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Abstract

A major barrier to the growing of energy crops is the weak knowledge on their 

suitability for conversion plants, which greatly depends on chemical composition of raw 

materials. In this study, ash and mineral composition (C, N, Al, Ca, Cl, Fe, K, Mg, Na, 

P, S and Si) of major annual and perennial energy crops (switchgrass, miscanthus, giant 

reed, cynara, sweet sorghum and fibre sorghum) were analysed keeping leaves, stems 

and reproductive organs separate. As general, it resulted that biomass quality can greatly 

change depending on crop and, importantly, on biomass composition. Leaves were 

much more concentrated in ashes and minerals than reproductive organs and stems, in 

this order. Among the crops, cynara exhibited the clearly highest ash and mineral 

content, thus resulting in a major slagging, fouling and corrosion tendencies. Giant reed 

also showed a high leaf ash and mineral content, especially N and S. Nonetheless, its 

stems had a fourth of ashes and much less minerals, especially N, Si and Ca. Overall, 

this occurred in all stems, however, in cynara, and secondary giant reed, S and N were 
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found to be above or proximate to recommended thresholds also in stems. Chlorine appears the 

most stumbling-block, always exceeding the limit, both in stems and leaves. It is perceived that, 

though leaves and reproductive organs may represent a significant biomass component, they 

gravely reduce the biofuel quality. Therefore, agricultural strategies aimed at increasing leaf or seed 

loss (e.g. delaying the harvest), though it will somewhat decrease the total yield, may be expected to 

considerably improve the suitability of these crops for conventional combustion plants.  

Keywords: Miscanthus; Arundo; Panicum; Sorghum; Switchgrass; Giant reed; Cynara; Cardoon; 

Biofuels; Organs.

1. Introduction

According to the common European energy policy, biomass crops should increasingly contribute 

towards meeting the energy needs [1], with millions of hectares being expected to be allocated to 

dedicated crops in a very short-term [2]. So far, major efforts have been addressed to evaluate the 

potential yields of several dedicated crops under variable agro-techniques and environment 

[3,4,5,6]. Conversely, the quality of biofuels for thermo-chemical processes have not received much 

attention [7,8], and now it represents a major barrier to the growing of dedicated crops. The biomass 

quality can drastically lower the net energy output, both limiting the effectiveness of conversion 

plants [8], and decreasing the heating value. It was, in fact, demonstrated that heating values has 

been negatively related to ash content, with every 1% increase in ash concentration decreasing the 

heating value by 0.2 MJ kg-1 [9]. More than this, ashes and inorganic elements (e.g. alkali) realised 

during the combustion may cause a number of serious problems to the power plants, such as 

slagging, corrosion and fouling. The basic mechanisms describing these processes are now 

reasonably well understood [10]. In short, fouling leads to a decrease in the exchanger efficiency; 

slagging is related to the low melting point of deposits, which causes the formation of a glassy layer 

that must be removed. Finally, corrosion may be caused by the interaction between deposits and 

metal surface of the exchanger, which leads to an increase of the extra-costs in maintenance, whilst 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26



decreasing the plant life-span [11]. Importantly, the degree of fouling, slagging and corrosion is 

strictly related to ashes and minerals released during the combustion [8], a property which can 

substantially change among crops [6,12]. Therefore, classifying biomass crops as mineral 

composition will be helpful for understanding how the conversion technology can be adapted to 

different kind of biofuels, or how the properties of fuels might be modified, according to the 

conversion technology. For example, it is well-known how, during combustion, the volatile 

elements, such as S and Cl, can form sub-micron particles condensing as salts [13], which in turn, at 

elevated temperatures and in presence of K and Si, may lead the sticky deposit to grow-up rapidly 

[14]. Herbaceous crops are generally rich of K and Si, the first representing about 1% of the 

biomass dry weight and almost all potentially vaporizing during combustion. Because of its high 

melting point (1700 °C), Si would be not a problem in itself, however, the concurrent high presence 

of K or Ca, makes Si to easily react with them forming alkali silicates with a much lower melting 

points (about 700 °C) [13]. Again, other alkali elements, such as Na, Mg and their salts, chlorides, 

carbonates and sulphides, may form eutectics. Likewise, P can increase the slagging potential of 

deposits [13]. 

The ratios between K, Ca and Si should be also taken into great account because of their influence 

upon slagging. For example, Reumerman and van den Berg (2002) [11] showed as miscanthus 

having high Si/K and Ca/K ratios exhibited a less tendency towards slagging. It is therefore 

perceived that, irrespective of yield levels, biomass crops containing high Si and Ca, along with low 

K, should be better indicated for the energy end use. Nonetheless, it should be underlined that raw 

materials are also rather rich in Cl, a major factor in deposit formation. Chlorine may react with K 

thus leading to the formation of primary fouling compounds. Again, Cl also has a shuttle role in 

transporting alkali to surfaces, and its presence increases the corrosion of tubes used in both 

biomass power plants and heat exchanger [13].

The variable ash and mineral content within dedicated crops can be explained by genetic and 

environmental effects [15], as well as by the physiological and morphological differences of crops. 
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Leaves, stems and reproductive organs exhibited in fact different properties, leaves resulting 

generally much richer in ash content than the other organs [16,17]. Since biomass partitioning may 

drastically change depending on crops and agricultural strategies, or in a standing crop over the 

growing season [3], understanding the ash and mineral composition of different crops and at 

different organs may be very helpful in choosing the most appropriate agricultural strategy for each 

crop (e.g. harvest time). Therefore, in this research six energy crops (two annuals and four 

perennials) were characterized in term of their mineral composition and ash content, at different 

plant organs. 

2. Materials and Methods

2.1. Plant material

Four perennial (Miscanthus sinensis X Giganteus Greef & Deuter, Arundo donax L., Cynara 

cardunculus L. and Panicum virgatum L.) and two annual crops (sweet and fibre sorghum, 

Sorghum bicolor Moench.) were characterized on the basis of their mineral composition and ash 

content, at different plant organs (leaves, stems and reproductive organs). Switchgrass (Panicum v.) 

was also investigated at 20 and 80 cm row-distances. Since in a parallel trial (unpublished data) 

comparing switchgrass varieties the biomass composition was found to significantly change from 

young (one or two years old) to more mature plants, the samples of perennial crops were collected 

from a fourth year plant. 

Crops were arranged according to completely randomized blocks with four replications (about 400 

m2 each), in a plain soil at the experimental farm of the University of Bologna (Cadriano, 44° 33’ N, 

33 m a.s.l.). The main soil physical and chemical characteristics are presented in Table 1. For each 

crop, the most conventional practice was adopted. During seedbed preparation all plots were 

fertilized with 31 kg ha-1 of P. In fibre and sweet sorghum, the N fertilization (urea) at a dose of 100 

kg ha−1 of N was applied about 20 days after emergence. Plots were kept free of weeds until sown 

or plantation. Switchgrass and sorghum were sown on late April using a mechanical drill-machine 
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(Vignoli s.r.l.), while cynara was manually sown. Giant reed and miscanthus were hand-planted on 

early May by placing rhizomes into 150 cm row-spaced furrows.  The average plant densities 

resulted: 13 plants m-2 for sweet and fibre sorghum;  2 plants m-2 for miscanthus, 1 plants m-2 for 

giant reed, 168 and 62 plants m-2 for switchgrass (20 and 80 cm row distances, respectively), 4 

plants m-2 for cynara. For all the crops, irrigation and chemical products against pests and disease 

were not necessary. The annual crops and cynara were hand-harvested in September, while the 

other crops were harvested during wintertime (on early February). After the harvest, a sample of 

each crop and replication was split into three sub- samples including leaves, stems and reproductive 

organs (about 500 g each). Thereafter, samples were dried (60°C for 24 h), accurately grounded, 

and finally stored for the ash and mineral determinations. 

2.2. Ash and mineral analysis

According to the ISO 1171-1981 (550 °C for 12 hours), the ash content was determined on a 

representative sub-sample of 3 g of each organ using a muffle furnace. Likewise, C and N 

concentrations were determined on a 3 g sub-sample by a CHN-elemental analyser (Carlo Erba - 

1100) based on flash-combustion principle. Wet-digestion was also applied before mineral analysis 

using a microwave oven (Microdigest A-301, Prolabo). Briefly, a sample of plant material was 

placed into a PTFE-bomb together with 6 ml HNO3 65%, 1 ml H2O2 30%, and 0.3 ml HF. After 

that, it was wet-digested. Organic matter was mineralized by a concentrated solution of HNO3 and 

H2O2, while the less soluble inorganic compounds were attacked using HF. The use of HF in 

addition to HNO3 is justified by the need to recover a higher amount of Si, HF being the only acid 

enabling to decompose silicates into a colloidal form [18]. Since HF was used during the analysis, 

glass vessels and spraying systems were carefully avoided, thus to prevent Si contamination [19]. 

Samples were then air-cooled and diluted in 20 ml of distilled water. Again, in order to prevent Si 

contamination from glasses, within 30 min after dilution, samples were transferred to a plastic 

recipient. Al, Ca, Cl, Fe, K, Mg, Na, P, S and Si were determinate by an inductively-coupled 

plasma atomic emission-spectrometry (ICP-AES), equipped with HF- resistant sample introduction 
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system. The standard BCR-60 Lagarosiphon major by the Community Bureau of Reference (BCR, 

Belgium), was used as reference material for spot-checks during the analysis. 

All data were subjected to statistical analysis according to the general linear model (GLM). When 

the statistical test revealed significant differences, the least significant Fisher’s test (LSD) for P ≤ 

0.05 was used to separate means. Pearson’s correlation test at P ≤ 0.05 was used to assess the 

significance of correlation coefficients.

3. Results

3.1. Comparing leaves 

Cynara and giant reed showed the highest ash content, about 50% higher than the other crops (Table 

2). Along with sweet and fibre sorghum, giant reed also showed the highest N, and together with 

cynara, the highest S, too. Cynara exhibited the highest Al, Ca, Cl, Fe, Na concentrations, and along 

with the two sorghum types, the highest P. Alike switchgrass (at both row-spacings), cynara showed 

the lowest Si and Si/K ratio. Chlorine showed a very wide range of variation, resulting the lowest in 

sweet and fibre sorghum, and curiously, in switchgrass 80 cm row-spaced, as well. 

Overall, the two sorghum types appeared very similar, as well as switchgrass at variable row-

distances. The only differences between sweet and fibre sorghum were K, almost 33% higher in the 

sweet type, and Si, about 30% higher in fibre sorghum (Table 2). Switchgrass showed about a 

threefold Cl and a much lower Ca/K ratio at the narrower row-distance (Table 2). 

3.2. Comparing stems

Once more, cynara exhibited the highest ash content, followed by fibre and sweet sorghum (Table 

2). The latter also showed the highest N, along with giant reed. The other crops did not significantly 

differ in N, which ranged between 2 and 3 mg kg-1 (dry matter basis). Giant reed exhibited the 

lowest Ca, which was conversely exceptionally high in cynara, along with Na, S, P and Cl. 

Nonetheless, giant reed resulted in the clearly highest Al concentration, almost 90% higher than 

switchgrass (Table 2). Surprisingly, Cl greatly changed between switchgrass 20 and 80 cm row-
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spaced. Sweet and fibre sorghum had the highest K and Mg, while switchgrass the lowest (at both 

row distances), together with miscanthus. The lowest Si was found in cynara, while the highest one 

in sweet sorghum. The difference in Si between the leaves of two sorghum types were not 

confirmed in stems (Table 2).

3.3. Comparing reproductive organs

Reproductive organs may be a basic determinant of the biomass quality, representing up to about 

30% and 35% of the total dry matter yield in sorghum and cynara, respectively [20,21]. For all 

crops, ash content was similar to that of stems, while N was much higher and approximated that of 

leaves. Alike leaves and stems, capitula exhibited a very high Ca, Cl and Na content. Unlike leaves 

and stems, K resulted much higher in cynara than in sweet and fibre sorghum. Again, Si was very 

low in cynara and very high in sorghum, especially in sweet one. Nonetheless, sorghum also 

exhibited a much higher Si/K ratio with respect to cynara (Table 2). 

3.4. Relationships among minerals

A number of significant correlations has been found between different elements, both at a whole 

crop level and at a similar organs. For example, irrespective of crops and organs, ash content was 

found to be strictly related to C (-0.80**) and Ca (0.74**), and secondary to Na, Si and Cl (-0.58*, 

0.50*, -0.47*, respectively). Equally, N was positively related to K (0.61*) and P (0.60*), and 

negatively to Si/K and Ca/K ratios (both -0.77**). Chlorine resulted negatively related to Si, Si/K 

and Ca/K (-0.55*, -0.47* and -0.41*, in this order). Again, K was highly related to P (0.93**), and 

to a lesser extent to Mg (0.63*). Phosphate was negatively associated to Si/K and Ca/K ratios 

(-0.69** and -0.77**, respectively), oppositely to what observed for Si (0.86** and 0.75**). The 

high correlation between Si/K and Ca/K is also noteworthy (0.96**).

As for single organs, only few striking correlations were found in leaves (Table 3). Among these, Si 

to Al, Ca, and Na, as well as between ash content and S. 

Stems resulted in overall higher correlations between minerals. For example, ashes were highly and 

positively related to Ca, P, S, Na and Ca/K ratio, and negatively to C and Si/K ratio (Table 3). 
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Chlorine resulted strongly and positively related to Na, and to a lesser extent, to P and S. Na was 

also negatively related to Si, and positively to Ca/K ratio. The latter was positively and negatively 

associated to S and Si, respectively. Noteworthy, K was closely related to Mg. 

The relationships between minerals in reproductive organs (panicle and capitula) were even more 

remarkable. For example, Cl was very closely associated to nearly all minerals, with correlation 

coefficients being over 0.80 for S, Na and K (positive relationships), and  Mg and Si (negative 

correlations). Similarly, correlation coefficients over 0.90 were found between K and Mg, Na, S and 

Si (Table 3).

The relationships between leaves and stems on ash content resulted significant only when giant reed 

was not included into the analysis (Fig. 1). Finally, very few elements resulted correlated in leaves 

and stems (Fig. 1). 

4. Discussion

Understanding the variation in chemical composition of different raw materials is strongly need to 

develop an effective biomass energy technology. Major problems, encompassing the reduction of 

process efficiency and the increase maintenance costs, may in fact arise from the use of low-quality 

sources [14]. We are aware of only few studies comparing the quality of dedicated energy crops 

[9,22,23,24]. Nonetheless, these studies report some contrasting results, both on quantitative and 

qualitative mineral compositions, thus suggesting the need of further ad hoc researches 

(Lewandowski et al., 2003 [23] for an extent review). For example, Miles et al. (1996) [14] reported 

an high ash and alkali content in switchgrass, thus to indicate this crop to be unsuitable for 

combustion in conventional boilers. In contrast, McLaughlin et al. (1996) [24] pointed out that 

switchgrass has typically a low alkali content and consequently a low slagging potential.  

In the present study, it clearly resulted that biomass quality can drastically vary according to 

whether the crop and biomass partitioning are. For example, cynara exhibited a notable ash content, 

while sorghum and giant reed resulted more concentrated in N. Cynara also showed a high 
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concentration in Ca, S and Cl, yet it exhibited the lowest Si content too. A high Si content was 

conversely found in both sorghum types. Moreover, the relationships between biomass organs was 

often insignificant (e.g. Ca, Si, Al), with ashes or minerals resulting, for example, abundant in 

leaves and scarce in stems, or vice versa (e.g. ashes in giant reed, Al in cynara and Si in fibre 

sorghum). As a consequence, if a crop is more or less suitable for combustion will not only depend 

on whether the crop is, but on biomass composition at harvest time, too. This may be highly 

relevant as biomass composition can be, to some extent, modified by pursuing strategic agricultural 

practices (e.g. delaying the harvest or using chemicals accelerating the leaf senescence). 

Furthermore, the unlike mineral composition of different organs should be taken into great account 

as literature commonly reports ash and mineral composition of crops as a whole, i.e. without 

distinguishing the different biomass components. Miscanthus, for example, is usually known to 

have a low (c. 700 °C) ash melting point [3,23,24,25], which is likely to be related to simultaneous 

presence of high Si, K and Ca, as Si in itself has a high melting point [13]. In the present study, Si, 

as well al Ca, resulted mostly concentrated in leaves, while K was equally distributed between 

leaves and stems. Therefore, it is perceived that agricultural strategies addressed to reduce leaf 

components might significantly increase the ash melting point and suitability of miscanthus. 

Nevertheless, this may be also true for the other crops. In fact, regardless of crops, leaves always 

showed the clearly highest ash content, almost double than stems, and about 50% higher than 

reproductive organs (Table 3). Likewise, leaves exhibited an overall much higher mineral 

concentration than other portions. Specifically, leaves showed the highest Al and Fe, and, along 

with reproductive organs, the highest N, Ca, Mg, S and Si. It is also true that leaves showed the 

highest Si/K and Ca/K ratios, thus to partially offset the negative effects the high Si and Ca [11]. 

It derives that, in a drying standing crop with a large number of leaves falling down, a significant 

better quality of biomass can be provided by delaying the harvest [26]. This is also consistent with 

recent findings on pyrolysis of switchgrass at variable stage of maturity [27]. Nonetheless, it should 

be also taken into account that leaf loss entails a lower marketable dry matter yield for farmers, up 
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to about 20% in giant reed and sorghum [21,23]. Besides, crops are differently prone to preserve 

leaves during ageing. For example, it was observed that giant reed, miscanthus and cynara had a 

significant reduction of leaves in a post-frost harvest, while switchgrass has a moderate inclination 

in leaf loss [16]. Therefore, how delaying the harvest positively affects the biomass quality will 

greatly depend on environment and crop-specific dynamic of the biomass composition during the 

senescence.

In addition to leaf loss, mineral translocation from leaf tissues to rhizomes during crop drying may 

significantly improve the biomass quality. However, the extent of mineral translocation during crop 

ageing is still debatable, as literature reports contrasting results on this topic. For example, some 

authors [24,28], reported that in a number of perennial crops, the late harvest K-levels were strongly 

reduced with respect to those from an early harvest. In contrast, Sladden et al. (1991) [29] observed 

an opposite trend, while Monti et al. (2004) [30] reported the ashes to fall in late summer then rise 

again until approximating initial values. Dien et al. (2006) [22] observed the ashes of switchgrass to 

drop down until anthesis, whilst other elements (Ca, Si, P and Mg) increasing. This was however 

not corroborated by parallel findings on similar grasses [22]. 

In this study, a single harvest was performed for each crop, and thus the extent of mineral 

translocation could be not detected. However, remarkable differences in ash and N content are 

clearly visible in the leaves of giant reed and switchgrass or miscanthus, all three crops subjected to 

concurrent pos-frost harvest. Therefore, it appears that ash and mineral composition are much more 

crop- or biomass composition-dependent than on mineral translocation. Anyway, whatever will be 

the extent of mineral translocation, it runs in parallel with leaf senescence thus to further support the 

post-frost harvest from the energy standpoint. 

We are aware of very few reports indicating recommended mineral thresholds to ensure low 

emissions and corrosion risks using conventional boilers [11,31]. According to these reports, stems 

resulted generally in a lower N and S concentrations than recommended (i.e. 6 and 1 mg kg-1, 

respectively, [11]). The only clear exception was cynara for S, though giant reed also showed S and 
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N values proximate to the respective thresholds. Conversely, all crops exceeded the recommended 

Cl concentrations of 1000 µ g kg-1 [11]. However, Cl was also the elements having the highest 

variation coefficient, thus meaning that a crop can be easily found to be exceeding or having 

acceptable Cl values. So far, no clear explanation has been given about the inherent or 

environmental causes related to Cl variation. Importantly, in all crops leaves and reproductive 

organs, N, Cl and S visibly exceeded the indicated limits. 

5. Conclusions 

Cynara resulted the crop having the highest ash and mineral content and thus with major slagging, 

fouling and corrosion tendencies, according to other findings [11]. As general, the main problem in 

all crops resulted the high concentration of Cl, and secondary S, which increase the risks of 

corrosion and HCl-emission. Again, the highest Cl content was found in cynara, which imply that 

special measures have to be taken for this biofuel. In the case of giant reed, N resulted slightly 

lower than acceptable limit, therefore primary and secondary measures to prevent NOx emissions 

may be required for this crop. Switchgrass (especially in spaced row-distance) and miscanthus 

showed the overall better biomass quality. Stems resulted much better than leaves and reproductive 

organs, and in most cases they showed acceptable mineral concentrations. Therefore, opportune 

agricultural strategies leading to biofuels with major stem component should be addressed. For 

example, post-frost harvest, though resulting in a likely lower total biomass yield, could provide a 

significantly better quality of feedstocks, both for leaves loss and mineral translocation during 

senescence.
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Table 1. Main physical and chemical characteristics of the soil.

Parameters Units Methods Values

Sand (g kg-1) Bojoucos 270
Silt (g kg-1) Bojoucos 390
Clay (g kg-1) Bojoucos 340
pH H2O 7.2
SEC meq 100g-1 48.2
Organic matter (g kg-1) Walkey-Black 18
Total N (µ g 

g-1)
Kjeldahl 1196

P-avail. µ g g-1 Olsen 20
K-exch. µ g g-1 BaCl2 + Tea 265
Ca-exch. µ g g-1 BaCl2 + Tea 4592
S µ g g-1 (Sulphate) 125
Mg-exch. µ g g-1 BaCl2 + Tea 368
Na µ g g-1 BaCl2 + Tea 48

Table 2. Ash and mineral concentration in leaves, stems and reproductive organs (capitula and 

panicula). Ash, N and C are expressed as g kg-1, all the others as mg kg-1. 

Plant organ Ash N C Al Ca Cl Fe K Mg Na P S Si Si/K Ca/K

Leaves

    Arundo d. 113 a 15.7 a 430 a 461 b 6167 bc 6986 ab 308 b 5080 c 2182 ab 159 b 803 b 3511 a 17232 b 3.4 bc 1.2 c

    Cynara c. 117 a 9.6 bc 417 b 1781 a 27802 a 13143 a 655 a 4711 cd 1876 ab 11942 a 1459 a 3760 a 4267 c 0.9 c 6.1 a

    Miscanthus s. 62 c 6.3 c 431 ab 595 b 5262 c 6701 ab 324 b 3265 cd 1291 b 193 b 396 b 867 b 16666 b 5.1 b 1.6 c

    Panicum v. 20 76 b 7.4 bc 423 ab 543 b 6922 bc 9490 a 319 b 2126 cd 2706 a 326 b 774 b 991 b 15745 b 8.0 a 3.6 b

    Panicum v. 80 70 bc 8.4 bc 428 a 435 b 8182 b 3617 b 283 b 1504 d 2626 a 317 b 578 b 1048 b 15036 b 10.1 a 5.5 a

    Fibre s. 81 b 13.4 a 424 ab 483 b 9245 b 4737 b 236 b 8805 b 3086 a 195 b 1246 a 1105 b 19736 a 2.3 bc 1.1 c

    Sweet s. 82 b 13.5 a 425 a 328 b 8359 b 3741 b 186 b 11661 a 2805 a 189 b 1273 a 1099 b 14858 b 1.3 c 0.7 c

   mean 86 10.6 425 661 10277 6916 330 5307 2367 1903 933 1769 14791 4.4 2.8

Stems

    Arundo d. 32 bc 5.2 a 431 a 196 a 968 c 5608 c 102 a 5609 b 1027 b 130 b 320 bc 932 b 6223 a 1.1 b 0.2 b

    Cynara c. 68 a 3.0 b 401 b 150 b 12190 a 18171 a 79 ab 6467 b 766 b 12807 a 1363 a 1740 a 889 c 0.2 c 2.1 a

    Miscanthus s. 19 c 1.6 c 439 a 143 b 1730 bc 7406 c 61 b 3588 c 857 b 153 b 154 c 337 c 4531 b 1.3 ab 0.5 b

    Panicum v. 20 26 c 3.0 b 435 a 137 b 1097 bc 13798 b 86 ab 3555 c 1020 b 870 b 404 bc 464 bc 5345 ab 1.5 ab 0.3 b

    Panicum v. 80 23 c 3.3 b 440 a 111 b 1197 bc 4944 c 83 ab 2628 c 1171 b 870 b 248 c 443 bc 5301 ab 2.1 a 0.5 b

    Fibre s. 41 b 2.6 bc 409 b 114 b 2643 b 6398 c 79 ab 12577 a 1903 a 193 b 702 b 817 b 5345 ab 0.4 c 0.2 b

    Sweet s. 50 b 4.4 a 408 b 152 b 3446 b 7199 c 112 a 12991 a 2079 a 195 b 804 b 681 b 7013 a 0.5 c 0.3 b

   mean 37 3.3 423 143 3325 9075 86 6774 1260 2174 571 773 4950 1.0 0.6

    Cynara c. 67 a 14.3 a 444 a 106 b 9960 a 9863 a 71 b 19325 a 1815 c 1340 a 2427 a 1708 a 474 c 0.0 b 0.5 a

    Fibre s. 47 b 13.1 a 434 b 242 a 1824 b 6252 b 141 a 5587 b 2451 b 192 b 2150 a 1084 b 10671 b 2.0 a 0.3 b

    Sweet s. 58 a 14.1 a 424 b 218 a 2417 b 5129 b 159 a 7125 b 2895 a 171 b 2620 a 1000 b 14321 a 2.0 a 0.3 b

   mean 57 13.8 434 189 4734 7081 124 10679 2387 567 2399 1264 8489 1.4 0.4

Reproductive organs
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Table 3. Significant (P≤0.05, Pearson’s correlation test) correlation coefficients between minerals 

at different plant organs.  

Plant organ Ash N C Al Ca Cl Fe K Mg Na P S Si Si/K

Leaves
N 0.50
C - -
Al - - -
Ca 0.60 - - 0.85
Cl - - - - -
Fe - - - 0.87 0.71 -
K - 0.60 - - - - -
Mg - - - - - - - -
Na - - - 0.83 0.92 - 0.57 - -
P - - - - - - - - - -
S 0.89 - - 0.58 0.63 - - - - 0.68 -
Si - - - -0.74 -0.82 - -0.54 - - -0.83 - -
Si/K - -0.53 - - - - - -0.75 - - -0.66 - -

Ca/K - - - 0.60 0.63 - 0.61 0.61 - 0.56 - - -0.63 -

Stems
N -
C -0.92 -
Al - - -
Ca 0.85 - -0.72 -
Cl - - - - 0.68
Fe - - - - - -
K - - -0.76 - - - -
Mg - - - - - - - 0.78
Na 0.76 - - - 0.94 0.77 - - -
P 0.83 - -0.76 - 0.72 0.66 - - - 0.72
S 0.84 - -0.74 - 0.88 - - - - 0.84 0.67
Si - - - - -0.76 -0.63 - - 0.51 -0.82 - -
Si/K -0.79 - 0.87 - -0.63 - - -0.70 - - -0.65 -0.66 -
Ca/K 0.65 - - - 0.86 0.64 - - - 0.91 - 0.70 -0.80 -

Reproductive organs
N -
C - -
Al -0.68 - -
Ca 0.71 - 0.66 -0.92
Cl - - - -0.81 0.84
Fe - - - - - -0.63
K 0.69 - - -0.93 0.99 0.84 -0.58
Mg - - -0.76 0.72 -0.81 -0.79 0.69 -0.78
Na - - 0.77 -0.88 0.96 0.86 - 0.94 -0.85
P - 0.79 - - - - - - - -
S - - 0.77 -0.87 0.95 0.88 -0.61 0.93 -0.91 0.97 -
Si - - -0.76 0.87 -0.91 -0.85 0.70 -0.90 0.95 -0.92 - -0.95
Si/K - - -0.63 0.93 -0.92 -0.81 0.71 -0.94 0.84 -0.91 - -0.89 0.93
Ca/K 0.69 - 0.67 -0.71 0.86 0.71 - 0.78 -0.69 0.85 - 0.84 -0.78 -0.66
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Figure caption

Relationships between leaves and stems on ashes, K, P and Si/K ratio. R, correlation coefficient; **, 

significant for P≤0.01 (Pearson’s correlation test). G, giant reeed; M, miscanthus; S, switchgrass; 

FS, fibre sorghum, SS, sweet sorghum; C, cynara. In the top-left figure, giant reed was not included 

into correlation analysis. Units are: ashes, % (d.b.); P and K, µ g kg-1. 
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