  elevated  CO2.  Rapid 

temperature fluctuations (Singsaas et al. 1999; Singsaas & Sharkey 2000), usually occurring in our 

experimental  conditions, and past temperatures experienced by the plants prior to measurements 

(Guenther et al. 1999; Sharkey et al. 1999; Geron et al. 2000; Hanson & Sharkey 2001; Pétron et  

al.  2001)  could  have  influenced  isoprenoid  emissions,  particularly  under  elevated  CO2.  Our 

experiments have shown that isoprene EA in ambient CO2 is positively correlated with previous day 

temperature.  The  best  correlation  was  found  by  averaging  two  week  temperature  before 

measurements, which suggests that weather regulation on isoprene may be even more (Sharkey et  

al. 1999; Geron et al. 2000; Hanson & Sharkey 2001) or similarly (Guenther et al. 1999; Petron et  

al.  2001)  long-lasting  than  previously  reported.  However,  under  elevated  CO2 EA did  not  well 

correlate  with air  temperature  of the sampling day as well  as with long-term variations  of this 
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parameter. One explanation for this might be related to stomatal closure under elevated CO2 leading 

to raising leaf temperature with respect to air temperature. Irrespective of the physiological reason, 

this may reduce the model performance under elevated CO2. 

Under elevated CO2 modelling based on physiological traits may be more successful than that on 

meteorological parameters. In general, when we compared the calculated photosynthetic parameters 

(A, J) with EB of isoprenoids, we found a positive relationship, in ambient but not at elevated CO2. 

In  contrast,  a  positive  relationship  was  always  found  when  EB was  compared  with  the 

photosynthetic electron transport necessary to support the measured isoprenoid emissions or with 

the  fraction  of  photosynthetic  electron  transport  used  for  isoprenoid  synthesis.  These  positive 

correlations between were, to a certain extent, expected, as the basal emission is a factor to calculate 

JE and ε  (Niinemets et al. 1999; 2002a, b). But our results indicate that these relationships are not 

influenced  by  CO2 level  and  suggest  that  the  physiological  algorithm  may  usefully  predict 

isoprenoid emission also under rising CO2, and even under multiple stress conditions such as those 

probably experienced by plants during our experiments. On the other hand, differences between the 

Quercus species in the slope of  ε  versus isoprenoid emissions reflect a higher electron cost for 

monoterpenes  than  for  isoprene,  which  is  consistent  with  the  higher  metabolic  energy  of 

monoterpene compared to that of isoprene synthesis (Niinemets et al. 1999; 2002a).
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Figure legends

Fig.  1.  Diurnal  trend  of  isoprene  basal (a)  and  actual (b)  emission  (closed  diamond)  and  of 

photosynthesis (open squares) from Q. pubescens leaves. Measurements were taken under elevated 

CO2 at the Bossoleto site during September 2001 field campaign. Means ± S.E., n=3-4, are shown.

Fig. 2. Seasonal trend of isoprene basal emission and of photosynthesis from Q. pubescens leaves 

under  ambient  (a)  and elevated (b) CO2 level.  Measurements  taken along 2000. Means ± S.E., 

n=3-4, are shown.

Fig.  3.  Response of isoprenoid  basal emission,  photosynthesis  and stomatal  conductance  of  Q. 

pubescens (a, c, e) and Q. ilex (b, d, f) plants to CO2 switches. CO2 was suddenly decreased from 

1000 to 350 ppm for plants growing at the Bossoleto site, while it was suddenly increased from 350 

to  1000  ppm for  plants  growing  in  the  control  site.  Measurements  taken  at  both  sites  during 

September 2001 are relative to emission before switching (shown as 1; dashed line). Means (n = 5) 

± S.E.

Fig. 4. Predawn water potential of (a)  Q. pubescens and (b)  Q. ilex leaves of plants grown under 

high-CO2 air concentrations at the Bossoleto site or under ambient CO2 conditions in the control 

site. Means (n = 16)  ± S.E. Differences between control and Bossoleto site were not statistically 

significant at P < 0.1. 

Fig.  5.  Isoprenoid basal emissions  in  relation  with  (a)  photosynthetic  electron  transport  rate 

required  to  sustain  the  observed rates  of  isoprenoid  emission  (JE)  and  with (b)  the  fraction  of 

electrons for the isoprenoid synthesis (ε ) in leaves of Q. pubescens (closed diamond) and Q. ilex 

(open squares). Each point corresponds to a separate field campaign of measurements.
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Tab.1. Daily average actual emission (EA) measured at branch level, photosynthesis (A) measured 

at leaf level from Q. ilex and  Q. pubescens plants, and percent of photosynthetic carbon lost as 

isoprenoid during 2000 and 2001 field campaigns. The values shown in the parenthesis represent 

EB estimated using the equations of Guenther  et al. (1993). Values are means  ±  standard error 

(S.E.), n = 3-4. * P< 0.1, ** P< 0.05, *** P< 0.01. 

Q. ilex Q. pubescens
EA

(nmol m-2 s-1)

A

(µ mol m-2 s-1)

% C EA

(nmol m-2 s-1)

A

(µ mol m-2 s-1)

% C

June 2000 Ambient 
CO2

8.6 ±  1.7
(5.7 ±  1.4)

4.8 ±  0.7 1.2 7.8 ±  1.5
(4.4 ±  0.7)

12.9 ±  0.4 0.2

Elevated
CO2

8.2 ±  1.2
(4.9 ±  0.7)

8.5 ±  2.0* 0.6 3.5 ±  0.7**
(2.6±  0.6)**

11.9 ±  2.1 0.1

September 

2000

Ambient 
CO2

16.9 ±  2.1
(18.9 ±  2.1)

4.7±  1.3 4.0 7.7 ±  0.5
(8.7±   0.6)

6.3 ±  0.3 0.7

Elevated
CO2

6.1 ±  1.0***
(3.3 ±  0.8)***

10.8 ±  0.3** 0.3 8.4 ±  2.1
(7.9 ±  1.9 )

10.2 ±  2.0* 0.4

June 2001 Ambient 
CO2

17.6 ±  2.2
(24.1 ±  2.8)

7.0 ±  0.8 5.6

Elevated
CO2

20.2 ±  2.7
(17.6 ±  2.4)

17.4 ±  5.2** 1.3

September 

2001

Ambient 
CO2

5.9 ±  0.9
(5.6 ±  1.1)

10.1 ±  1.3 4.6

Elevated
CO2

8.2 ±  1.7
(6.4 ±  0.9)

8.8 ±  1.6 2.7
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Tab.  2.  Parameters  estimated  by  linear  regression  analysis  between  the  mean  daily  (24-hr) 

temperature of the sampling day (0) and that averaged over 1 to 15 days prior to midnight before the 

day of measurement and  actual isoprene emissions of  Q. pubescens plants grown under ambient 

CO2 concentration  at  the  control  site  and  those  grown  under  elevated  CO2 conditions  at  the 

Bossoleto site.

N° of days Intercept P Slope r2 P n
Ambient 0 -20.66 0.294 1.53 0.33 0.135 8

CO2 1 -36.35 0.113 2.37 0.49 0.055 8
2 -34.53 0.090 2.32 0.53 0.041 8
3 -38.64 0.054 2.57 0.61 0.023 8
4 -37.84 0.062 2.56 0.59 0.027 8
5 -38.72 0.061 2.63 0.59 0.027 8
6 -38.61 0.073 2.64 0.56 0.030 8
7 -39.55 0.064 2.70 0.58 0.029 8
8 -43.24 0.033 2.89 0.66 0.014 8
9 -45.50 0.018 3.02 0.73 0.007 8

10 -47.03 0.011 3.11 0.76 0.005 8
11 -49.54 0.009 3.27 0.78 0.004 8
12 -50.49 0.006 3.33 0.81 0.002 8
13 -45.33 0.005 3.06 0.82 0.002 8
14 -40.95 0.005 2.82 0.83 0.002 8
15 -36.85 0.011 2.59 0.79 0.003 8

Elevated 0 -13.69 0.716 1.15 0.07 0.070 8
CO2 1 -38.22 0.397 2.43 0.18 0.296 8

2 -39.94 0.327 2.57 0.23 0.233 8
3 -50.45 0.209 2.16 0.32 0.144 8
4 -51.95 0.192 3.27 0.34 0.132 8
5 -51.84 0.204 3.30 0.32 0.141 8
6 -47.71 0.260 3.10 0.27 0.188 8
7 -50.98 0.228 3.28 0.30 0.161 8
8 -56.06 0.178 3.55 0.35 0.124 8
9 -60.52 0.135 3.79 0.40 0.092 8

10 -61.52 0.127 3.86 0.41 0.086 8
11 -65.77 0.110 4.12 0.44 0.075 8
12 -71.96 0.070 4.48 0.52 0.046 8
13 -68.27 0.051 4.28 0.56 0.032 8
14 -62.45 0.048 3.97 0.58 0.029 8
15 -56.44 0.065 3.63 0.54 0.038 8
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Figure 2
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Figure 5
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