From a “well designed” database to AD/CYCLE tools: a reengineering experience

Oreste Signore - Francesco Celiano
CNUCE - CNR via S. Maria, 36 56126 PISA

SHARE EUROPE
Spring Meeting 1991

Lausanne
April 8-12, 1991
Content

• Introduction

• The application: an informal specification

• The manual methodology approach
 • The DATAID methodology
 • The database
 • The software architecture

• The CASE tool approach
 • IEW
 • The usage of the tool

• Evaluation of the experience

* This work has been partially supported by "Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo" of C.N.R..
Introduction

• CNUCE is an Institute of CNR (National Research Council) of Italy

• his aim is to perform research activity

• it gives computing power to scientific community

• users' requests are on a non scheduled basis

• In 1983 a database approach was adopted

• In 1990, the decision was taken to migrate on a different DBMS
The application: an informal specification

- Identified functions in the user management area:
 - Management of the library (sale of the manuals and other documentation).
 - Management of user access accounting codes and registration of people allowed to get access to the resources.
 - Management of resources (virtual machines, tapes, disks, etc.), that is, linking of resources to the appropriate user accounting codes, and recording relevant information about every transaction.
 - Management of invoices (every resource must be accounted to the customer).
 - Evaluation of the resource usage in order to plan the development of the computer center.

- Every user, in order to gain access to the CNUCE computer resources, must sign an agreement, and get one or more user codes. For each user code, a representative is identified, who can ask for every resource the code is allowed to ask for, and can grant this permission to other persons.
- Each request by the user can modify the number and the kind of allocated resources. In addition, even if a code is canceled, information must be kept alive for a minimum of two years (for accounting and possible claims), even if resources may be allocated to other customers.
The manual methodology approach

• Introduction

• The application: an informal specification

• The manual methodology approach
 • The DATAID methodology
 • The database
 • The software architecture

• The CASE tool approach
 • IEW
 • The usage of the tool

• Evaluation of the experience
DATAID methodology

• Defined by several groups in the context of the “Progetto Finalizzato Informatica”, a 5-year research project financed by the National Research Council of Italy.

• Essentially a manual methodology (some components were automated),

• Conceived as a methodology for database design.

• Analysis of the enterprise supposed as already done.

• Concentrating on tools for supporting the sequence of the phases for database design:
 • user requirement collection and analysis
 • conceptual design
 • logical design
 • physical design
DATAID methodology (cont.)

• **User requirements collection and analysis**

 • getting information from user interviews,

 • collecting into glossaries and forms
 (Data Glossary, Operations Glossary, Event Glossary)

 • Constraint requirements also collected.

• **Conceptual design**

 • based on the process of views integration

 • The data model:
 The Entity-Relationship model with some extensions:
 • *Abstraction hierarchies:*
 • *Aggregates:*
 • *Repeating attributes:*
 • *Identifiers:*

 • Dynamic aspects represented by means of Petri nets.

• Basically data oriented

• Procedural aspects not emphasized.

• Specific tools, oriented toward specific DBMS families, were developed for logical and physical database design.
The database: conceptual schema
The database: logical schema
The software architecture

• Two distinct aspects: report generation and update.

• Report generation:
 • extensive usage of the SYSTEM 2000 strings
 • flexibility
 • easy implementation of new reports and of simple help.

• Update transactions:
 • Every application against the database could be seen as a navigation along the tree
 • Development of a general purpose, form based, software architecture.
 • A general purpose I/O routine was accessing an application dictionary (SYSTEM 2000 based, too) in order to build a standard 3270 map.
 • The application program had simply to ask for the appropriate schema record: the I/O routine was in charge of controlling every user/system interaction, and verify every constraint on the fields
 • The application main program had simply to control the procedural constraints and the logic.

• Some constraints implicit in the DBMS data model
• Some traditional programs for the batch updates.
The CASE tool approach

- Introduction

- The application: an informal specification

- The manual methodology approach
 - The DATAID methodology
 - The database
 - The software architecture

- The CASE tool approach
 - IEW
 - The usage of the tool

- Evaluation of the experience
IEW: generalities

- IEW (Information Engineering Workbench)
 - one of the the CASE product leader in the market
 - selected by IBM in AD/Cycle.

- Implements the approach of Information Engineering

- Basic assumption: analysis and design for computing can be taught as having a four level, pyramid structure, concerned with the two aspects of data and processing.
IEW: the DP pyramid

- **Information Strategy Planning:**
 - high level overview of an enterprise, its functions, and its information systems strategy.
 - A strategic overview of data and functions is taken.

- **Business Area Analysis**
 - what fundamental processes are needed to run a business area, how they interrelate, what data are needed.
 - Data: fully normalized logical data model
 - Processing: description of the necessary processes and their interdependence.

- **System Design:**
 - how the processes are implemented as procedures, how the procedures work, and how they interrelate.
 - Data: design of the records used by procedures
 - Processing: design of procedures and how they relate.

- **Construction:**
 - design of programs, implementation of data structures.
 - Data: storage structure and program view of data
 - Processing: detailed program logic.

- **All tasks supported by a variety of diagramming techniques**
 (Action diagrams, Entity-relationship diagrams, Decomposition diagrams, Data flow diagrams, etc.).

- **For each level, a specific workbench.**

- **Data stored in the Encyclopedia:**
 - central repository of knowledge
 - allows the diagrammer tools to be integrated.
The usage of the tool:
Planning Workstation

- Major emphasis on the organization structure analysis,

- Size of the application was not so large to constitute a really effective test-bed.

- Analysis of the organization was lacking in the manual methodology.
Planning Workstation:
a Decomposition Diagram
The usage of the tool: Analysis Workstation

• The conceptual schema was modified

• Programmers, in charge of developing the software, were involved (an overhead projector was used)
 Their contribution resulted very effective.

• The interactive Entity-Relationship editor resulted very useful,

 ... but ...

 the Entity-Relationship model adopted by IEW semantically poorer that we were used to have in the DATAID methodology.

• The generalization concept is not supported:
 decisions that could be postponed up to the phase of logical design must be taken at higher level.
 Possible drawbacks:
 • resulting conceptual schema graphically more complicated (hierarchy splitted into many entities)
 • the designer must guarantee semantic constraints implicit in the richer model (hierarchy implemented as a single entity)
 But there is no way to formally state the constraints!

• The \textit{n-ary relationships} are not supported.
Associative entities may be used for this purpose and in order to represent relationship with attributes.
The usage of the tool: Analysis Workstation (cont)

• *Multiple attributes* are available
 (this avoid the presence of useless entities in the schema).

• *Attributive entities may be used.*
 This feature is particularly useful in the aim of representing
 aggregate attributes (repetitive or non repetitive).

• *Procedural aspects* represented by means of:
 • data flow diagrams
 • mini-specs.

• Data Flow Diagrams not suitable for the
 representation of the temporal sequence of
 events and procedures.
 The concept of Data Store may be overloaded,
 but this practice should not be encouraged.
Analysis Workstation:
Entity-Relationship Diagram
Analysis Workstation:
Entity Description
Analysis Workstation:
Decomposition Diagram
Analysis Workstation:
Mini-Specs
Analysis Workstation: Data Flow Diagram
The usage of the tool: Design Workstation

- The logical database schema was generated
- DDL was easily modified for usage of SQL/DS
- Mapping between the conceptual schema and the logical schema is fully automatic. There is no way the user may affect this process
Design Workstation:
Database Structure
Design Workstation:

a Relation
The usage of the tool: Construction Workstation

- No use has been made of this workstation
The usage of the tool:
General remarks

• Documentation:
 • graphical representation of data is very effective
 • textual reports verbose

• Integration:
 • the vendor asserts that IEW is a fully integrated tool
 • few cases (i.e. data types) where the vertical integration between the workstations appears to be scarce, as the modifications made at lower levels are not automatically exported toward higher levels.
 • In the MS-DOS version, it is necessary to quit one workstation before activating another one. May be this aspect will be greatly affected by the migration in OS/2 environment.
Evaluation of the experience

• **Analysis of the organization.**

 This aspect was not considered in the manual methodology. The use of the tools supplied by the Planning Workstation gave a valuable help in considering some aspects that were not so much emphasized in the first implementation of the application.

• **Data Analysis and constraints representation.**

 • DATAID:
 • Semantically richer data model
 • (Many implicit constraints. + free text for other constraints).

 • IEW:
 • excellent user interface
 • increased participation of the users
 • lacking of some aspects peculiar to the semantic data models
 • resulting conceptual schema less readable.
Evaluation of the experience (cont.)

• **Dynamic aspects**

 • DATAID:
 • theoretically solid formalism (Petri nets)
 • concerned more with data than with operations
 • filling of the forms and the glossaries is not an easy task.
 • usage suggested at a too low level of atomicity.

 • IEW:
 • Decomposition Diagrams, Data Flows e Action Diagrams.
 • widely used
 • temporal dependencies and alternatives.

• **Mapping.**

 DATAID:
 • task performed in several steps
 • restructuring of the conceptual schema
 • general rules, plus qualitative choises

 IEW:
 • fully automatic
 • user action only on conceptual schema
• Development time.

For a project of this size, the development time has not been considerably reduced.

• Quality.

• Does not seem to have been considerably improved.

• Anyway, the adoption of a CASE tool leads to:

• improvement of the understanding of the application
• accuracy of the data structures design
• clear software architecture
• detailed documentation.

• Improvements more relevant if:

• projects of significative size
• mean for introducing the usage of a more formal design methodology.