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ABSTRACT 

The compound 3-phenylindole (3PI) is a particularly active anti-

microbial which interacts with phospholipids in fungal mycelia mem-

branes, and which strongly inhibits the uptake of phosphate into fungal 

mycelia. The physical effects of 3PI on ion transport across bilayer 

lipid membranes composed of phosphatidylcholine/cholesterol have been 

investigated using three lipophilic ions and one ion/carrier complex. 

It was found that 3PI increased the electrical conductivity induced 

by the lipophilic cation (tetraphenylarsonium) and by the positively 

charged complex (nonactin-K+) by several orders of magnttude whereas 

3PI decreased the conductivity induced by the two lipophilic anions 

(tetraphenylborate, dipicrylamine) by a factor of less than ten. These 

conductivity changes are explained as a combination of changes in the 

electrostatic and in the non-electrostatic properties of the bilayer. 

The electrostatic potential of the bilayer interior was shown to 

decrease in the presence of 3PI, a phenomenon which was also confirmed 

by measurements of the surface potential of phosphatidylcholine/ 

cholesterol mono layers. The changes in non-electrostatic properties 

of the bilayer are qualitatively discussed in terms of increased bilayer 

fluidity or decreased bilayer thickness brought about by the presence 

of 3PI. The partition coefficient of the lipophilic anions, as deter-

mined by the voltage-step transient current technique, decreased 

slightly when 3PI was present in the aqueous phase. 
\ 
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From the voltage dependence of the normalized steady state 

conductivity it was shown that 3PI did not kinetically limit tetra-

phenylarsonium transport but that it did kinetically limit nonactin-K+ 

transport at concentrations greater than 25 ~M 3PI. The theory of 

carrier-mediated transport predicts the occurrence of transient cur-

rents in the kinetically limited regime but no transients were detected 

for nonactin-K+ in the presence of 80 ~M 3PI. 

A method for analyzing the adsorption of neutral lipophilic mole-

cules onto lipid monolayers has been presented, and by this method it 

was found that the partition coefficient of 3PI onto phosphatidyl-

choline/cholesterol monolayers was 1.3 x 10-4 m and that the maximum 

adsorbed surface number density of 3PI was 1.1 x 10-6 moles/m2• From 

the experimental changes in monolayer surface potential as a function 

of adsorbed surface number density, a value for the no~al component 

of the dipole moment of 3PI was obtained. 
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CHAPTER I· 

INTRODUCTION 

STRUCTURE AND FUNCTION OF BIOLOGICAL MEMBRANES 

In order to understand the mode of action of pesticides which 

influence cell membrane permeability, it is first necessary to under-

stand the structure of the cell membrane and how it acts as a 

permeability barrier. Information on membrane structure and function 

is therefore covered in the first section of this chapter. The second 

section is a review of how the investigation of electrical conductivity 

induced by certain antibiotics and lipophilic ions was a stepping stone 

to the elucidation of ion transport in biological systems. Several 

pesticides which are known to influence cell membrane permeability 

are discussed in ·section three. Section four is a review of the 

research done by other investigators on the pesticide 3-phenylindole, 

while section five outlines the plan for the research I did on this 

same compound. 

Every cell is surrounded by some type of membrane, and some 

intracellular organelles also are enclosed by a membrane. The compo-

sition of the membrane varies from cell type to cell type but the gross 

structural organization of mammalian membranes is along the lines 

described by Singer and Nicolson's fluid mosaic model (Singer and 

Nicolson, 1972). The fluid mosaic model, which is based on a thermo-

dynamic consideration of hydrophobic and hydrophilic interactions, 



considers the membrane as primarily a lipid bilayer in which are 

embedded various proteins at random locations. The lipid bilayer is 

2 

a stable configuration because lipid molecules are amphipathic; that 

is, they have both a nonpolar and a polar portion. Thus in the bio-

logical membrane the lipids are oriented with their polar headgroups 

facing the aqueous phase (cytoplasm or extracellular fluid), and their 

nonpolar fatty acid chains coming together to form the interior of 

the membrane. 

The location of a given protein in or on the bilayer will be 

determined by the protein's three-dimensional configuration and by 

the amino acids on the protein's outer surface. A typical integral 

protein would have nonpolar amino acid residues on the outer surface 

along most of its length, which is in contact with the fatty acid 

chains, and have polar or ionic residues at the ends, which protrude 

into the aqueous phase. Conversely, proteins normally found in the 

aqueous phases (e.g., dissolved in the blood stream) would have 

primarily hydrophilic residues on their outer surface. A peripheral 

protein is a protein which is part of the membrane but which is removed 

essentially free of lipids after only mild treatment; most membrane-

bound glycoproteins are probably of this type. In summary, it should 

be emphasized that the lipid bilayer provides the main structure of 

the biological membrane and that the integrity of this bilayer must 

be maintained if the proteins are to be located in their normal 

locations. 

The term fluidity is used to denote the physical state of the 

interior of the membrane. The fluidity or orderedness of a lipid 



bilayer is determined by the relative motion of the individual lipid 

molecules, which in turn is related to the length and degree of 

unsaturation of the fatty acid chains of the lipid. The evidence that 

the lipids in most membranes are in a fluid state, as proclaimed by 

the fluid mosaic model, comes from experimental studies utilizing 

X-ray diffraction, spin labeling, and differential scanning calori-

metry (Singer and Nicolson, 1972; Lee, 1975). The fluidity of the 

membrane enables the various compounds to move about, which implies 

that a complete description of the biological membrane must be a 

dynamic one. The biogenesis of membranes is accomplished by movement 

of newly synthesized protein and lipid components into their proper 

location, while catabolism is accompanied by removal of the products 

of degradation. Both lateral diffusion and transverse diffusion are 

involved in these two processes. The rate of flip-flop of lipid mole-

cules across a pure lipid bilayer has been measured by both nuclear 

magnetic resonance and fluorescence spectroscopy (Kornberg and 

McConnell, 1971a and 1971b; Berden et !I., 1975). The importance of 

membrane fluidity to the insertion and transport activity of proteins 

has been demonstrated in a study of the lactose permease protein of 

Escherichia coli (Saier and Stiles, 1975). 

Cholesterol, an amphipathic molecule which exists in neutral 

form at physiological pH and is found in the membranes of nearly all 

mammalian cells, has a strong effect on fluidity and permeability of 

the membrane. It decreases the fluidity of lipid bilayers when the 

temperature is above the critical temperature of the lipids and 

increases the fluidity when the temperature is below the critical 

3 



temperature of the lipids (Chapman, 1975). The description of the 

effect of cholesterol on lipid and lipid/protein mixtures has been 

an active area of investigation (Chapman and Penkett, 1966; Ladbrooke 

et !l., 1968; Trauble and Sackman, 1972; Darke et !l., 1972; Szabo, 

1976). 
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According to the fluid mosaic model the lipid portion of the 

membrane is primarily in the form of a bilayer. The bilayer is two 

lipid monolayers back-to-back so some investigators have used lipid 

monolayers as a model to study the physical state of the bilayer. The 

pioneering work from which lipid monolayer research grew was the inves-

tigation of fatty acid, alcohol, and ester monolayers by Langmuir 

(1917). He was able to show conclusively that amphipathic molecules 

spread at an air/water interface form a layer one molecule thick and 

have a preferred orientation with respect to the interface. The 

experimenter has access to macroscopic variables such as surface 

tension, surface area, electrostatic potential, and temperature of 

the monolayer. The apparatus which enables one to measure isotherms 

of a monolayer, i.e. the relation betweel lateral pressure IT and arsa 

per molecule, is called a Langmuir trough in his honor. An excellent 

introduction to monolayer experimental technique and data interpreta-

tion is given by Gaines (1966), while more recent developments are 

covered by Goddard (1975). 

Monolayers of amphipathic lipid molecules have been studied to 

determine lipid phase transition temperatures (Cadenhead, 1977; 

Albrecht et !l., 1978; Nagle and Scott, 1978; Kellner et !l., 1978), 

the effect of various headgroups {Phillips and Chapman, 1968; Paltauf 



et !l., 1971; Phillips et !l., 1972}, and the effect of metal ions 

in the subsolution (Shah and Schulman, 1965; Papahadjapoulos, 196B). 

The condensing effect of cholesterol on phospholipid monolayers has 

been verified many times (van Deenan et !l., 1962; Standish and 

Pethica, 1967; Shah and Schulman, 1967; Demel and Joos, 196B; Tinoco 

and McIntosh, 1970; Cadenhead et !l., 1976). 

Monolayers of lipids exist in several states depending on the 

area occupied per lipid molecule (Cadenhead, 1977). At very large 
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area per molecule there is essentially no interaction between lipid 

molecules so this is called the gaseous state. At the other extreme, 

at small area per molecule, the lipid molecules are close enough that 

short range forces between fatty acid chains of the lipids and electro-

static forces between polar head groups become important. [The rela-

tive importance of these forces in interfacial phenomena is dealt with 

in an entertaining and informative manner by Israelachvili and Ninham 

(1977)]. In this situation only small changes in area per molecule 

induce a large change in IT and the monolayer is said to be in a solid 

state. In between these two extremes is the liquid state which is 

further subdivided as to whether the monolayer is liquid expanded or 

liquid condensed. For phospholipids the region which is of most 

biological relevance is probably the liquid state. Phillips and 

Chapman (196B) pointed out that the transition from liquid expanded 

to liquid condensed in a phospholipid monolayer corresponds to the 

transition from liquid crystalline to gel in hydrated phospholipid 

bilayers. The latter transition can be seen in biological membranes 

as well as in lipid bilayer systems {Chapman, 1975}. 



The prediction of the various transitions between states of the 

monolayer has been the goal of those working on the theory of lipid 

monolayers. The various theoretical approaches have been reviewed 
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and evaluated by Wiegel and Kox (1980). One of the simplest approaches 

is to reduce the problem to two dimensions by mapping the chain 

conformations onto a lattice. This approach has the advantage that 

the equations are exactly solvable but it is inadequate to explain 

the features of experimental isotherms. The earliest equations of 

state for a liquid expanded monolayer were based on modifications of 

van der Waal 's equation. Smith (1967) used a stack of hard disks of 

diameter d as a model for the chains of fatty acid monolayers and 

derived the equation of state Err + TIEmd2/4A2][A(l - TId2/4A)]=kT 

where rr is the surface pressure, E is the magnitude of the Lennard-

Jones potential energy when two disks just touch, m is the number of 

disks (carbon atoms) in a chain, A is the area per molecule, k the 

Boltzmann constant, and T the absolute temperature. Other modified 

van der Waal 's equations have been proposed which incorporate several 

adjustable parameters and these can be brought into agreement with 

certain experiments but often the parameters have no physical theo-

retical foundation. 

The main numerical methods used in theoretical studies of mono-

layers are Monte Carlo simulations based on a generation of random 

sequences of allowed states of the molecules and molecular dynamics, 

which deals with the interaction potentials among a large number of 

molecules. Yet another starting point for monolayer phase transition 

theory is the partition function. If the partition function contains 



7 

several adjustable parameters then agreement between predicted and 

measured enthalpies is often satisfactory by this method. The 

equations of state deduced from a random walk analogy have so far been 

applicable only to the region of large area per molecule but in this 

region give qualitative agreement with experiment (Wiegel and Kox, 

1980). The theories outlined so far have included only the inter-

action between lipid molecules yet it is certain that the contribution 

of the subphase (water and sometimes electrolyte) is not negligible. 

Gaines (1978) has attempted to incorporate the effect of water pene-

trating the monolayer following a Gibbs formalism with three adjustable 

parameters and concludes that the gradual exclusion of water from the 

monolayer is of paramount importance in the liquid expanded regime. 

The study of the lateral pressure of lipid monolayers has thus 

been productive of theories even though the theories are still inade-

quate. Another property of lipid monolayers which is experimentally 

accessible for study is the change in electrical potertial difference 

at the air/water interface ~V caused by the presence of the lipid 

monolayer. For a monolayer of neutral lipid it is thought that AV 

is due to the sum of three components: 1) reorientation and distri-

bution of water dipoles around the lipid molecules, 2) the normal 

component of the permanent dipoles of the polar head group of the lipid 

molecules, and 3) the dipole due to the terminal group of the fatty 

acid chain. At present there is no theory to account for the first 

component; unfortunately there is also no way to experimentally measure 

the water component of ~V separately from the other two components. 

However, the contribution from different portions of the polar head 



group (component 2) can be studied by varying the structure of the 

lipid molecule. One of the most important results to come from such 

an investigation was the finding of Paltauf, Hauser, and Phillips 

(1971) that the carbonyl parts of the ester linkage in the phospho-

lipid molecule are a main cause of ~V for that lipid. They found that 

substitution of an ether linkage for an ester linkage lowered ~V by 
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30 - 200 mV. Shah and Schulman (1965) had neglected the ester linkage 

component but had pointed out that the glycerol portion and the 

phosphate/trimethylammonium group should contribute to ~V. Another 

way of investigating the contribution of the polar head group is a 

comparison between phosphatidylcholine (PC) and phosphatidylethano-

lamine (PE), which differ only in that PC has three methyl groups 

attached to the nitrogen whereas PE has three hydrogens attached to it. 

The ~V for egg PE is 40 mV higher than ~V for egg PC (Hladky, 1974), 

which probably reflects the different hydration and packing properties 

of the two lipids (Phillips, Finer and Hauser, 1972). 

It has become conventional to express ~V for neutral monolayers 

in terms of a surface dipole moment ~~ by the relation ~V = Kn~~/E' 

where n is the number of lipid molecules per unit area, € is the 

dielectric constant which is often taken as unity, and K is a constant 

whose value depends on the system of units. For lipids in a liquid 

expanded state ~-Ldecreases as the area per molecule increases (Paltauf 

et !l., 1971), suggesting that reorientation of film molecules is 

occurring. However, as mentioned above, it is likely that in this 

region water molecules are being excluded (Gaines, 1978) which could 

also account for a change in ~JL. 



We will be concerned with a pesticide which is active against 

fungi and Gram-positive bacteria. The phosphoglycerides constitute 
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a large fraction of total cellular lipids in fungi and bacteria 

(O'Leary, 1967). These may be acidic (e.g., phosphatidic acid, cardio-

lipin), negatively charged (e.g., phosphatidylserine, phosphatidylino-

sitol, phosphatidylglycerol), or neutral (e.g., phosphatidylcholine, 

phosphatidylethanolamine) at physiological pH. Fungal membranes 

have a high proportion of the non-ionic phospholipids, phosphatidyl-

choline and phosphatidylethanolamine, whereas bacteria often contain 

phosphatidylethanolamine but almost never contain phosphatidylcholine 

(Ikawa, 1967). Fungi contain ergosterol and, in lesser amounts, 

several other sterols, but bacteria contain virtually no sterols 

(O'Leary, 1967). The fluid mosaic model outlined at the beginning 

of this chapter is mainly a model for the plasma and intracellular 

membranes of higher organisms. Fungi and bacteria have an inner 

membrane of this type but they also have an additional protective 

covering called the cell wall. In fungal cells and filaments the cell 

wall usually contains chitin, a polysaccharide. The bacterial cell 

wall is composed of peptidoglycan, whose backbone is a polymer of two 

amino acid sugars. The polymers are crossed linked by sequences of 

species-specific amino acids, resulting in a rigid three-dimensional 

structure. Most bacteria can be classified as either Gram-positive 

or Gram-negative based on a stain test, and the difference between 

the two types is found in the cell wall; Gram-positive bacteria have 

a much thicker cell wall than Gram-negative bacteria. The Gram-

negative bacteria have an extra outer membrane of the fluid mosaic 



type, modified by the presence of lipopolysaccharides (Nester et !l., 
1978; Davi s et !l., 1973). 

ION TRANSPORT IN BIOLOGICAL MEMBRANES AND LIPID BILAYERS 

One of the functions of the biological membrane is to act as 
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a permeability barrier to the movement of ions. The permeability 

barrier is a potential energy barrier which depends primarily on the 

properties of the lipid bilayer portion of the membrane. A major 

component of the potential energy barrier is the work required to move 

an ion from bulk aqueous phase (dielectric constant EW ~ 80) to bulk 

hydrocarbon (dielectric constant Em ~ 2) as given by the Born energy 

Wb = [q2/8TIEor] x [(l/Em) - (1/EW)]' where q is the charge of the ion, 

r is the radius of the ion, and EO is the permittivity of free space. 

The magnitude of the Born energy depends on the size of the ion, being 

greatest for small ions. Since the membrane has a finite thickness 
o 

( ~ 50 A), polarization charges (image charges) will be induced at 

the interface giving an additional contribution to the potential energy 

of the ion. The combination of the Born energy and the image potential 

energy is the main contribution to the potential energy barrier for 

a small ion and collectively is called the electrostatic charging 

energy. Other components of the potential energy arise from: 1) the 

energy required to strip the ion of its hydration shell, 2) electro-

static potential energy differences between aqueous phase and membrane 

interior due to lipid molecule dipole potential, and 3) short range 

(packing) interactions between the ion and the membrane (Andersen and 

Fuchs, 1975). Due to the existence of this potential energy barrier, 



the electrical conductivity of a lipid bilayer in the presence of 

electrolyte containing only inorganic ions is small, about 

10-8 - 10-7 S/cm2. 

The transport of solutes such as inorganic ions, sugars, and 

amino acids across the permeability barrier posed by the membrane is 

accomplished by several methods which fall into three general cate-

gories: 1) facilitated diffusion or mediated transport, an energy 

independent process, in which the solute is translocated by a protein 

acting as a carrier or a channel, 2) group translocation, in which 

a chemical reaction occurs to alter the solute during translocation, 

and 3) active transport, which requires metabolic energy in the form 

of chemical energy or electrical energy. In Chapter VII we will be 

particularly interested in inorganic phosphate (Pi) transport, which 

provides examples of all three categories. The Pi transport out of 

mitochondria is often by an exchange process; for example,. Pi and 

malate can be carried in opposite directions by mediated transport 

(McGiven and Klingenberg, 1971). The superficially similar exchange 

of Pi and Cl- in red blood cells is attributed by Bolis and Gomperts 

(1972) to simple diffusion. Inorganic phosphate can also be trans-

located by active transport in yeast (reviewed by Armstrong, 1972), 

in fungi (Lowendorf et ~., 1974), and in mitochondria (Tyler, 1969; 

Coty et ~., 1979). Phosphorylation during group translocation of 

sugars [e.g. in bacteria (Simoni, 1972)] must also be considered in 

connection with Pi transport. An additional complication is that 

energy-dependent phosphate transport in one species of fungus, 

Neurospora crassa, has been shown to occur by a low affinity system, 

11 
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which operates under normal growth conditions, and a high affinity 

system which operates at a level dependent on phosphate concentration 

in the growth medium (Lowendorf et !l., 1975; Burns and Beever, 1977). 

To prove that a particular protein is functioning as a transport 

protein, it is necessary to isolate the protein from the membrane under 

consideration and then reconstitute it into a lipid matrix formed of 

lipids of known composition and demonstrate transport activity. In 

general this worthy goal was not experimentally feasible until the 

latter part of the 1970s when new techniques for isolating proteins 

in active form were developed. Racker and his colleagues have been 

able to reconstitute parts of the mitochondrial, sarcoplasmic reticu-

lum, and bacteriorhodopsin transport systems. For a partial listing 

of these accomplishments see, for example, Eytan, Matheson, and Racker 

(1976) and Racker (1979). Wohlrab (1980) has purified a protein from 

mitochondria which, when reconstituted into liposomes containing a 

mixture of three lipids, was shown to exchange Pi and also catalyze 

Pi uptake. The reconstitution technique at the present time requires 

that the protein be incorporated into liposomes, and the ion transport 

followed by radioactive labeling of the ion or by indirect methods 

such as fluorescence spectroscopy. Direct electrical measurements 

cannot be made on these reconstituted systems. Since lipid and pro-

tein molecules are intermixed in the biological membrane, the inter-

action between lipids and proteins is a subject of immense interest; 

for instance, there is some evidence that membrane-bound enzymes and 

antigens require specific lipids for the expression of their activities 

(Triggle, 1970; Kagawa, Kandrach and Racker, 1973; Ragan and Racker, 



1973; Knowles and Racker, 1975). Reconstituted systems can be used 

to study some aspects of the interaction between proteins and lipids. 

13 

The beginnings of a physical theory for ion transport gradually 

emerged in the past two decades from investigations in a different 

direction, namely the study of the peptide antibiotics (e.g., poly-

mixin, gramicidin, valinomycin) and polyene antibiotics (e.g., ampho-

tericin, nystatin, filipin), which were found to influence the 

permeability of cell membranes. One category of antibiotics which 

affects the cell membrane includes valinomycin, the macrotetrolides 

(nonactin, monactin, dinactin, and trinactin), and enniatins, all of 

which were found by X-ray diffraction to ferm spherical or donut-shaped 

structures with many oxygen atoms pointing toward the center, where 

the ion resides, and the lipophilic groups pointing outward. Due to 

their low molecular weight and lipophilic envelope, the actins and 

valinomycin, unlike proteins, are easily dissolved in planar lipid 

bilayers. The investigation of the electrical properties of membranes 

was greatly accelerated by the introduction of an easy technique for 

the formation of planar lipid bilayers (Mueller et !l., 1963), in which 

electrodes could be placed on either side of the bilayer. The theory 

which emerged from experiments using these bilayer lipid membranes 

was that the antibiotics just mentioned act as carriers of alkali ions, 

picking the ion up on one side of the membrane, crossing the membrane 

as an ion/carrier complex, and then releasing the ion on the other 

side of the membrane. The carrier model was based on the Nernst-Planck 

electrodiffusion equation (Ciani, Eisenman and Szabo, 1969) or, alter-

natively, was developed using a chemical kinetic approach (Markin 
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et !l., 1969; Stark et !l., 1971). In the sense that the transport 

requires a potential difference to exist across the membrane but does 

not require metabolic energy, the ion carrier mechanism demonstrated 

with antibiotics is analogous to facilitated diffusion in a biological 

membrane. 

At the same time that the carrier mechanism was being elucidated, 

progress was being made in two other avenues of ion transport problems. 

The first avenue was the study of lipophilic ions and the second avenue 

was the study of channels. Lipophilic ions adsorb into deep potential 

energy minima at the aqueous/membrane interface and cross the membrane 

intact. Since there is no ion/carrier dissociation or recombination 

step, the transport scheme is much simpler than that of carrier 

mediated transport. This simplicity was very helpful in gaining a 

fundamental understanding of the processes of adsorption to the bilayer 

and subsequent translocation across the bilayer (Ketterer, Neumcke 

and Lauger, 1971). Thus lipophilic ions allow one to isolate one 

portion of the carrier mechanism. 

It was recognized that the proteins in biological transport 

systems could conceivably function as either channels or carriers. 

Conventionally, a channel is a molecule or oligomer which stays in 

one location, spanning the membrane and allowing ions to pass through 

its hydrophilic interior. A carrier, on the other hand, is seen as 

a mobile molecule. Some antibiotics are clearly carriers as described 

above, and an unambiguous example of a channel was also found among 

the antibiotics in the form of the polypeptide gramicidin A. The 

evidence that gramicidin A forms a channel in planar lipid bilayers 
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comes from two observations: when the antibiotic is present in small 

amounts the membrane current fluctuates in a step-like manner as a 

constant voltage is applied across the membrane, and the rate of charge 

transfer is much greater than that due to a carrier mechanism (Hladky 

and Haydon, 1970). Ion transport in a channel has been described on 

the basis of Eyring rate theory as a series of thermally activated 

processes in which the ion moves from a binding site across an energy 

barrier to an adjacent site (Lauger, 1973). Recently, L~uger (1980) 

has given a theoretical treatment of a channel with multiple conforma-

tional states, and has shown that both channels and carriers are 

limiting cases of such a multistate channel. 

After the basic transport mechanisms were verified, the ion 

carrier antibiotics and lipophilic ions became tools to probe how 

changes in membrane structure influence the ion transport process. 

Szabo et al. (1972) used ion/carrier complexes to show that ion trans-

port is influenced by the composition of the lipid bilayer through 

the surface charges and surface dipoles of the lipids, and also 

through the fluidity of the bilayer interior. Stark et!l. (1972) 

also used a carrier, valinomycin, to show that the electrical conduc-

tivity of phosphatidylcholine (lecithin) bilayers decreased with 

increasing length of the fatty acid chains of the lecithin. They 

concluded that the decreased conductivity was due to changes in the 

rate at which the membrane-bound carrier combines with an ion in the 

aqueous solution. This result was further verified by electrical 

relaxation experiments with valinomycin and attributed to chain depen-

dent viscosity of the bilayer (Benz et !l., 1973). The decrease in 
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recombination with increasing chain length also occurs when the carrier 

is trinactin and the bilayer is formed from monoglycerides of various 

chain lengths (Benz and Stark, 1975). The influence of the polar head 

group was investigated by Benz et .!t. (1977), who found that monogly-

ceride allowed for a more stable ion/carrier complex than when the 

bilayer lipid was lecithin. They also reported that increasing the 

number of double bonds in the fatty acid residue increased the trans-

location rates of the complexed and uncomplexed carrier. Incorporation 

of cholesterol into monoglyceride bilayers decreases those two trans-

location rates and also the rate of recombination of ion/carrier 

complex (Benz et !l., 1977). The rate of translocation of the ion/ 

carrier complex is nearly independent of bilayer thickness. 

The lipophilic ions have also been used as probes to determine 

how membrane structure affects ion transport. Using the lipophilic 

anion dipicrylamine, Benz and Lauger (1977) showed that the parti-

tioning of the anion into the bilayer was unaffected by thickness of 

the hydrocarbon portion of the bilayer (solvent effect) but that the 

rate of translocation of the anion decreased with increasing thickness. 
\ 

The translocation rate was also influenced by the head group; trans-

location occurred much faster in phosphatidylethanolamine bilayers 

than in lecithin bilayers, and much faster in lipids with ether linkage 

than in lipids with ester linkage between hydrocarbon chain and 

glycerol backbone. Increasing the number of double bonds in the fatty 

acid chains of lecithin decreases the amount of partitioning and 

increases the translocation rate of lipophilic anions (Benz and Lauger, 

1977). In a comparative study of membrane structure using monoolein 
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bilayers, the ion carrier complex PV-K+, and the lipophilic anion 

dipicrylamine, Benz and Gisin (1978) found that the translocation rate 

of PV-K+ was much more sensitive to changes in chain length, number 

of double bonds, and nature of the polar head group, than was the 

translocation rate of dipicrylamine. They postulated that this is 

because the PV-K+ adsorption plane is located more towards the hydro-

carbon region of the bilayer while that of dipicrylamine is more toward 

the headgroup and aqueous region. For both monoglyceride and lecithin 

bilayers, the translocation rate constant increases with decreasing 

fatty acid chain length whereas increasing the number of double bonds 

increases the translocation rate and decreases the partition coeffi-

cient (Benz and Gisin, 1978). The partition coefficient for the posi-

tively charged PV-K+ complex is much less than for the negatively 

charged dipicrylamine when the bilayer is composed of the negatively 

charged lipid phosphatidylserine and the ionic strength of the aqueous 

phase is very high (Benz and Gisin, 1978). 

DISRUPTION OF MEMBRANE STRUCTURE AND 
FUNCTION BY PESTICIDES 

In his eternal quest for dominion over the earth, man has dis-

covered and, in this century, synthesized an enormous variety of 

compounds which alter the growth and functioning of other species. 

Among these compounds are types used to control fungi (fungicides), 

to eliminate weeds (herbicides), to incapacitate insect3 (insecti-

cides), and to destroy rodents (rodenticides). A major goal of the 

study of all such pesticides is to understand their mode of action 

on a molecular basis and ultimately to develop a theoretical framework 
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for the design of new pesticides with the desired potency and maximum 

specificity. On a biological and biochemical level, the mode of 

action of pesticides which interfere with photosynthesis, respiration, 

or acetylcholinesterase activity is relatively well understood, but 

the mode of action is much less clear for those pesticides thought 

to act in areas where the fundamental biochemistry is still obscure, 

e.g. pesticides believed to interfere with cell division, axonal 

transmission, or growth processes in plants (Corbett, 1974). In view 

of the importance of lipids in maintaining structural organization 

of the cell membrane, it is not surprising that some pesticides are 

effective because they physically disrupt membrane structure. Methyl 

decanoate, a fatty acid derivative, causes such severe damage to the 

membranes of plant buds, which lack a cuticle covering, that the 

damage is clearly seen in electron micrographs of treated tissues 

(Nelson and Reid, 1971). Electron micrographs have also proven that 

the bipyridylium herbicide paraquat causes rupture of the tonoplast 

membrane surrounding leaf vacuoles (Dodge, 1971) leading to an 

increased permeability (Dodge, 1971; Merkle et ~ .• , 1965). Another 

pesticide which disrupts membrane structure is petroleum oils used 

to control mites, weeds, and banana leaf fungus; the petroleum oils 

probably act by solubilizing the lipid portion of the membrane 

(Corbett, 1974). 

We now discuss several antibiotics which may serve as a model 

for pesticides such as those mentioned in the preceding paragraph which 

cause structural damage to the membrane. Polymyxin, a polypeptide 

antibiotic which causes leakage of cell constituents in both growth 
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and non-growth conditions (Newton, 1956), is more active against Gram-

negative bacteria than against Gram-positive bacteria (Zahner and Maas, 

1972) and seems to specifically interact with phosphatidylethanolamine 

(Davis et !l., 1973). In an investigation of the site of action of 

po1ymyxins, it was found that the polymyxins adsorb much more strongly 

to phospholipids of sensitive bacteria than to phospholipids of 

resistant bacteria (Z~hner and Maas, 1972). Thus it appears that for 

these antibiotics, interaction with phospholipids or the lipid portion 

of lipopolysaccharides is a prerequisite for cell permeability changes. 

Another group of antibiotics which grossly alter the permeability 

of the cell membrane is the polyene antibiotics (e.g., nystatin, ampho-

tericin 8, filipin), which cause a severe loss of cytoplasmic consti-

tuents (Kinsky, 1961; Marini, Arnow and lampen, 1961) and whose site 

of action has been localized to the sterol component of the membrane, 

whether cholesterol or ergosterol (Lampen et !l., 1960; Kinsky, 1962; 

Demel, van Deenen and Kinsky, 1965). The physicochemical mechanism 

of the action of po1yenes was investigated in more detail by monitoring 

the electrical properties of sterol-containing bilayer lipid membranes 

in the presence of the antibiotics. Andreoli and Monahan (1968) found 

that fi1ipin caused extreme membrane instability while nystatin and 

amphotericin 8 decreased the electrical resistance of the membranes 

by as much as six orders of magnitude. Finkelstein and Cass (1968) 

demonstrated that the membranes became slightly anion selective in 

the presence of the polyenes and that increasing temperature greatly 

decreased the electrical conductance. 80th groups noted that the 

electrical conductance varied as a high power (4.5 or 10) of the 



antibiotic concentration and therefore hypothesized that the polyenes 

bind to sterols and in some fashion aggregate to form pores in the 

membrane. 
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Several types of insecticides, fungicides, and herbicides have 

also been investigated by the technique of measuring changes in elec-

trical conductivity of bilayer lipid membranes. This technique has 

proven especially useful in the elucidation of the mechanism of action 

of uncouplers, that is, compounds which uncouple electron transport 

from adenosine triphosphate synthesis by dissipating the hydrogen ion 

electrochemical potential gradient in mitochondria or chloroplasts. 

Salicylanilides, carbonylcyanide phenylhydrazones, 2,4-dinitophenol, 

and chloro-substituted phenols are examples of such uncouplers (Liber-

man and Topaly, 1968; Bielawski et !l., 1966; Smejtek, Hsu and Perman, 

1976). Lea and Croghan (1969) and, independently, Finkelstein (1970) 

proposed a carrier model for the tl~ansport in which the uncoupler 

anion combines with a hydrogen ion at the membrane/aqueous interface, 

crosses the membrane in the form of a dimer, and releases the hydrogen 

ion at the opposite interface, resulting in a net proton flux. This 

mechanism is reviewed by McLaughlin and Dilger (1980), who also compare 

the action of protonophores on artificial membranes and on mitochon-

drial membranes. 

Another compound whose effect on conductivity of bilayer lipid 

membranes has been characterized is the widely used herbicide 

2,4-dichlorophenoxyacetic acid (2,4-D). The site of action of 2,4-0 

is unknown but its primary effect is on plant growth and it is believed 

to interfere with the proper functioning of indole-3-acetic acid, a 



naturally occurring plant hormone (Corbett, 1974). The neutral form 

of 2,4-0 enhances the transport of positively charged ions (tetra-

phenyl arsonium and nonactin-K+) and suppresses the transport of 

tetraphenylborate, a negatively charged ion (Smejtek and Paul is-

Illangasekare, 1979a and 1979b). The significance of this fact in 

relation to the biological effect of 2,4-0 is still not clear but, 

nevertheless, the phenomenon is intriguing and it can be explained 

on a physical basis. Smejtek and Paulis-Illangasekare (1979a; 1979b) 

propose that a layer of 2,4-0 molecules is formed at the aqueous/ 

membrane interface, probably on the membrane side. Since 2,4-0 has 
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a net dipole moment, the layer changes the electrostatic energy bar-

rier in the interior of the membrane, making the passage of positively 

charged ions less probable. Thus in the case of 2,4-0 the pesticide 

exerts its effect on membrane permeability indirectly by electrostatic 

interactions rather than directly acting as a carrie~ or pore. 

EFFECT OF 3-PHENYLINOOLE ON FUNGAL CELL 
MEMBRANE STRUCTURE AND FUNCTION 

We turn now to consideration of 3-phenylindole (3PI), an anti-

microbial compound from the group of substituted indoles which is 

active against many fungi and Gram-positive bacteria (Dekker et !l., 
1975; Hoppe et !l., 1976a). The chemical structure of 3PI is shown 

in Fig. 1. In a search for the mode of action of 3PI, Hoppe, Kirke-

naar, and Sijpesteijn (1976a) [abbreviated hereafter as HKSa] found 

that 3PI exerted a fungistatic rather than a fungicidal effect on 

Aspergillus niger and that growth inhibition could be neutralized by 

addition of phospholipids. They also report that 3PI markedly affects 
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Figure 1. Chemical formula of 3-phenylindole. 
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the composition of the lipid fraction of ~. niger, causing a decrease 

in total phospholipid content and an increase in free fatty acids. 

Phosphatidylethanolamine and phosphatidylcholine are the main phospho-

lipids of ~. niger, with lesser amounts of diphosphatidylglycerol, 

phosphatidylinositol, phosphatidylserine, and phosphatidic acid. HKSa 

showed that all of these phospholipids decreased in a similar way but 

that the sterol component was not affected. 

To determine whether 3PI causes a general increase in permea-

bility similar to that induced by methyldecanoate, paraquat, poly-

myxins, and the polyene antibiotics, HKSa measured the leakage of 

32P-labeled compounds from~. niger. They found a slight leakage under 

growth conditions but not in non-growth conditions, in contrast to 

polymyxin which caused leakage in both circumstances. While 3PI 

apparently does not change the cell membrane permeability to the 

extent that polymyxin and the polyene antibiotics do, it does affect 

the uptake of several biosynthetically important molecules. By moni-

toring the radioactivity due to [32P]orthophosphate, Hoppe, Kirkenaar, 

and Sijpesteijn (1976b) [abbreviated hereafter as HKSb] showed that 

3PI reduces the incorporation of 32Pi into phospholipids and greatly 

inhibits the uptake of 32p. by A. niger mycelium. They report that 
1 -

3PI causes a smaller effect on the incorporation and uptake of [14C]_ 

phenylalanine, a protein precursor, and [14C]uridine, a nucleic acid 

precursor. 

The uptake of 3PI itself was also investigated by HKSa, who 

report that uptake of 3PI into~. niger mycelium was rapid, being 

detectable within ten minutes. In addition, HKSa present spectroscopic 
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evidence that 3PI binds to phospholipids in vitro. They found that 

the two peaks in the ultraviolet spectrum of 3PI dissolved in 50 mM 

KCl were shifted to longer wavelengths in the presence of phospholipid 

liposomes and that the NH-band (3400 cm- I ) in the infrared spectrum 

of 3PI showed a strong decrease in intensity in the presence of dry 

phospholipids. In a related experiment HKSa produced a mutant strain 

of ~. niger which was resistant to the fungistatic action of 3PI and, 

using thin layer chromatography for the detection of 3PI, showed that 

3PI accumulated in the chloroform-soluble portion of mycelium of the 

resistant fungus strain to the same extent as in the wild strain. 

Recall that polymyxin showed a preferential adsorption to phospho-

lipids of sensitive bacteria as discussed earlier. 

It is interesting to compare the mode of action of 3PI with the 

mode of action of pantoyl lactone. Johnson et~. (1980) reported 

that the latter compound changes the phospholipid and fatty acid pat-

tern of Micrococcus lysodeikticus, and that significant amounts of 

the two major phospholipids of ~. lysodeikticus (phosphatidylglycerol 

and diphosphatidylglycerol) are converted to lyso form. They also 

found that pantoyl lactone inhibits the uptake of three amino acids 

(D-alanine, L-glutamic acid, L-aspartic acid) but that the inhibition 

is reversible since it is completely removed when the cells are trans-

ferred to a pantoyl lactone-free medium. Thus, 3PI and pantoyl lactone 

provide examples of compounds which interact with cell membrane 

phospholipids and interfere with transport into or across the membrane. 
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PROJECT DESCRIPTION 

The goal of the present research is to clarify the physical 

effects of the pesticide 3-phenylindole (3PI) on the transport induced 

in bilayer lipid membranes; additional information on lipid/3PI inter-

action is obtained through the use of lipid monolayers. A general 

overview of the methodology is presented here while details of each 

type of experiment are presented in Chapters II through VI. Experi-

mental conditions in the present work have been chosen to follow 

closely the conditions of the more biologically oriented investigations 

of HKSa and HKSb discussed in the preceding section. Thus the salt 

concentration of aqueous solutions is a tenth molar and the pH in most 

of the conductivity experiments is 6.9. The 3PI is added from acetone, 

and the final aqueous concentration is varied from 0.5 to 80 ~M 3PI, 

a range which includes the concentrations used by HKSa and HKSb. The 

model membranes used in the present study are either monolayers or 

bilayers consisting of phosphatidylcholine and cholesterol, with 

cholesterol content at a mole fraction of 0.22. Although the inter-

action of 3PI in the fungus was only with phospholipids, cholesterol 

is included in our bilayers to increase their stability, and in our 

monolayers so that monolayer and bilayer results can be more easily 

correlated. Note that in what follows we use the term 'lipid' in its 

broader sense to include both cholesterol and phospholipid. 

HKSb showed by spectroscopic methods that 3PI binds to phospho-

lipids. In this study we use the interaction between 3PI and lipid 

monolayers to quantify the amount of pesticide uptake or adsorption. 

The monolayer studies also give some indication of the location of the 



adsorbed 3PI relative to the aqueous/lipid interface. Furthermore, 

use of lipid monolayers allows direct measurement of changes in the 

interfacial potential, which is important to the problem of transport 

of ions and ionophores across bilayers. 
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The leakage of 32P-labeled compounds and the inhibition of the 

uptake of three biosynthetic precursors as determined by HKSa and HKSb 

led them to suggest that 3PI may affect transport processes in fungal 

mycelium. We investigate the possibilitythat3PI can alter ion trans-

port in the absence of any metabolic processes by measuring the 

conductivity of bilayer lipid membranes in the presence of 3PI. We 

utilize two kinds of conductivity measurements. The first kind is 

measurement of steady state conductivity, which involves the applica-

tion of a constant voltage to the membrane and measurement of the 

current present after several seconds. The second kind is measurement 

of transient currents, which involves the application of a voltage 

step across the membrane and continuous monitoring of the current from 

a few microseconds to, for instance, several milliseconds after the 

voltage is applied. In principle more information on the kinetics 

of transport is available from measurements of transient currents. 

For example, by the transient current technique, it is possible to 

distinguish between changes in the amount of lipophilic ion which 

adsorbs to the membrane from changes in the rate of translocation. 

Steady state conductivity measurements do not allow such a distinction 

to be ascertained. 

It is possible that 3PI could affect ion transport not directly 

by acting as a carrier or pore but indirectly by changing the 
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environment in or near the membrane. We examine this hypothesis using 

probes of two different types, namely a carrier (nonactin) and a lipo-

philic ion (tetraphenylarsonium). When a voltage is applied across 

the membrane, the lipophilic ions adsorb to the membrane, cross the 

membrane, and desorb from the opposite side of the membrane. The 

carrier mechanism, however, involves several other steps (combination 

with the ion, dissociation from the ion, diffusion of the neutral 

carrier) in addition to translocation of the ion/carrier complex across 

the membrane. We compare the effect of 3PI on the transport of these 

two types of probes to determine whether 3PI affects any of the steps 

specific to the carrier mechanism. 

The indirect means by which 3PI could influence ion transport 

can be divided into two categories, electrostatic and nonelectrostatic. 

We test the possibility that 3PI causes changes in the electrostatic 

energy barrier by measuring changes in the electrical conductivity 

of bilayer lipid membranes doped with either positively (nonactin-K+, 

tetraphenylarsonium) or negatively (tetraphenylborate, dipicrylamine) 

charged probes. If the primary effect of 3PI were to change the height 

of the electrostatic energy barrier in the middle of the membrane, 

we would expect 3PI to influence the conductivity due to positively 

and negatively charged probes to about the same extent but in opposite 

directions, e.g., decreasing the conductivity due to positively charged 

probes and increasing the conductivity due to negatively charged 

probes. 

Tetraphenylborate (see Fig. 13) was our original choice for the 

negatively charged ion since it is structurally very similar to 
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positively charged tetraphenylarsonium (see Fig. 9). However the 

results of the experiment with tetraphenylborate were so unexpected 

that we thought it necessary to use a second negatively charged ion 

to verify them. Thus, transient current measurements are also done 

using dipicrylamine (see Fig. 13) whose chemical structure is suffi-

ciently different from that of tetraphenylborate that the possibility 

of a specific interaction between the ion and the pesticide could be 

investigated. As mentioned earlier, more information is available 

from transient current measurements than from steady state measurements, 

and thus it would have been preferable to examine the transient cur-

rents due to both positively and negatively charged lipophilic ions. 

However, the magnitude of the transient current due to tetraphenyl-

arsonium is too small to be measured by our instrumentation and so 

only the anions could be investigated by the transient technique. 



CHAPTER II 

THE EFFECT OF 3-PHENYLINDOLE ON LIPID MONOLAYERS 

ADSORPTION TO LIPID MONOLAYERS 

The use of lipid monolayers as a model to study the physical 

state of lipid membranes was discussed in the first section of 

Chapter I. In this chapter we are concerned with changes in the mono-

layer when the pesticide 3PI is present in the aqueous solution in 

contact with the lipid monolayer. In order to understand the influence 

of a pesticide on membrane properties and on ion transport across 

membranes it is necessary to know how much of the pesticide which is 

initially in the fluid surrounding the cell or organism actually enters 

the membrane phase. The partitioning of lipophilic molecules or ions 

between the bulk aqueous phase and the lipid phase depends linearly 

on the aqueous concentration c of the lipophilic molecule or ion for 

small values of c. That is, r = Sc where r is the number density of 

molecules adsorbed onto the lipid and S is a constant called the 

partition coefficient. The coefficient B has units of distance and 

can be thought of as the thickness of aqueous solution which would 

contain the same amount of pesticide as is adsorbed to the membrane. 

At higher values of c the number of available adsorption sites puts 

a limit on the extent of adsorption and r is no longer a linear func-

tion of c. This situation is often described well by a Langmuir 

adsorption isotherm [(I/r) - (I/rm)]-I = SLc where rm is the maximum 



adsorbed surface density and aL denotes the partition coefficient for 

a Langmuir adsorption isotherm (Delahy, 1965; deLevie et !l., 1979). 

There are several experimental methods to obtain values for rm. For 

instance, Rich (1973) calculated the adsorption isotherm for the 

dissociated form of dinitrophenol, an uncoupler of oxidative phos-

phorylation, using microelectrophoresis measurements. DeLevie et !l. 
(1979) used conductivity data on several probe ions to derive an 

adsorption isotherm for the neutral form of phloretin, an inhibitor 

of hexose and chloride transport in red blood cells. In the present 

study we have used monolayer techniques to obtain an adsorption iso-

therm for 3PI onto lipid monolayers and by fitting the data to a 

Langmuir adsorption isotherm, which can be written in the form 
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111 1 -=--+-r aL c rm (1) 

have obtained values for the partition coefficient aL and the maximum 

adsorbed surface density rm' 

The change in surface tension of an air/water interface due to 

the presence of a lipid monolayer is conventionally called the surface 

pressure ~; i.e. ~ = Yo - Y2 where Y2 is the surface tension when the 

monolayer is present and Yo is the surface tension when it is 1bsent. 

In the experiment the area in which the monolayer is contained is 

varied so that ~ is measured as a function of area per lipid molecule 

A2, The value of A2 was obtained by dividing the area of the monolayer 

by the total number of lipid molecules spread, 

We found that 3PI did not form a compressible monolayer at the 

air/water interface. This is not surprising in view of the fact that 

according to the structure shown in Fig, 1 there is no reason to 



suspect 3PI would be amphipathic. However 3PI does adsorb to a lipid 

monolayer in such a way as to increase the apparent area per lipid 

molecule at any given~. Based on simple geometrical considerations, 

the change ~A2' in the apparent area per lipid molecule at a given 

~ is given by ~A2 = A2 - Ao where A2 is the apparent area per lipid 

molecule in the presence of 3PI and Ao is the area per lipid molecule 

in the absence of 3PI. If we denote the area of a 3PI molecule by 
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Al , assumed independent of ~, then ~A2/Al must be the number of 3PI 

molecules per lipid molecule. Since the number density of lipid mole-

cules is l/A2' the number density, r, of 3PI molecules can be expressed 

as 

ELECTROSTATIC POTENTIAL CHANGES DUE TO 
ADSORBED 3-PHENYLINDOLE 

(2) 

The presence of an air/water interface creates an electrostatic 

potential difference Vo between the bulk water phase and the bulk air 

phase because the highly polar water molecules are not randomly 

oriented at the interface. The change in this electrostatic potential 

due to the presence of a lipid monolayer is called surface potential 

~V, i.e. ~V = V2 - Vo where V2 is the potential in the presence of 

a monolayer. All potentials are with respect to the bulk aqueous 

phase. The presence of adsorbed 3PI molecules causes an additional 

change in the potential 6(~V) defined as 

6(~V) = ~Vl,2 - ~V2 

where ~Vl,2 is the surface potential when 3PI is in the aqueous 

(3) 
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solution and AV2 is the surface potential of the lipid monolayer in 

the absence of 3PI. Such a change in the electrical potential has 

important implications for ion transport and will be discussed in more 

detail in Chapter IV. The change in surface potential when 3PI is 

in the aqueous phase is due to: 1) the adsorption of 3PI molecules 

each having a dipole moment with normal component ~i ' and 2) a 

decreased density of lipid molecules. Neglecting any reorientation 

of lipid or water molecules, the change in surface potential is, 

therefore, 

(4) 

where € is the dielectric constant in the region of the 3PI adsorption 

plane. The second term in Eq. {4} can also be expressed in terms of 

r through Eq. (2) in order to obtain the following relationship between 

o(AV) and r: 

(5) 

By fitting our data to Eq. {5}, we obtain a value for ~i from the 

slope of the line; if o(AV) is in volts and r is in molecules/A2, then 

~ will be in Debye • 
.L 

MATERIALS 

L-a-phosphatidylcholine (PC) from egg yolk (Sigma Chern. Co., 

St. Louis, MO) showed a single spot by thin layer chromatography and 

was used without further purification. Recrystallized, lyophilized 

cholesterol was a gift of Dr. D. McClure of the Chemistry Department. 

The spreading solvents, chloroform and hexane, were of the highest 
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quality (Matheson, Coleman and Bell; Omnisolv grade). Both analytical 

grade acetone (Amachem, Portland, OR) and chromatography grade acetone 

(Mallinckrodt, St. Louis, MO) affected the n-A2 and ~V-A2 curves to 

the same extent so the A.R. grade was routinely used. Potassium 

chloride (Mallinckrodt, A.R.) and distilled deionized water from a 

Millipore Q2 system (Millipore Corp., Bedford, MA) were used for all 

aqueous solutions. 

3-phenylindole was synthesized following the method of Fischer 

and Schmidt (1888) with minor modifications. Phenylhydrazine (MC/B) 

was added in equimolar quantity to 100 g (0.83 mole) phenyl acetaldehyde 

(Aldrich technical grade), heated in a steam bath for an hour and then 

diluted with about 300 ml absolute alcohol. To the mixture was added 

200 ml of absolute alcohol which had been saturated with hydrogen 

chloride gas. The solution was then refluxed in nitrogen environment 

for 45 minutes, again using the steam bath. When the solution had 

cooled to room temperature, enough water (~ 1500 ml) was added to 

dissolve the ammonium chloride and the excess hydrazine salts. The 

solution was filtered several times, discarding the liquid at each 

step. The precipitate was dried in a dessicator in the presence of 

KOH pellets for 90 minutes. The product was then recrystallized from 

toluene/hexane since it is very soluble in toluene and less soluble 

in hexane. After sublimation the product was granular, ivory color, 

and had a distinctive, not unpleasant, odor. The melting point was 

86.5 - 87.5°C, in agreement with published values (Fischer and Schmidt, 

1888; Dekker, Selling and Overeem, 1975). 



PROCEDURE 

u-A2 and ~V-A2 curves were obtained with a fully automated 

Langmuir trough. Surface pressure was monitored by a glass Wilhelmy 

plate coupled to a linear differential transformer (Automatic Timing 

and Control, Inc., King of Prussia, PAl whose output was fed to an 

X-V recorder (Moseley 7035A). The electrical potential between a 

calomel electrode in the aqueous solution and a radioactive polonium 

electrode (Nuclear Products, El Monte, CAl about three millimeters 

above the water was measured by a fast voltmeter (response time ~ 1 

msec) whose output was fed to an x-V recorder (Moseley 70358). The 

voltmeter was designed using an ultra-low bias current (~ 0.1 pAl FET 

operational amplifier (883523) as a buffer to obtain input impedance 

of the order of 1013 n. The Teflon trough (29 cm x 15.2 cm; depth 
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1.2 cm) was bolted to a thick slab of brass to help it retain its 

shape. The monolayer area was determined by the position of two Teflon 

barriers of which one was stationary and the other motor-driven. To 

minimize the problem of electrostatic charge build-up (Costa et !l., 
1976) the barriers were passed close to the radioactive source immedi-

ately after cleaning. 

Cleanliness of the system was maintained in several ways. The 

Teflon trough and barriers were soaked every few days in concentrated 

sulfuric acid:nitric acid 9:1 and then rinsed extensively with 

deionized water. The Wilhelmy plate was etched initially with hydro-

fluoric acid. Between each run the plate was wiped clean with ethanol 

and then rinsed successively in ethanolic KOH, H20, 1% HC1, and then 

more H20. The surface of the aqueous solution was wiped clean between 



each run with lens cleaning tissue; absence of a change in both pres-

sure and potential upon maximum compression was taken as proof of a 

clean surface. 

Since the spreading solvents were highly volatile, precautions 

were taken to ensure an accurate value for the lipid concentration. 

Cholesterol and PC were dried and a mixture of chloroform:hexane 1:1 

added to give a stock solution with cholesterol at a mole fraction 

of Y = 0.22. Each day a portion of the lipid stock was evaporated 
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to dryness under nitrogen in a 1 ml vial, weighed, made up to 1 ml 

with the mixed solvent, and then diluted with the same solvent mixture 

to give a final lipid concentration of 1.00 mg/ml. The bottle with 

the dilute solution was placed in a jar which had a layer of solvent 

mixture in the bottom and had become saturated with the solvent vapor. 

Thus evaporation from the lipid solution was minimized. 

The aqueous solution was prepared fresh each day. Since 3PI 

is surface active, it was necessary to inject 3PI in acetone beneath 

the surface of a KCl solution which was being constantly stirred. 

Since acetone affected the surface potential, the amount of acetone 

in all aqueous solutions, both with and without 3PI, was held constant 

at 0.5%. 

lipid from the dilute solution was dropped by microliter syringe 

onto the aqueous solution. After a period of about 15 minutes to allow 

the solvent to evaporate, the monolayer was compressed at a rate of 

about 6 ~2/molecule/minute. The average of at least four runs for 

each 3PI concentration was used in calculations. All measurements 

were done at room temperature. The system was checked by taking 



n-A2 and ~V-A2 curves for monolayers of a single component (egg PC; 

cholesterol) and it was found that these curves were consistent with 

published results (Shah, 1970; Hilton and O'Brien, 1973; Demel and 
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Joos, 1968; Papahadjapoulos et !l., 1973). Pautauf et!l. (1971) found 

that ~~ for both distearoyl PC and distearyl PC decreased with decreas-

ing area per molecule. We found a similar phenomenon for egg PC; 

a plot of ~~ as a function of area per lipid molecule had a slope 

of 3.5 x 10-3 Debye/A2 per moleculeanda value for~.J.. of 0.68 Debye 

at 60 A2 per molecule, taking the dielectric constant as unity. 

RESULTS 

Representative n-A2 curves of PC/cholesterol monolayers in the 

presence of various concentrations of 3PI are shown in Fig. 2. Accu-

racy of n was 0.2 dyn/cm and reproducibility was usually within 1.5 

A2. The area per molecule was obtained by dividing the area of the 

monolayer by the total number of PC plus cholesterol molecules spread. 

The presence of 3PI caused a shift of the curves toward greater area 

per molecule and a change in the slope of the curves; 

Using the n-A2 curves the number density of adsorbed 3PI mole-

cules at 40 dyn/cm was calculated at each 3PI concentration using 

Eq. (2) and the results shown graphically in Fig. 3. The area Al of 

a 3PI molecule was taken as 42.8 ~2 based on the projected area of 

a Corey-Pauling-Koltun model. Error bars are the standard deviation 

for at least four monolayers. At low [3PI] r increases with [3PI] 

but at higher [3PI], r becomes nearly independent of [3PI]. This is 

characteristic of Langmuir type adsorption and Fig. 4 displays this 
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Figure 2. Surface pressure of phosphatidylcholine/cholesterol mono-
layers as a function of area per lipid molecule. Aqueous solution 
0.11 M KCl plus the indicated concentration of 3-phenylindole: 

• 0 lJM, A 5 lJM, 0 15 lJM, 0 25 lJM, 0 40 lJM, * 70 llM. 
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Figure 3. Adsorbed surface number density of 3-phenylindole on to phosphatidylcholine/cholesterol mono-
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Figure 4. Experimental adsorption isotherm for 3-phenylindole. The solid line is the least-squares fit w 
to Eq. (1). ~ 
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same data as l/r versus l/c to correspond to Langmuir adsorption. The 

best fit of this data to Eq. (1), shown by the solid line in Fig. 4, 

gives SL = 1.35 x 10-4 m and rm = 1.11 x 10-6 moles/m2 = 6.68 x 10-3 

molecules/A2. 

The surface potential of the subsolution in the absence of a lipid 

monolayer was -330 mV and was found to be independent of [3PI]. Fig. 5 

shows representative 6V-A2 curves for PC/cholesterol monolayers in the 

presence of various concentrations of 3PI. The error in 6V was~20 mV 

as determined from reproducibility of the curves. The overall trend is 

a decrease in 6V with increasing [3PI]. This result is further illus-

trated in Fig. 6 which shows o(6V) calculated by Eq. (3) with the condi-
o 

tion of constant ~ (40 dyn/cm) and also constant A2 (66 A2/molecule), 

using data of the type shown in Fig. 5. Both conditions gave quali-

tatively the same result but the magnitude of o(6V) was greater with 

the condition of constant ~. 

Figure 7 displays the relationship between the experimental o(6V) 

(Fig. 6) and r (Fig. 3). Error bars are the standard deviations for at 

least four monolayers. The best fit to Eq. (5) resulted in a slope of 

-35.9 volt/molecule/X2, and this fit is shown by the solid line in Fig. 

7. From this slope we obtain a value [Eq. (5)] for ~i of -1.7 D,where 

the negative sign indicates that the positive end of the 3PI dipole is 

toward the aqueous side of the interface. We chose € to be 3 since 3PI 

had such a strong influence on the ~-A2 curves of PC/cholesterol and van 

Deenan et!I. (1962) have demonstrated with synthetic phospholipids that 

the ~-A2 curve is mainly determined by the fatty acid chain while the 

headgroup has only a minor effect. Hence we infer that 3PI is situated 

with at least some portion of it near the fatty acid chains in a region 
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Figure 5. Surface potential of phosphatidylcholine/cholesterol mono-
layers as a function of area per lipid molecule. Aqueous solution 
0.11 M KCl plus the indicated concentration of 3-phenylindole: 

• 0 J,lM, • 5 J,lM, 0 15 J,lM, 0 25 J,lM, 0 40 J,lM, * 70 J,lM. 
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Figure 7. Change in the surface potential as a function of adsorbed 
surface density of 3-phenylindole. The solid line is the least squares 
fit to Eq. (5). 



of low dielectric constant. The surface potential in the absence of 

3PI, 6V2, was +327 mV, meaning that the negative end of the lipid 

dipole was toward the aqueous side of the interface. 

DISCUSSION 
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The experimental results indicate that 3PI favors partition into 

the lipid phase nearly as strongly as two lipophilic anions used in 

ion transport studies do. Using electrical conductivity measurements, 

Ketterer et~. (1971) determined that for tetraphenylborate 

a = 3 x 10-4 m and for dipicrylamine a = 2 x 10-4 m for adsorption 

onto dioleoyllecithin bilayers while we found that for 3PI, 

aL = 1.35 x 10-4 m for adsorption to PC/cholesterol monolayers. On 

the other hand they report that the maximum adsorbed number density 

for tetraphenylborate is 5 x 10-4 molecules/A2 and for dipicrylamine 

4 x 10-4 molecules/A2 which are both an order of magnitude lower than 

the value we obtained for 3PI (rm = 6.68 x 10-3 molecules/~2). It 

is likely that electrostatic interactions are inhibiting adsorption 

of the two former compounds which exist as ions at the pH used by 

Ketterer et~. 3PI is in neutral form at the pH used in our studies. 

The magnitude of the adsorption is perhaps easier to visualize 

if the results are stated another way. Assuming the area occupied 

by a lipid molecule at n = 40 dyn/cm to be 54 A2 as determined from 

the n-A2 curve for PC/cholesterol alone, we estimate that at the maxi-

mum adsorption density of 6.68 x 10-3 molecule/A2 (or conversely~ 

150 A2 per molecule), there is one 3PI molecule for every 2.8 lipid 

molecules. 
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The monolayer method used in this study to determine r is only 

suitable for molecules which adsorb in such a location that the ~-A2 

curve is affected. Even for a molecule like 3PI the method has several 

inherent uncertainties. There are "cavities" between the egg PC mo1e-

cu1es in a monolayer (Shah and Schulman, 1967) and if 3PI has the right 

configuration to fit into the "cavities" not occupied by cholesterol, 

then AA2 would not be a true reflection of the number of adsorbed 3PI 

molecules and our calculated r would be an underestimate. Also, the 

areas were taken from the intercept with ~ = 40 dyn/cm, a value which 

is somewhat arbitrary since there is still debate as to which thermo-

dynamic variable should be used to determine which ~ of a monolayer 

best mimics the condition in a (biological) bilayer (Albrecht et !l., 
1978; Nagle and Scott, 1978). At ~ = 40 dyn/cm the monolayer is near 

collapse; the lipid molecules are close together with hydrocarbon 

chains predominantly normal to the interface. At lower ~ the 3PI 

molecules may have a better chance to find an adsorption site so that 

r would be greater. Our finding that 3PI made the slope of the ~-A2 

curve more negative, especially at larger A2, may indicate that this 

is indeed occurring. Finally, since 3PI does not form a compressible 

monolayer, it cannot be determined by conventional techniques (Shah 

and Schulman, 1967; Roe1s and Shah, 1969) whether 3PI has a condensing 

or expanding influence on the monolayer. This uncertainty in r could 

be eliminated if 3PI could be labeled with a radioactive isotope such 

as 14C or 3H and the radioactivity from only the monolayer monitored 

(Muramatsu, 1973, p. 137). Then r could be measured directly and 

without ambiguity in a manner similar to that used for protein 



adsorption at the air/water interface (Graham and Phillips, 1979a and 

1979b). 
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We have no evidence regarding the position of the acetone mole-

cules which are given off as 3PI sheds its solvation shell. If they 

stay in non-random orientation near the surface, they would make a 

contribution to the surface potential. However if these excess acetone 

molecules redissolve into the bulk aqueous solution, the effect would 

be constant for all 3PI concentrations, as we have assumed. 

Our value for the magnitude of the normal component of the 3PI 

dipole moment was 1.7 ~which is slightly less than the value of 2.1 D 

listed by McClellan (1974) for the total dipole moment of the parent 

compound indole. However, neither the orientation of the molecule 

at the interface nor the orientation of the dipole moment in the mole-

cule is known with certainty. Since the value for ~~ depends on the 

values of r, all the considerations listed above for r apply to ~~ 

as well. 



CHAPTER III 

ENHANCEMENT OF TETRAPHENYLARSONIUM 
TRANSPORT BY 3-PHENYLINDOLE 

MECHANISM OF LIPOPHILIC ION TRANSPORT 

The conductivity of lipid bilayer membranes increases many orders 

of magnitude if certain organic ions, also known as lipophilic ions, 

are added to the aqueous solution. Liberman and Topaly (1969) and 

LeBlanc (1969) investigated the increase in steady state conductivity 

due to several organic ions while Ke,tterer, Neumcke, and Uiuger (1971) 

were able to deduce the transport mechanism by studying transient 

conductivity due to low concentrations (~ 10-7 M) of the organic ion. 

The experimental results of Ketterer et!l. (1971) were consistent 

with a transport scheme in which the lipophilic ions adsorb to the 

membrane, cross the membrane upon application of a voltage, and desorb 

from the opposite interface. This is shown schematically in Fig. 8. 

Before the voltage is applied the lipophilic ion concentration in the 

aqueous solution c is in equilibrium with the initial ion density in 

the membrane N(O) and the two quantities are related by the partition 

coefficient e: NI(O) = NI 1(0) = ac where a prime indicates the left 

side of the membrane and a double prime the right side. The rate con-

stants for translocation from left to right and vice versa are denoted 

by kl and kll, respectively, while the rate constant for desorption 

is kma • A small value for a rate constant is equivalent to a large 
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Figure 8. Kinetic model of lipophilic ion transport. 
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potential energy barrier that must be overcome at that step of the 

transport. In deriving expressions for current and conductivity they 

made the usual Eyring assumption that the translocation rate constants 

depend on applied potential, V, according to 

k' = kiexp(zu/2) 

k' I = kiexp(-zu/2) 
(1) 

where u is the reduced voltage u = FV/RT with the left side of the 

membrane at higher potential, F is the Faraday, R is the gas constant, 

T is the absolute temperature, z is the valency of the lipophilic ion, 

and ki is the zero voltage value of both k' and k". The rate of 

change of N' and N' I is given by 

dN ' ok k N I - kiN I + k I I N I I dt = ~ mac - rna (2) 

dN " 13k c - k N I I - k I I N I I + kiN I ~ = rna rna (3 ) 

After an initial (~10 psec) displacement current due to the charging 

of the lipid itself, the electrical current density, J, is 

J = zF(k'N ' - k' 'N' I). The solution of Eqs. (2) and (3) together with 

the voltage dependence for k' and k' I as expressed in Eq. (1) gives 

the steady state current density as 

J = 2zFacki [s inh(zu/2)][2kicosh(zu/2 )kma + IT1 (4) 

The ratio of current density to applied voltage in the limit of low 

voltages is called the ohmic or zero voltage conductivity G(O), i.e., 

G(O) = (J/V}V~' and it can be shown (Ketterer et !l., 1971) that the 

steady state zero voltage conductivity is 

(5) 



Additional information can be obtained from the manner in which 

the conductivity depends on the applied voltage. According to Pickar 

and Benz (1978) the normalized conductivity with z = +1 is 
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~ sinh(u/2) (6) 
~ = ~ (1 + A) exp(-wu

2
) 1 + Aexp(-wu2)cosh(u/2) 

with the kinetic limitation parameter A defined as 

(7) 

The function exp(-wu2) is a small correction factor which arises when 

the flux is derived from the generalized Nernst-Planck equation using 

an image-force potential energy barrier as an approximation for the 

actual potential energy barrier across the membrane (Andersen and 

Fuchs, 1975; Appendix III). For a simple Eyring approximation 

[Eq. (1)] the shape of the barrier is neglected and w = O. The 

relationship between the shape of the energy barrier and a modified 

voltage dependence of k' and k" is discussed by Benz et!l. (1976; 

Appendix A). 

In a comparative study of oppositely charged lipophilic ions, 

Pickar and Benz (1978) found that for the positively charged ion tetra-

phenylarsonium, (TPhA+), whose chemical formula is shown in Fig. 9, 

the normalized conductivity fit the case of A ~ 0 indicating that 

kma »ki • This means that ions can be supplied to and from the mem-

brane as fast as they are translocated across the central energy 

barrier. For TPhA+ then, the steady state zero voltage conductivity 

given by Eq. (5) reduces to 

(8) 
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Figure 9. Chemical formula of tetraphenylarsonium. 



Following the argument of Haydon and Hladky (1972, p. 257), the 

zero voltage conductivity depends on the mobility of the ion u in the 

membrane and the concentration cm of the ion in the membrane: 

G(O) a:ucm. The concentration of ions in the membrane is related to 
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the concentration of lipophilic ions in the aqueous phase by a 

Boltzmann factor. [The thermal energy distribution of the ions deter-

mines the amount of partition into the membrane and thermal energy 

is a function of velocity of the ions. For a derivation of the Boltz-

mann factor for velocity distribution see, for example, Anderson 

(1971).] If 3PI decreases the dipole potential at the lipid/aqueous 

interface by 6~ but leaves u unchanged, then the conductivity in the 

presence of 3PI, G(O), is expected to be related to the conductivity 

in the absence of 3PI, G*(O), by a Boltzmann factor containing the 

change in dipole potential: 

G(O) = G*(0)exp(-zF6~/RT) 

MATERIALS AND METHODS 

(9) 

Bilayer lipid membranes were formed at room temperature by the 

brush technique of Mueller et~. (1963) across the aperture (1.7 mm 

diameter) in a Teflon cup set in an acrylic container; the membrane 

was bathed by symmetrical aqueous solutions. Silver/silver chloride 

electrodes (surface area ~ 1.1 cm2) were made from silver foil and 

wire (Montana Assay, Portland, OR) and chloridized in 0.1 N HC1. When 

TPhA+ was present in the aqueous solution, the membrane usually became 

black within four minutes but since the current sometimes increased 

with time, measurements were taken after a period of about 40 minutes 



to allow for equilibration. The circuit used for steady-state DC 

measurements is shown in Fig. 10. A steady voltage was applied to 

the membrane and the current measured with a picoammeter (Keithley 

480). Current I was measured at voltages V ranging from 25 to 200 

mV or until the membrane broke. The conductivity G[G = I/(V·A) where 

A is the geometrical area of the aperture] extrapolated by parabolic 

curve fit to zero voltage, G(O), is the value used in comparisons to 

determine the effect of the pesticide. 

The membrane forming solution contained a mixture of phospha-

tidylcholine and cholesterol in decane. Cholesterol mole fraction 
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was Y = .22 and the total lipid content was 12 mg/ml. Egg phospha-

tidylcholine (PC) from Sigma Chemical Co., St. Louis, MQ, showed a 

single spot by thin layer chromatography and was used without further 

purification. Recrystallized, lyophilized cholesterol was a gift from 

Dr. D. McClure of the Chemistry Department while n-decane (Aldrich 

Gold Label 99+%) was obtained from Aldrich Chemical Co., Milwaukee, 

WI. 3-phenylindole (3PI) was synthesized by the method of Fischer 

and Schmidt (1888) as described in Chapter II. In these experiments 

the aqueous solution consisted of 0.1 M KCl and a buffer (B-3) of 

potassium phosphate:potassium citrate:boric acid 0.002M:0.002M:O.0005M. 

The desired amount of 3PI was added from a stock solution in acetone 

by injecting it below the surface of the solution during continuous 

stirring. The pH was adjusted to 6.9 with HC1. For the studies on 

tetraphenylarsonium transport, tetraphenylarsonium chloride hydrate 

from Aldrich was used to make an aqueous stock solution which also 

contained the KCl and the buffer. The final concentration of TPhA+ 
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Figure 10. Schematic diagram of experimental set-up for measuring 
DC conductivity. 
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was 5 x 10-3 M. Reagent grade inorganic chemicals and distilled, 

deionized water from a Millipore Q2 system, Millipore Corp., Bedford, 

MA, were used for all solutions. 

When prepared in the manner just described, solutions contain-

ing more than 45 ~M 3PI together with 5 x 10-3 M TPhA+, 0.1 M KCl 

and B- 3 were noticeably opaque; the opacity was reversed by addition 

of excess water but not by addition of more acetone. The experi-

mental concentration was restricted to [3PI] s 45 ~M in which range 

a true solution appeared to exist. In an effort to determine the 

cause of the precipitation phenomenon, some further investigations 

were performed and it was determined that three components had to 

be present to cause the opacity. Thus, solutions containing 

5 x 10-3 M TPhA+ and 80 ~M 3PI were clear; solutions containing 

5 x 10-3 M TPhA+ and up to 1 M KCl were clear. A solution of 

80 ~M 3PI was salted out by 1 M KC1, appearing as particulates in 

the bulk and as a pronounced layer of flecks on the surface, but 

this appearance was quite different from the uniform opacity men-

tioned above. 

Cleanliness of the Teflon cup was ensured by routinely boiling 

it in ethanolic NaOH on the day of the experiment. To enhance 

stability of the membranes, the aperture of the cup was painted with 

the lipid solution and dried thoroughly under N2 prior to the experi-

ment. 
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RESULTS AND DISCUSSION 

The electrical conductivity of a PC/cholesterol membrane at a 

cholesterol mole fraction of 0.22 was small, approximately 3 x 10-8 

S/cm2• No change in this conductivity was detected when membranes 

were formed in the presence of up to 70 ~M 3PI in the aqueous solution 

or when the membrane forming solution contained 3PI:lipid at mole 

ratios up to 0.6. Our finding that 3PI does not affect lipid bilayer 

conductivity suggests that 3PI does not directly liberate free fatty 

acids or disrupt the normal bilayer structure. From this result we 

conclude that 3PI acts as neither a carrier nor a pore in these condi-

tions. Electron microscopic studies would help to determine whether 

3PI causes a noticeable disruption of the structure of liposomes 

(Barratt and Weaver, 1979). A further test of disruption would be 

the measurement of single channel currents. 

The effect of 3PI on transport of the lipophilic cation TPhA+ 

is illustrated by the data in Fig. 11. This figure shows the zero 

voltage conductivity of PC/cholesterol bilayers as a function of 3PI 

concentration when 5 x 10-3 M TPhA+ was in the aqueous solution; the 

error bars are the standard deviation for at least four members. The 

conductivity increased with increasing [3PI]: at 45 ~M 3PI the conduc-

tivity was about 900 times the value it was in the absence of 3PI. 

The experimental G(O) were used in Eq. (8) to calculate values of the 

product Ski which are displayed in Table I. Also in this table are 

the values of parameter A as determined by the best fit of the experi-

mental G(V)/G(O) versus voltage to Eq. (6). A value of w = 0 gave a 

better fit than a non-zero wand was used at all 3PI concentrations. 
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Figure 11. Tetraphenylarsonium zero voltage conductivity as a function 
of 3-phenylindole concentration. 



TABLE I 

KINETIC PARAMETERS OF TETRAPHENYLARSONIUM 
TRANSPORT IN THE PRESENCE OF 3PI 

3PI concentration 
(10-5 M) 

0.0 
0.5 
1.0 
1.5 

2.0 
3.0 
4.0 
4.5 

Sk. 
1 

(10-7 cm/s) 

0.023 
0.050 
0.22 
0.35 

0.47 
0.55 
1.8 
2.1 
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A 

-.004 ± .012 
-.005 ± .011 
-.005 ± .007 
+.004 ± .010 

-.006 ± .007 
+.015 ± .012 
-.003 ± .0lD 
+.012 ± .013 

The value of 0.023 x 10-7 cm/s for Ski in the absence of 3PI 

is consistent with the value given by Pickar and Benz (1978) for 

dioleoyllecithin-decane membranes (0.063 x 10-7 cm/s) since cholesterol 

would decrease the conductivity due to positively charged TPhA+ 

(Szabo, 1974) and hence decrease the product Ski. As Pickar and Benz 

point out, it is not possible to get the individual values of sand 

ki for TPhA+ and consequently it is not possible to say conclusively 

whether the increased conductivity in the presence of 3PI is due to 

increased adsorption of TPhA+ or to faster translocation across the 

membrane. 

We found that the kinetic limitation parameter A defined in 

Eq. (7) was essentially zero within experimental error at all 3PI 

concentrations. From this we conclude that 3PI does not measurably 

change the ratio of the rate constants and that the translocation step 

still occurs much more slowly than the adsorption and desorption steps. 
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Fig. 12 shows the potential change calculated according to Eq. 

(9) using the data of Fig. 11, and also for comparison the monolayer 

potential changes at ~ = 40 dyn/cm shown previously in Fig. 6. The 

potentials calculated by the two methods qualitatively agree but o(~V) 

is typically more negative by 40 - 50 mY. This is consistent with 

both experimental and theoretical observations of other investigators. 

In a tabulation of the experimental results of himself and others, 

Hladky (1979) found that monolayer surface potentials are consistently 

of larger magnitude than potentials calculated by Eq. (9). Andersen 

et al. (1978) present theoretical arguments relating the macroscopic 

surface potential normally measured in monolayer experiments and the 

micropotential ~ which would be sensed by an individual ion, e.g. 

TPhA+. The macropotential is due to the average of a smeared layer 

of charge whereas the micropotential takes into account the fact that 

the layer is actually composed of discrete charges. Using a model 

based on a lattice of discrete adsorbed charges, they conclude that 

~ will, in general, be lower in magnitude than the macropotential. 

Similar arguments probably hold true for potentials due to discrete 

dipoles. As a final point, note that the monolayer o(~V) with a 

condition of constant area per lipid molecule (see Fig. 6) is in much 

better agreement with the TPhA+ results by Eq. (9), but the agreement 

is probably fortuitous since there is no reason why the area per lipid 

molecule should remain constant in a bilayer as 3PI is added whereas 

there is reason to believe the surface tension may be constant under 

constraint of the Plateau border. 
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Figure 12. Potential change as a function of 3-phenylindole concen-
tration. .. bilayer conductivity with tetraphenylarsonium according 
to Eq. (8), [] monolayer o(6V) at w = 40 dyn/cm. 
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There are other factors besides the electrostatic change in 

dipole potential which may contribute to the change in TPhA+ conduc-

tivity in the presence of 3PI, such as an increased viscosity or a 

decrease in thickness of the bilayer. These are discussed in more 

detail in Chapter IV in connection with lipophilic anion transport. 

Another point to consider is that if 3PI is influencing the solvation 

of TPhA+ as we might infer from the precipitation phenomena described 

in the Materials and Methods section of this chapter, then perhaps 

S is being greatly increased by the presence of 3PI and KC1. This 

would be a chemically selective phenomenon as distinct from an 

increase in S for any positive ion due to an electrostatic lowering 
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of the potential energy barrier at the interface. In a comparative 

study of the interaction of tetraphenylarsonium and tetraphenylborate 

with various solvents, Coetzee and Sharpe (1971) state that TPhA+ may 

undergo specific interaction with water and that the orientation of 

solvent molecules by TPhA+ is different from that by tetraphenylborate. 



CHAPTER IV 

EFFECT OF 3-PHENYLINDOLE ON LIPOPHILIC ANION TRANSPORT 

MECHANISM OF TRANSIENT LIPOPHILIC ION TRANSPORT 

The partition coefficient B for lipophilic anions from water 

to lipid bilayers is on the order of 104 times the partition coeffi-

cient for lipophilic cations (Liberman and Topaly, 1969), presumably 

because the dipole moment of phospholipid is oriented with the positive 

end toward the interior of the bilayer (Hladky, 1972). The origin 

of this dipole moment was discussed in Chapter I. The chemical 

formulas of the lipophilic anions tetraphenylborate (TPhS-) and 

dipicrylamine (DPA-) are given in Fig. 13. In the absence of an 

applied potential these ions are located in deep potential energy 

minima close to the aqueous/membrane interface on each side of the 

membrane (Ketterer et !l., 1971). When a voltage is applied across 

the membrane a current results which is due to some of the ions 

traversing the membrane from one potential energy minimum to the other. 

In contrast to TPhA+, the lipophilic anions have rate constants (refer 

to Fig. 8) such that ~a « ki where ki is the zero voltage value of 

both k' and k' I, so that on a short time scale the total number of 

ions in the membrane is conserved: N' + Nil = 2Nads where Nads is 

the number of lipophilic ions adsorbed per unit area to one boundary 

region of the membrane. The fact that B is large for anions means 

that the current is initially large but the fact that ~a « ki means 
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Figure 13. Chemical formulas of tetraphenylborate (upper) and dipi-
crylamine (lower). 
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that the current quickly drops to near zero. The steady state current 

due to TPhA+ as discussed in Chapter III is due to transport across 

the membrane while for the lipophilic anions only the transient current 

is related to membrane processes. [The steady state current for lipo-

philic anions is of the order of magnitude predicted by a diffusion 

limitation in the aqueous phase (Ketterer et !l., 1971) but Andersen 

and Fuchs (1975) found inconsistencies in this explanation.] 

Referring again to Fig. 8, the rate of change of N' and N'l when 

~a « ki is given by 

dN' = -kiN' + kilN" dt 

~ = kiN' - kilN"~ dt 

The translocation rate constants depend on applied voltage according 

to the usual Eyring assumption 

k' = kiexp(u/2) 

k" = ki exp(-u/2) 

where u is the reduced voltage defined in Chapter III. The solution 

of Eqs. (1), (2), and (3) together with the initial condition that 

N'(O) = N"(O) = Nads yields the number densities as a function of 

time: 

N' , (t) 

When voltage is still being applied but current is no longer flowing 

across the membrane, the ions have been redistributed and the number 

of ions which have crossed the membrane is 

(1) 

(2) 

(3) 

(4) 



~N = [N"(~) - N'(~)]/2 = Nadstanh(u/2). Andersen and Fuchs (1975) 

found that their data for tetraphenylborate was fit better by 
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~N = Nadstanh(bu/2) (5) 

where b is presumed to represent the fraction of applied voltage 

effective in moving ions through the membrane. Equation (5) corre-

sponds to the situation that as the applied voltage increases the 

number of lipophilic ions with sufficient energy to cross the barrier 

will increase and at large voltages the number of ions crossing will 

approach the number of ions adsorbed to one interface, Nads • The 

number of adsorbed ions is related to the concentration of ions in 

the bulk aqueous phase, c, through the partition coefficient e by 

Nads = ec. 
The electrical current density J = zF(k'N' - k' 'N' I); substitu-

ting from Eqs. (3) and (4), the current density becomes 

J(t) = 2zFNadski sinh(u/2) exp(-t/T) (6) 

where 

T = [2kicOSh(U/2)]-1 (7) 

We see from Eq. (6) that in the absence of any modifiers lipo-

philic anion transport results in a transient current which decays 

exponentially with time, I(t) = Ioexp(-t/T), where 10 is the current 

at time zero. 10 is not directly measurable because in the first few 

~sec after the application of a voltage pulse the lipid itself gives 

rise to a displacement current (capacitive spike). Hence experiment-

ally 10 is found by extrapolation from the remainder of the exponential 

decay. 
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The conductivity G is defined as G = I/(V.A) where A is the area 

of the aperture so the initial conductivity at a given applied voltage 

is Go = Io/(V.A). The experimental results will be given in terms 

of the ohmic limit of the time constant T(O) = [T(V)]V+O and of the 

initial conductivity Go(O) = [Go(V)]V+O. Equations (6) and (7) can 

be used to show that the zero voltage values are related to the parti-

tion coefficient and the rate constant for translocation by 

(8) 

and 

(9) 

where the substitution Nads = ac has been made. 

POTENTIAL ENERGY BARRIERS FOR LIPOPHILIC IONS 

Transport of lipophilic ions can be described as a passage of 

the ion across activation energy barriers. Following Eyring rate theory 

as presented by Ketterer et~. (1971), the rate constant of a trans-

port process is equal to a frequency factor f times the exponential 

of the free energy ~F of activation. Thus when there is no applied 

voltage 

ki = fiexp(-~Fi/RT) 

~a = f exp(-~F/RT) 

a~a = falaexp(-~Fa/RT) 

(10) 

(11) 

(12) 

where la is the jump length for a jump from the aqueous solution into 

the potential energy minimum near the interface. The frequency factors 

f and fa are both of the order of RT/hNA ~ 6 x 1012 sec- 1 where h is 
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Planck's constant and NA is Avogadro's number (Ketterer et !l., 1971). 

The barrier encountered by a lipophilic ion in crossing from the aqueous 

phase through the membrane to the aqueous phase on the opposite side is 

shown schematically in Fig. 14. The origin of this intrinsic barrier 

was discussed in the second section of Chapter I. The presence of an 

externally applied potential will distort the shape of the potential 

energy barrier. 

Now it remains to show how the activation barriers are related to 

the experimentally observable quantities T(O), Go(O) and Qads = eNads 
where e is the electronic charge. The partitioning of the ion is deter-

mined by the rate of adsorption minus the rate of desorption so if we 

let ~Fp = (~F - ~Fa) then combining Eqs. (11) and (12) we get Qads = 
(ecla)exp(~Fp/RT). The time constant is related to ~Fi through Eqs. (9) 

and (10), T(O) = (1/2fi)exp(~Fi/RT). The zero voltage conductivity de-

pends on both sand ki as seen in Eq. (8). To simplify notation (refer 

to Fig. 14) let ~Fg = ~Fi - ~Fp' then 

Go(O) = [z2F2cfi1a/RT][exp(-~Fg/RT)] (13) 

SEPARATION OF ELECTROSTATIC AND NON-ELECTROSTATIC 
EFFECTS ON ION TRANSPORT 

If all free energies are expressed in units of RT, then the zero 

voltage conductivity is proportional to the exponential of (-~Fi) and 

to the exponential of (~Fp)' and the height of either one or both of 

these energy barriers could be changed by the presence of an additional 

dipole located near the membrane/aqueous interface. A special case 

is that of the adsorption plane of the lipophilic ions being located 

outside (on the aqueous side) of the dipole layer. Then ~Fi 
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Figure 14. Activation energies involved in ion transport through the 
membrane. Adapted from Ketterer, Neumcke, and Lauger (1971). 
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(translocation) will be affected but ~Fp (partition) will be unaffected 

(Benz and Cros, 1978). However in general we can say that an addi-

tional dipole at the interface will influence ~Fg and the zero voltage 

conductivity will vary as the exponential of the change in (-~Fg)' 

Let ~Vd be the change in the electric potential of the middle of the 

bilayer with respect to the aqueous phase due to the presence of 3PI. 

Then with the condition that 3PI affects only the electric potential 

but leaves all other parameters in Eq. (13) unchanged, the relative 

conductivity G will be 

(14) 

where Go(O) is the zero voltage conductivity in the presence of 3PI 

and G~(O) in its absence. R, T, and F have their usual thermodynamic 

meanings while z is the valency of the lipophilic ion. By comparing 

the conductivities of oppositely charged lipophilic ions (Szabo, 1976; 

Pickar and Benz, 1978) we can determine the magnitude of the dipole 

potential change caused by the presence of 3PI since 

(15) 

where a superscript + denotes the positively charged lipophilic ion 

(z = +1) and a superscript - denotes the negatively charged lipophilic 

ion (z = -1). 

Non-electrostatic influences on zero voltage conductivity are 

implicit in Eq. (13) but the dependence of the current on non-electro-

static factors is perhaps better seen when Nernst-Planck electro-

diffusion formalism is used to describe the ion transport. The current 
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density is given by 

J = -iii(x) [RT ::m + ZCm(X.t)F~~ - Cm(X.t)~~ ] (16) 

where x is the coordinate normal to the plane of the bilayer, u(x) 

is the mobility of lipophilic ions in the membrane phase, cm(x,t) is 

the concentration of lipophilic ions in the membrane phase, V is the 

externally applied potential, and W(x) is the inherent potential 

energy barrier within the membrane shown graphically in Fig. 14 

(Goldman, 1943; Andersen and Fuchs, 1975). In order to solve this 

equation it is necessary to make certain assumptions regarding how 

U, cm' V, and W depend on distance x. If, as a first approximation, 

it is assumed that u is independent of x, then the current density 

and the conductivity vary linearly with mobility. When Eq. (16) is 

integrated with respect to x, the thickness of the membrane appears 

in the limits of integration. If, as we assumed before, 3PI changes 

the electric potential in the middle of the bilayer by an amount ~Vd 

and, in addition, has some non-electrostatic effect, then the relative 

zero voltage conductivity G will be 

_ Go{O) _ 
G = G*{O) = f(u) exp{-zF~Vd/RT) (17) 

a 
where Go{O) and G~(O) have the same meaning as in Eq. {14}. The func-

tion f(u) describes the change in ion mobility when 3PI is present 

as well as effects of thickness changes which modify the shape of the 

potential energy barrier. It is possible to determine the non-electro-

static contribution to Go{O) by a comparison of the conduct·jvities of 
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oppositely charged lipophilic ions (Szabo, 1976; Pickar and Benz, 1978) 

since by Eq. (17) 

L-- -Ji f(u) = G+. G-

where the + and - superscripts have the same significance as in 

Eq. (15). 

Szabo (1976) showed that the enhancement of lipophilic anion 

conductivity and the suppression of lipophilic cation conductivity 

(18) 

by increasing proportions of cholesterol in monoolein bilayers could 

be attributed almost entirely to a change in dipole potential. 

Andersen et~. (1976) found that phloretin, an inhibitor of hexose 

and chloride transport in red blood cells, dramatically increases 

cation conductance and decreases anion conductance of membranes treated 

with ion carriers or with lipophilic ions and concluded that these 

changes are due primarily to a change in dipole potential, with a smal-

ler contribution from fluidity changes. The modification of ion 

transport by the widely used herbicide 2,4-dichlorophenoxyacetic acid 

(2,4-0) was studied by Smejtek and Paulis-Illangasekare (1979a, 1979b), 

who propose that 2,4-0 also acts by a dipole mechanism and, further-

more, that the changes affect mostly the translocation step of ion 

transport for the carrier nonactin and for the lipophilic ions TPhA+ 

and TPhB-. 

MATERIALS AND METHODS 

Bilayer lipid membranes were formed by the same technique and 

using the same sources as described in Chapter III. The total lipid 

concentration was usually 12 mg/ml but a more dilute solution was 
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necessary in the absence of 3PI so that the membrane would thin within 

a reasonable time. Sodium tetraphenylborate, reagent grade from 

Mallinckrodt, St. Louis, MO, was stored as an ethanol solution while 

2,21,4,4 1 ,6,6 1-hexanitrodiphenylamine (more commonly called dipicryl-

amine and referred to hereafter as DPA-) from Aldrich was prepared 

as a stock solution in 10-2 M NaOH. The aqueous solution, prepared 

on the day of the experiment, contained 0.1 M NaCl, a buffer (B-3) 

of sodium phosphate:sodium citrate:boric acid 0.002M:0.002M:0.0005M, 

plus either 10-7 M TPhB- or 10-8 M DPA-. The lipophilic ion concen-

trations chosen were low enough that saturation effects (Ketterer et 

al., 1971; Wang and Bruner, 1978) were avoided. The desired amount 

of 3PI was added from a stock solution in acetone by injecting it below 

the surface of the solution during continuous stirring. The pH was 

adjusted to 6.9 with HC1. 

The electrical measurements were perfonned using a two-electrode 

voltage clamp. Measurements were usually taken 15 minutes after the 

membrane turned black or, for membranes which thinned very slowly, 

as soon as it was completely black. As shown schematically in Fig. 15, 

a voltage pulse was applied across the membrane by a fast-settling 

D/A converter (DAC80, Burr-Brown, Tucson, AZ) with the voltage output 

taken across a resistive load. Most of the experiments were done with 

a cholesterol mole fraction of 0.22 for which the membrane had a 

specific capacitance of 0.39 ~F/cm2 (Hanai, Haydon and Taylor, 1965). 

Membrane current was converted to a voltage by a differential amplifier 

(LH0062, National Semiconductor, Santa Clara, CA) in a virtual ground 

configuration. A transient recorder (Biomation Model 802, Palo Alto, 
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CAl transformed the analog voltages to digital form and stored the 

information in its 1000 word memory in which each word consisted of 

8 bits. A muliplexer permitted automatic reading of the settings of 

the transient recorder and transfer of the digital data by burst mode 

from the transient recorder through the DRV11-B direct memory access 

interface to the PDP 11/03. The voltage pulse amplitude, pulse 

duration and number of pulses were controlled by PDP 11/03 software 

(Laboratory Support Library or LSILIB) using the DRV11 interface. 

The average of a number of pulses was displayed graphically on 

the computer terminal as current versus time and natural logarithm 

of current versus time and then curve fit to an exponential decay. 

In this way the time constant T and the current extrapolated to zero 

time 10 were obtained and the transferred charge density ~Q 
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[e~N = ~Q = (Io·T)/A where A is the geometrical area of the aperture] 

was computed. The experimental results were printed out on a teletype 

and also stored on a floppy disk, allowing for further analysis. For 

comparisons with the results of experiments with other ions, the zero 

voltage conductivity Go(O) was determined from a parabolic curve fit 

of the low voltage (s 125 mY) initial conductivities Go[Go = Io/(V.A)]. 

The zero voltage time constant T(O) was also determined from a para-

bolic curve fit extrapolati~g T from low voltages (s 125 mY) to zero 

voltage. Our values of Go(O) and T in the absence of 3PI were consis-

tent with those found by Andersen and Fuchs (1975) for TPhB- and by 

Ketterer et!l. (1971) for both TPhB- and DPA-, after taking into 

account the different lipids used. 



RESULTS 

The dependence of the zero voltage conductivity on 3PI concen-

tration is shown in Fig. 16 for both TPhS- and DPA-; error bars are 

the standard deviation for 4 - 7 membranes. The most notable feature 

of these data is the small magnitude of the change in Go{O) for both 

TPhS- and DPA- in the presence of 3PI. Go{O) for DPA- was 5.2 x 10-4 

S/cm2 in the absence of 3PI and decreased with increasing [3PI], 

attaining a value of 0.71 x 10-4 S/cm2 at 6.0 x 10-5 M 3PI. When the 

lipophilic ion was TPhS-, Go{O) was 4.6 x 10-5 S/cm2 in the absence 

of 3PI and decreased with increasing [3PI], having a value of 
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3.B x 10-5 S/cm2 at B.O x 10-5 M 3PI. Hence Go{O) decreased less than 

an order of magnitude for both lipophilic anions in the presence of 

3PI. 

In Fig. 17 the zero voltage time constant is plotted as a func-

tion of 3PI concentration for the two lipophilic anions TPhS- and 

DPA-; error bars are the standard deviations for 4 - 7 membranes. Note 

that again the magnitude of the change due to 3PI is small. T{O) for 

DPA- transport was 3.7 x 10-4 sec in the absence of 3PI and increased 

with increasing [3PI], reaching a value of 13 x 10-4 sec at 6.0 x 10-5 

M 3PI. The time constant for [3PI] > 2 x 10-5 M was nearly independent 

of the aqueous 3PI concentration. T{O) for TPhS- transport decreased 

slightly with increasing [3PI], a trend oPPosite to that exhibited 

by T{O) for DPA-. In the absence of 3PI, T{O) for TPhS- was 3.4 x 10-2 

sec while at the maximum concentration of B.O x 10-5 M 3PI, T{O) was 

2.05 x 10-2 sec. According to the model of lipophilic ion transport 

outlined earlier, this implies by Eq. (B) that for DPA- transport ki 



-C\J , E 
0 , 
en e - ee 
-0 ~ f -0 
<.!) 

o 2 4 6 8 10 

[3PI] (10-5 M) 

Figure 16. Lipophilic anion zero voltage initial conductivity as a 
function of 3-phenylindole concentration: ... DPA-, ~ TPhS-. 
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Figure 17. Zero voltage time constant for lipophilic anion transport 
as a function of 3-phenylindole concentration: ~ DPA-, ~ TPhB-. 



ranged from 1.3 x 103 sec-1 with no 3PI to 0.38 x 103 sec-1 at 

6.0 x 10-5 M 3PI, and for TPhS- transport ki ranged between 15 sec-1 

in the absence of 3PI and 24 sec-1 when 8.0 x 10-5 M 3PI was present. 
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The transferred charge density as a function of applied voltage 

was fit to Eq. (5) for several membranes formed in the absence of 3PI, 

and it was found that the correlation was best when b = 0.72 for DPA-

and when b = 0.83 for TPhB- so these values of b were used in all curve 

fits. For TPhB- the correlation was very good (typically correlation 

coefficient> .96) even up to 250 mV but for DPA- the correlation was 

greatly decreased if all voltages were included in the fit. This 

occurred in spite of the fact that the steady state current for DPA-

was measured at each voltage and subtracted from the total current 

so that 10 was only due to transient current relaxation. The low 

correlation at high voltages is probably due to the existence of some 

charge transfer mechanism other than lipophilic anion transport across 

the membrane interior (Ketterer et al., 1971). Bruner (1975) investi-

gated DPA- transport across exceptionally stable synthetic lipid 

bilayers using large applied voltages, 200 - 400 mV, and found the 

current decay at higher voltages to be distinctly nonexponential. In 

determining Qads for DPA- we have used ~Q only for voltages less than 

or equal to 175 mV, in which region the fit to Eq. (5) was nearly as 

good as for TPhB-. 

Using the values of b listed above, Qads for TPhB- and DPA- was 

determined from Eq. (5) at each 3PI concentration. The results are 

displayed in Fig. 18; error bars are the standard deviation of 4 - 7 

membranes and the equivalent lipophilic anion density Nads in moles/m2 
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is given on the right-hand ordinate. It can be seen from this figure 

that the adsorbed surface charge density, which is composed only of 

the lipophilic anion density, did not change very much as the aqueous 

3PI concentration increased. For DPA-, Qads was 14.5 x 10-9 coul/cm2 

(Nads = 1.5 x 10-9 moles/m2) in the absence of 3PI and decreased with 

increasing [3PI], having a value of 5.5 x 10-9 coul/cm2 (Nads = 
5.7 x 10-10 moles/m2) at 6.0 x 10-5 M 3PI. For TPhB-, Qads was 

10.5 x 10-B coul/cm2 (Nads = 1.1 x 10-B mole/m2) in the absence of 

3PI and decreased slightly with increasing [3PI], having a value of 

Qads = 5.0 x 10-B coul/cm2 (Nads = 5.2 x 10-9 mole/m2) at the highest 

concentration of B.O x 10-5 M 3PI. The partition coefficients 

BO 

8 (8 = Nads/c) derived from these measurements are listed in Table II. 

TABLE II 

PARTITION COEFFICIENT FOR LIPOPHILIC ANIONS 
IN THE PRESENCE OF 3-PHENYLINDOLE 

Anion 

Dipicrylamine 

Tetraphenylborate 

[3PI] 
(10-5 M) 

0 
1.0 
2.0 
3.0 
4.0 
6.0 

0 
1.0 
4.0 
B.O 

1.53 ± .11 
0.97 ± .21 
0.95 ± .07 
0.B4 ± .09 
0.B5 ± .01 
0.57 ± .06 

1.07 ± .22 
1.46 ± .37 
0.70 ± .17 
0.52 ± .05 



In summary, our results were: 1) a decrease in Go(O) for both 

DPA- and TPhS- with increasing [3PI], 2) an increase in T(O) for DPA-

and a slight decrease in T(O) for TPhB- with increasing [3PI], and 

3) a decrease in Qads (and a) for both DPA- and TPhB- with increasing 

[3PI]. 

DISCUSSION 

The results for the effect of 3PI on lipophilic anion transport 

were unexpected, showing only small magnitude effects and containing 

a contradiction in the direction of the change in T(O). Based on the 

increase of TPhA+ conductivity (Chapter III), the decrease in mono-

layer surface potential (Chapter II), and the increase in nonactin-
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K+ conductivity (Chapter V), we had reason to believe that 3PI created 

an additional dipole potential at the membrane/aqueous interface which 

decreased the potential energy barrier for cation transport indicated 

by 6Fg in Fig. 14. This corresponds to an increase in 6Fg for anion 

transport and hence would imply by Eq. (13) that lipophilic anion 

conductivity should be greatly reduced in the presence of 3PI; however, 

we found only a very small decrease in Go{O) for both TPhB- and 

DPA-. 

Recall that 6Fg is a combination of 6Fi and 6Fp (refer to Fig. 

14). With the transient current technique used in the lipophilic 

anion studies, it is possible to detect changes in 6Fp by noting 

changes in Qads' and to detect changes in 6Fi by noting changes in 

T(O), but only if electrostatic changes in barrier height are the main 

effect of 3PI. Depending on the precise location of the dipole 
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potential change induced by 3PI, it is conceivable that 6Fi could be 

increased and ~Fp could be decreased in the presence of 3PI, or that 

~Fi could be increased while ~Fp remained unaffected. It is difficult 

to imagine a location for the potential change such that ~Fp is de-

creased while ~Fi is decreased, since the electric field is essentially 

constant across the bilayer interior. If we assume for the moment 

that electrostatic changes in ~F'S are the only effect of 3PI, then 

according to our experimental results, the increase in T(O) for DPA-

implies an increase in ~Fi yet the decrease in T(O) for TPhB- implies 

a decrease in 6Fi due to the presence of 3PI. This contradiction, 

in conjunction with the unexpectedly small decreases in Go{O) led us 

to conclude that nonelectrostatic effects are contributing to the 

change in lipophilic ion transport. Therefore, we have quantified 

the effect of 3PI using the formalism developed by Szabo (1976) to 

analyze the effect of cholesterol on ion transport. This formalism 

was outlined in a previous section and the main results given in Eqs. 

(15) and (18). 

The separation of electrostatic and non-electrostatic effects 

due to 3PI was done using Eqs. (15) and (18) and the results shown 

in Table III. + + In all cases G was calculated from TPhA steady state 

conductivity (Chapter III); G- was calculated separately for DPA- and 

TPhB-. Since TPhA+ conductivity in the absence of 3PI was small 

(~ 5 x 10-8 S/cm2) there was a large error (± 1.5 x 10-8 S/cm2) in 

the reference conductivity [G*{O) in Eq. (14)] used to calculate rela-

tive conductivity G+. For this reason the ratios and products of 

conductivities should be taken only as approximations. Nevertheless, 



TABLE III 

COMPARISON OF ELECTROSTATIC AND NON-ELECTROSTATIC FACTORS 
IN MODIFICATION OF LIPOPHILIC ION 

TRANSPORT BY 3-PHENYLINDOLE 

Lipophilic anion [3PI] exp{-FtlVd/RT) tlVd f(u) 

(liM) (-mV) 

DPA- 10 5.1 41 1.8 
20 9.3 56 2.1 
30 11.6 62 2.1 
40 21.6 77 3.6 

TPhB- 10 3.1 28 3.0 
40 10.6 60 7.4 

The factor exp{-FtlVdRT) is calculated by Eq. (IS) and the factor f(u) 
is calculated by Eq. (18). 

it is possible to deduce several trends in the data. The additional 

dipole potential tlVd due to the presence of 3PI as determined by this 

method was -35 ± 6 mV at 10 liM 3PI and -68 ± 8 mV at 40 liM 3PI. The 

electrostatic factor exp(-FtlVd/RT) was about the same magnitude as 

the non-electrostatic factor feu) for TPhB- transport, both factors 

increasing from 3 at 10 liM 3PI to about 9 at 40 liM 3PI. In the case 
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of DPA-, both the electrostatic factor and the non-electrostatic factor 

also increased with increasing [3PI] but the electrostatic factor 

increased to a greater extent. Thus for DPA-, at 10 liM 3PI, the 

electrostatic factor was 5.1 and the non-electrostatic factor was 1.8 

while at 40 liM 3PI, the electrostatic factor was 22 and the non-

electrostatic factor only 3.6. These results using positively and 

negatively charged lipophilic ions confirm our suspicion that 



non-electrostatic effects played a large role in the modification of 

lipophilic ion transport by 3PI. 

Our result that both Go(O) and Qads show decreases of less than 

an order of magnitude in the presence of 3PI indicates that the 

decrease in conductivity can be attributed almost entirely to a 

decrease in the adsorbed density. The small decrease in Q d in the a s 
presence of 3PI is consistent with the adsorption plane for 3PI being 
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mostly interior to (on the bilayer side of) the adsorption plane for 

the lipophilic anions. The translocation step of the transport 

process, which is related to k; and T, is apparently being influenced 

by both electrostatic and non-electrostatic factors which nearly cancel 

each other out. On the other hand, these two factors would complement 

each other for lipophilic cation transport, both of them causing an 

increased conductivity. 

The electrostatic factor causing a decrease in lipophilic anion 

conductivity is readily explained as an additional dipole potential 

~Vd near the interface. The comments on the interpretation of mono-

layer o(~V) given in the Discussion section of Chapter II are appli-

cable also to ~Vd given in Table III. In particular, ~Vd can be 

interpreted as due to 3PI dipoles or due to a change in the density 

or orientation of lipid dipoles. It is noteworthy that ~Vd is of 

smaller magnitude than o(~V) (see Fig. 6) at all 3PI concentrations, 

a phenomenon which was discussed in Chapter III in terms of a discrete 

charge or discrete dipole model. ~Vd is a micropotential sensed by 

the lipophilic ion whereas o(~V' is a macropotential sensed by an 

electrode far from the monolayer so the theory predicts that ~Vd 



should be smaller than the change in monolayer surface potential. 

The non-electrostatic factor causing an increase in lipophilic 

anion conductivity and in lipophilic cation conductivity is probably 

due to either a higher ion mobility in the membrane interior caused 

by a lower membrane viscosity when 3PI is present or to a decrease 
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in thickness of the bilayer caused by the presence of 3PI. Further 

investigation could reveal whether either of these effects is actually 

occurring. For example, the thickness of the bilayer can be measured 

using established techniques based on bilayer capacitance (Hanai, 

Haydon and Taylor, 1965; Benz, Frohlich and Lauger, 1977). The 

viscosity of bilayer lipid membranes can be inferred from the viscosity 

of other lipid membrane models. For instance, the viscosity of lipo-

somes can be monitored by fluorescence spectroscopy (Shinitsky et !l., 
1971) or nuclear spin resonance (Ahmad and Mellors, 1978); a slight 

modification of the set-up described in Chapter II makes possible the 

measurement of lipid monolayer viscosity (Gaines, 1966). 

There is one other possibility which must be considered in 

attempting to explain the small magnitude of the effect of 3PI on lipo-

philic anion transport. It is possible that although 3PI adsorbs 

strongly to unmodified PC/cholesterol monolayers (Chapter II) and 

apparently adsorbs strongly to 3PI bilayers in the presence of TPhA+ 

(Chapter III), 3PI is inhibited from adsorbing to PC/cholesterol 

bilayers in the presence of TPhB- or DPA-. In order to test this hypo-

thesis it would be necessary to develop a direct way of measuring the 

amount of 3PI adsorbed to the bilayer and then see how the presence of 

varying concentrations of lipophilic anion altered this adsorption. 



CHAPTER V 

ENHANCEMENT OF NONACTIN-K+ STEADY STATE 
TRANSPORT BY 3-PHENYLINDOLE 

MECHANISM OF NONACTIN TRANSPORT 

As discussed in Chapter I, the study of changes in electrical 

conductivity of lipid bilayer membranes induced by the macrotetralide 

antibiotics and valinomycin has increased our understanding of the 

carrier mechanism of ion transport. These antibiotics have a cage-

like structure (nonactin structure is shown in Fig. 19) composed of 

a hydrophilic interior, where the ion resides, and a hydrophobic 

exterior. Transport of ions by the antibiotic carriers is ion selec-

tive, with K+ and NH4+ being transported to a much greater extent than 

Na+; this ion selectivity has its basis in the requirement that the 

ion must fit inside the cage. 

Experimental results for these compounds support a carrier 

transport scheme in which one ion is transported across a lipid mem-

brane by one antibiotic molecule and then released to the aqueous 

solution, leaving the neutral antibiotic molecule free to diffuse back 

across the membrane (Ciani, Eisenman and Szabo, 1969; Hladky, 1972). 

The basic carrier mechanism can be modified to include situations in 

which the ion/carrier complex is formed in the aqueous solution or 

in the membrane (Hladky, 1972), in which unstirred layers playa role 

(Hladky, 1973), and in which the carrier is a charged molecule 
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Figure 19. Chemical formula of nonactin. 
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(Hladky, 1972) •. Hladky (1972) derives expressions for the flux with 

various assumptions that reflect possible locations and relative 

proportions of uncomplexed and complexed carrier in the bulk aqueous 

phase, the bilayer itself, and the Plateau border. In the experiment 

we put nonactin in both the aqueous phase (10-7 M) and in the membrane 

forming solution (3 x 10-5 M) and only take measurements after a 

period of greater than half an hour, so that equilibrium of nonactin 

between aqueous phase, bilayer, and Plateau border was assured. Due 

to the low [K+] used in the experiment (0.11 M), only few ion/carrier 

complexes are formed so the concentration of free carrier in the 

bilayer was a constant. The carrier transport scheme suitable with 

these experimental conditions is shown diagrammatically in Fig. 20. 

In that figure Ns is the number density of free carrier, N. is the 
1S 

number density of ion/carrier complexes and ai is the ion activity 

in the bulk aqueous solution. A single prime refers to the left side 

of the membrane while a double prime denotes the right side. Each 

step is characterized by a rate constant k with appropriate subscript; 

a subscript R refers to recombination of the complex and a subscript 

D to dissociation of the complex while the free carrier is denoted 

by subscript s and the ion/carrier complex by subscript is. Each step 

(complex translocation, complex formation, complex dissociation, and 

free carrier diffusion) occurs at a rate which reflects the energy 

barrier to be overcome at that stage of the transport. Notation is 

that of Hladky (1974). 

The rate of change of the number densities at the left interface 

is given by 



89 

AQUEOUS BILAYER AQUEOUS 

k ls , ~ N ," 
Nis " IS 

k ," 
IS 

a. a, 
I I 

ks 
" Nil N' 

S \ 5 
ks 

Figure 20. Kinetic model of nonactin-K+ transport. 
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dNis = -k~ N~ + k~'N!' - kDN1!S + kRa
1
·NS

I 
~ 1S lS 1S lS 

(1) 

dNs' = -k N' + k N' I + k N' k N' D • - Ra . crt S S S S lS 1 S 

and at the right interface by 

dN i ~ = +k ~ N! - k! IN! I - k N! I + k a. N I I 
~ 15 1S 1S lS D lS R 1 S 

(2) 

dN~' = k N' - k NIl + k N!' - k a.N' I 
~ S S S S D 1S R 1 S 

Although all of the rate constants may have some voltage dependence, 

kR and kD are assumed voltage independent since the voltage drop across 

the interfacial region where recombination and dissociation occur is 

much smaller than the voltage drop across the membrane interior. The 

rate constants for translocation are treated according to the usual 

Eyring assumption 

kis = kisexp(u/2) 

k!' = k. exp(-u/2) 
1 s 1 S 

(3) 

where u is the reduced voltage defined in Chapter III and kis is the 

zero voltage value of both kis and ki~. After an initial (~ 10 ~sec) 

displacement current due to the charging of the lipid itself, the 

electrical current density, J, is J = F{kisNis - ki~Ni~) when nonactin 

transports a monovalent cation. The solution of Eqs. (1) and (2) 

together with the voltage dependence for the translocation rate con-

stants given in Eq. (3) leads to the following expression (Stark and 

Benz, 1971) for the steady state current density: 
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(4) 

where 

(5) 

with additional notation that F is the Faraday, d is the thickness 

of the bilayer, and c~s is the concentration of ion/carrier complexes 

in the bilayer. 

At zero applied voltage, equilibrium exists so that N~ = N~' = Ns 

and Nis = Ni~ = Nis ' When the concentrations of complexed and free 

carrier are disturbed only slightly from their equilibrium values, 

the transport is said to be in the "equilibrium domain", a situation 

which corresponds to setting A = 0 in Eq. (4). It is instructive at 

this point to compare TPhA+ transport with nonactin-K+ transport. For 

both types of transport, the current is initially determined only by 

the translocation step (k ' and k' I in Fig. 8; kis and ki~ in Fig. 20). 

In the case of TPhA+, a steady current is maintained since TPhA+ ions 

move rapidly across the interface and replenish the supply of TPhA+ 

in the membrane. In contrast, the replenishment of the ion/carrier 

complex for nonactin-K+ transport requires a supply of both free neu-

tral carrier and ion, which means that a steady current is dependent 

upon back diffusion of neutral carrier (ks) and upon dissociation (ko) 
and recombination (kR) of the complex. The interrelationships can 

lead to a situation in which the initial flux is not maintained, the 

number densities become different at the two interfaces, and equili-

brium no longer exists. This non-equilibrium situation corresponds 

to nonzero A in Eq. (4). 



The steady state conductivity results will be given in terms 

of conductivity 6(V) [6(V) = J/V where V is the applied voltage] and 

of the ohmic limit of conductivity 6(0) [6(0) = (J/V)V~]. From 

Eq. (4) the relationship (Stark and Benz, 1971) between 6(0) and the 

rate constants is 

F2dk. cm,·s 
6(0) = ,s 2RT ITA 
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(6) 

Additional information can be obtained from the manner in which 

conductivity depends on the applied voltage. As outlined in Chapter 

Ill, it can be shown that the normalized conductivity is 

M'D_ = £ (1 + A) exp( -wu2) sinh(u/2) (7) 
G\OT u 1 + Aexp( -wu2)cosh( u/2) 

where the kinetic limitation parameter A for nonactin-K+ transport 

is defined in Eq. (5) of this chapter. When translocation of the ion/ 

carrier complex across the membrane is the rate determining step, 

parameter A is zero. In that circumstance nonactin-K+ transport is 

analogous to the transport of TPhA+. Parameter A for nonactin-K+ trans-

port is a more complex expression than parameter A for lipophilic ion 

transport, which is a consequence of the additional steps for the car-

rier mechanism; note, however, that both expressions contain ratios 

of rate constants. For nonactin-K+ transport, larger values of 

parameter A correspond to situations in which one of the steps other 

than translocation is the rate determining step, and in these situa-

tions the transport is referred to as being kinetically limited. From 

the definition of parameter A given in Eq. (5) it can be seen that 

at low ion activity (small ai' the transport can be kinetically limited 

by slow dissociation (large kis/kO). At higher ion activities the 



carrier can be nearly all in the complexed form so that the transport 

can become kinetically limited by slow back diffusion of the free 

carrier (large kRaikis/kOks) [Hladky, 1979]. In Fig. 21, Eq. (7) is 

plotted for several values of A to show the effect of increasing 

kinetic limitations, i.e., larger values of parameter A. The value 

of w depends on the thickness of the membrane; in the calculations 

for Fig. 21 a value of w = .007 was used to reflect the thickness of 

the membranes used in our experiment. 

MATERIALS AND METHODS 

The materials and experimental procedures used for steady state 

nonactin conductivity measurements were the same as those described 

in Chapter III with modifications given below; the circuit is shown 

in Fig. 10. The aqueous solution consisted of 0.1 M KC1, buffer B-3, 

10-7 M nonactin (gift of Dr. B. Stearns, Squibb Institute) from 

ethanolic solution, plus the desired amount of 3PI from a stock solu-

tion in acetone. The concentration of acetone in the final solution 

never exceeded 0.5%; within the limits of experimental error, this 

concentration of acetone did not change the conductivity of control 

membranes without 3PI. In a separate set of experiments the 3PI was 

added to the membrane forming solution instead of to the aqueous 

solution. 

For the pH dependence studies it was necessary to use sodium 

hydroxide and a stronger buffer. Therefore the aqueous solution for 

these studies consisted of 0.04 M KC1, 10-7 M nonactin, 25 ~M 3PI, 

and a buffer (MB- 1) of potassium phosphate:potassium citrate:boric 
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Figure 21. Theoretical curves of normalized conductivity as a function 
of voltage [Eq. (7) with w = 0.007] for various values of parameter A. 
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acid:sodium hydroxide 0.2M:0.2M:0.05M:0.34M. The pH was adjusted with 

HCl in all cases. 

The magnitude of the conductivity is mainly dependent on the 

concentration of nonactin in the aqueous solution but in order to aid 

equilibration of nonactin between the membrane and the aqueous solution, 

the membrane forming solution also contained 3 x 10-5 M nonactin. In 

the absence of 3PI the membranes took 20 - 50 minutes to thin but even 

small concentrations of 3PI reduced the thinning time to less than 

10 minutes. Measurements were taken after the current reached a steady 

value, typically 30 - 45 minutes after the membrane became black. 

RESULTS AND DISCUSSION 

In Fig. 22 the zero voltage conductivity due to nonactin-K+ 

transport is plotted as a function of aqueous concentration of 3PI; 

error bars are the standard deviation of at least eight membranes. 

G(O) increased with increasing [3PI] and was nearly three orders of 

magnitude larger in the presence of B.O x 10-5 M 3PI [G(O) = 2.2 x 10-3 

S/cm2] than in the absence of 3PI [G(O) = 2.9 x 10-6 S/cm2]. To aid 

in comparing the effect of 3PI on ion/carrier transport with the 

effect of 3PI on lipophilic ion transport, these data are shown in 

Fig. 23 as relative conductivities G [iG = G(O)/G*(O) where G*(O) is 

the zero voltage conductivity in the absence of 3PI], along with G+ for 

TPhA+ (derived from the data shown in Fig. 11) and G- for the two lipo-

philic anions (derived from data shown in Fig. 16). The largest 

uncertainties are in G for TPhA+ since conductivities were smallest 

for that compound. It is obvious that 3PI enhances conductivity of 
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Figure 22. Nonactin-K+ zero voltage conductivity as a function of 
3-phenylindole concentration in the aqueous solution. Aqueous solution 
also contained 10-7 M nonactin, buffer B-3, [K+] 0.11 M. 
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Figure 23. Relative conductivity as a function of 3-phenylindole con-
centration: .. nonactin-K+, [] TPhA+, o TPhB-, ~ DPA-. 
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cations irrespective of whether the transport is by carrier mechanism 

(nonactin) or directly by lipophilic ion (TPhA+), and that 3PI inhibits 

transport of anionic species (TPhB-, DPA-). This is consistent with 

the observation discussed earlier that 3PI changes the dipole potential 

of the aqueous/membrane interface, making the membrane interior more 

negative. The enhancement of the carrier conductivity appears to be 

greater than enhancement of the lipophilic cation conductivity, but 

the slight difference could easily be due to the size and shape of 

the molecules involved rather than the extra steps in the carrier 

transport process. As discussed in Chapter IV, we found that 3PI 

influenced the transport of lipophilic ions by non-electrostatic 

effects such as decreasing the viscosity of the bilayer. Since non-

actin is more bulky than the lipophilic ion, it is likely that decreased 

viscosity would enhance the conductivity of nonactin-K+ even more than 

it enhances TPhA+ conductivity. Thus we conclude that the enhancement 

of nonactin-K+ conductivity by 3PI is due to a combination of electro-

static and non-electrostatic effects. 

Nonactin-K+ transport itself is pH independent from pH 2 - 11 

(Smejtek and Paulis-Illangasekare, 1979a). The enhancement of conduc-

tivity by 3PI was also found to be pH independent over a wide range 

as shown by the plot of G(O) versus pH in Fig. 24. This result is 

not unexpected since 3PI is in neutral form over the same pH range. 

The normalized conductivity at pH 6.9 is shown in Fig. 25 as 

a function of applied voltage. In comparing this figure with Fig. 21, 

we see that increasing [3PI] causes increasing kinetic limitations. 

The membranes had cholesterol mole fraction of 0.22 which implies a 
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Figure 24. Nonactin-K+ zero voltage conductivity as a function of pH. 
Aqueous solution 10-7 M nonactin, buffer MS-1, [K+] 0.5 M <:)without 
3-phenylindole, ~ with 25 ~M 3-phenylindole. 
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Figure 25. Nonactin-K+ normalized conductivity as a function of 
applied voltage with the indicated concentration of 3-phenylindole in 
the aqueous solution: 0 0 ~M, A 10 ~M, 0 25 J.lM, * 40 J.lM, 

• 55 J.lM, ~ 80 J.lM. Sol id line is Eq. (4) with A = O. 
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thickness of 45 A (Hanai, Haydon and Taylor, 1965). Using w = .007 

[based on Table I in Andersen and Fuchs (1975) relating thickness and 

w], the data in Fig. 25 were fit to Eq. (7) to obtain the values of 

parameter A as listed in the upper half of Table IV. The lower half 

of the table is for a related experiment and will be discussed shortly. 

At small concentrations of 3PI in the aqueous solution, parameter A was 

near 0, indicating that ion/carrier complex translocation across the mem-

brane was the slowest step in the process. At [3PI] ~ 2.5 x 10-5 M 3PI, 

parameter A increased, and at the highest concentration of 8.0 x 10-5 M 

3PI parameter A was .30, which corresponds (see Fig. 25) to a conduc-

tivity which is voltage-independent and represents a strong kinetic 

limitation. The greater enhancement of nonactin-K+ transport over TPhA+ 

transport as shown in Fig. 23 may be related to the change in kR' kO or 

ks implied by the changes in parameter A for nonactin-K+. In order to 

ascertain which step of the transport process is being affected, it 

would be of some help to determine parameter A as a function of [K+] and 

thus obtain ratios of rate constants by the best fit to Eq. (5). It is 

interesting to note that kinetic limitations occur in the same 3PI 

concentration range in which the binding of 3PI to PC/cholesterol mono-

layers shows saturation (Fig. 3). 

From an environmental viewpoint a pesticide is more likely to 

be initially in the aqueous phases surrounding a cell or microorganism 

and in the experiments discussed so far, 3PI was placed in the aqueous 

solution. Since 3PI is hydrophobic some fraction of it is adsorbed 

to, or dissolved in, the lipid bilayer. In the next experiment 3PI 

was included in the membrane forming solution instead of in the aqueous 

phase and the conductivity measured in the usual way. The results 



are shown in Fig. 26 as G(O) versus mole ratio of 3PI to lipid (PC 

plus cholesterol) in the membrane forming solution. The mole ratio 
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is probably an overestimate of the actual amount of 3PI in the bilayer 

since part of what was put into the membrane forming solution parti-

tioned into the Plateau border and also into the large aqueous volume 

on either side of the bilayer. This escape was more pronounced at 

high 3PI:lipid mole ratios as evidenced by the fact that conductivity 

decreased with time after the membrane became black when the mole 

ratio was 1.6. G(O) increased with increasing 3PI mole ratio and was 

more than two orders of magnitude greater in the presence of 3PI:lipid 

= 0.94 [G(O) = 4.1 x 10-4 S/cm2] than in the absence of 3PI 

[G(O) = 2.9 x 10-6 S/cm2]. 

The conductivity is determined by the concentration of 3PI in 

the bilayer, which is not known with certainty in this experiment or 

in the experiment in which 3PI is placed in the aqueous solution. 

However, it can be seen that an aqueous 3PI concentration of 

(1 - 8) x 10-5 M 3PI produces the same change in conductivity (see 

Fig. 22) as that produced by mole ratios of 0.1 - 1.5 of 3PI:lipid 

in the membrane forming solution, which is roughly equivalent to the 

amount in the bilayer itself. One indication that these mole ratios 

are an overestimate of the amount of 3PI in the bilayer is that we 

found 3PI adsorbed to lipid monolayers of the same composition only 

up to a maximum of one 3PI molecule for every 2.8 lipid molecules (3PI: 

lipid = 0.36) as discussed in Chapter II. Nevertheless, these conduc-

tivity results reinforce the observation that 3PI strongly favors 

partition into the lipid phase. 
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Figure 26. Nonactin-K+ zero voltage conductivity as a function of 
3-phenylindole concentration in the membrane forming solution. 
Aqueous solution 10-7 M nonactin, buffer B-3, [K+] 0.11 M. 



TABLE IV 

KINETIC LIMITATION PARAMETER FOR NONACTIN-K+ TRANSPORT 
IN THE PRESENCE OF 3-PHENYLINDOLE 
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[3PI] Parameter A 

3PI in aqueous solution 

3PI in membrane 
forming solution 

(10- 5 M) 

0.0 
0.05 
0.5 
1.0 
2.5 
4.0 
5.5 
7.0 
8.0 

Mole ratio 3PI:lipid 

0.13 
0.19 
0.39 
0.65 
0.78 
0.94 
1.2 
1.6 

-.01 ± .02 
-.02 ± .03 
-.01 ± .02 

.01 ± .01 

.05 ± .02 

.07 ± .03 

.18 ± .03 

.20 ± .03 

.30 ± .03 

Parameter A 

-.03 ± .02 
-.03 ± .03 
-.01 ± .01 
-.02 ± .04 
-.01 ± .01 

.05 ± .02 

.07 ± .06 

.14 ± .04 

Kinetic limitations were also observed when 3PI was in the 

membrane forming solution as shown by values of parameter A given in 

the lower half of Table IV. Parameter A was near zero up to a mole 

ratio of 0.8-0.9 and increased for mole ratios greater than that. 

Comparing this experiment with the one in which 3PI was placed in the 

aqueous solution (upper half of Table IV), note that for 3PI:lipid 

approximately 1:1 in the membrane forming solution parameter A is 

between 0.05 and 0.07. This same range of parameter A occurred when 
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[3PI] in the aqueous solution was between 25 ~M and 40 ~M. The overall 

lower values of parameter A when 3PI was in the membrane forming solu-

tion are another indication that 3PI escapes from the bilayer. 



CHAPTER VI" 

EFFECT OF 3-PHENYLINOOLE ON TRANSIENT NONACTIN-K+ TRANSPORT 

TRANSIENT COMPONENTS OF NONACTIN-K+ TRANSPORT 

The kinetic scheme used to describe nonactin-K+ transport was 

outlined in Chapter V and used to obtain expressions for steady state 

conductivity. From steady state measurements one can obtain the 

combinations of rate constants kis/kO and kRaikis/kskO' but in order 

to determine all of the rate constants plus the partition coefficient 

of nonactin it is necessary to investigate the transient behavior of 

the current. The general time dependent solution (Stark et ~., 1971) 

for carrier transport gives a steady state current plus a transient 

current with three components. The special case of a symmetrical mem-

brane results in the model described in Chapter V; the solution of 

Eqs. (1) and (2) in Chapter V gives a steady state current plus two 

transient components whose time constants T1 and T2 are related to 

the rate constants (refer to Fig. 19) by the following: 

where 

, - -1 - a b A2 - L2 - -

(fast transient) 

(slow transient) 

a = i[2kiscosh(u/2) + 2ks + kRa; + kO] 

b = i 1l[2kiSCOSh(U/2) - 2ks - kRa i + kO]2 + 4kokRa;Jri 

(1) 

(2) 
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The current relaxation amplitudes a1 and a2 are related to para-

meter A defined in Eq. (5) of Chapter V in the following manner: 

a1 = i[Acosh(u/2)] + B 

a2 = i[Acosh(u/2)] - B 

(fast transient) 

(slow transient) 

where the parameter B is also related to parameter A by 

(3) 

B = [cosh(u/2)f4b][A(2ks + kRa i + kO -2kiscosh{u/2)} - 4kis]. (4) 

The current density J(t} is thus given by the sum of the two components: 

(5) 

where J is the steady state current density given by Eq. (4) of co 

Chapter V. In the "equilibrium domain", i.e. with A = 0, it can be 

seen from Eqs. (3) and (5) that J(O} = J ; the initial and final cur-
co 

rents are identical so there are no transients. From Eqs. (I) and 

(2) we can see that any conditions which greatly increase or decrease 

one of the rate constants while leaving the others unaffected will 

change the time constants for current decay. Furthermore, it is impor-

tant to point out that by Eqs. (3) and (4), in circumstances in which 

parameter A is large, an increased amplitude for at least one component 

of the current is predicted and a transient current should be observed 

in these circumstances. 

Transient currents due to nonactin-K+, nonactin-NH4+, 

trinactin-K+, and trinactin-NH4+ have been investigated by Hladky 

(1975) and those due to valinomycin-Rb+ and valinomycin-K+ by Benz, 

Fr6hlich and LNuger (1977). In some cases for which a transient cur-

rent was observed the current decay could be described well with a 

single time constant while for the valinomycin-K+ transport the current 
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seemed to be a combination of two relaxations. Hladky (1975) reported 

that no transient was observed for nonactin-K+ if the K+ concentration 

was 0.1 M or less, but he was able to resolve a transient at K+ concen-

trations of 1 M and 4 M. 

As discussed in Chapter V, 3PI caused a kinetic limitation of 

nonactin-K+ transport. At a K+ concentration of 0.1 M, we found that 

parameter A increased from near zero in the absence of 3PI to approxi-

mately 0.3 in the presence of 8.0 x 10-5 M 3PI. The theory outlined 

above predicts no transient current in the former condition and a 

transient current, with either one or two exponentially decaying 

components, in the latter condition. 

MATERIALS AND METHODS 

Bilayer lipid membranes were formed by the same technique and 

using the same materials listed in Chapter III. Initial current 10 

and time constant T were measured by the procedure described in 

Chapter IV. The aqueous solution consisted of 0.1 M KC1, buffer B-3, 

10-7 M nonactin (gift of B. Stearns, Squibb Institute), plus the 

required amount of 3PI from a stock solution in acetone. To aid 

equilibration of nonactin between the membrane and the aqueous phases, 

3 x 10-5 M nonactin was added to the membrane forming solution. Non-

actin was stored as a concentrated ethanol solution. 

The electrical noise level is affected by the capacitive load 

the D/A converter must drive, so for these nonactin experiments a 

Teflon cup with a smaller aperture (1.2 mm diameter) was used in order 

to have a smaller membrane capacitance. Some experiments were 
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performed using sintered Ag/AgCl electrodes (Type 140, Annex Instru-

ments, Santa Ana, CA). For the experiments with no 3PI and with 55 pM 

3PI the steady state current at 25 mV was monitored by an electrometer 

(Princeton Applied Research, Model 135, Princeton, NJ). Later modifi-

cations allowed steady state currents I to be measured with the com-
~ 

puterized set-up so that at a 3PI concentration of 80 pM the steady 

state current at all applied voltages was obtained at the same time 

the transients were obtained. The relaxation amplitude a 

[a = (10 - I~)/I~] could then be calculated. 

RESULTS AND DISCUSSION 

Table V lists the relaxation time constants and relaxation ampli-

tudes for a representative PC/cholesterol bilayer in the presence of 

nonactin and 80 pM 3PI. The relaxation was described well (correlation 

coefficient> 0.97) by a single time constant. There was no other 

relaxation evident on other time scales up to 500 milliseconds. The 

best fit of the steady state data for this membrane to Eq. (7) in 

Chapter V gave a value for parameter A of 0.42. Since the currents 

were fairly large (steady state current exceeded 10-7 Amp), it was 

possible to use small feedback resistance (30 Kn) and no feedback 

capacitance, resulting in the fastest amplifier response time possible. 

With these favorable operating conditions, it can be seen that the 

observed T are only ~ 4 ~sec and voltage-independent while the observed 

a are large. For comparison note that for nonactin-K+ transport with 

1 M KC1, T is 11 psec and a is 0.1-0.3 (Hladky, 1975). Our observed 

relaxation is undoubtedly due to the charging of the bilayer itself 
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rather than an indication of nonactin-K+ transport. Thus, while the 

steady state measurements indicate that the transport of nonactin-K+ 

is kinetically limited (large A) by 80 ~M 3PI and definitely in the 

"nonequilibrium domain", the absence of a transient current must mean 

that the transition from equilibrium to steady state is below the 

resolution capabilities of the experimental set-up. 

We have also performed experiments to determine whether a tran-

sient current exists for nonactin-K+ in the absence of 3PI and in the 

presence of 55 ~M 3PI, but the results in these cases are more ambigu-

ous. In the absence of 3PI a voltage-dependent L ranging from 11 ~sec 

at 25 mV to 80 ~sec at 200 mV was observed but this is probably an 

artifact of the response time of the amplifier since the noise/signal 

ratio was large, making the use of large feedback resistance and 

capacitance necessary. When 55 ~M 3PI was present two relaxations 

were observed. The transient with a short time constant (~ 10 ~sec) 

was probably due to bilayer capacitive charging and thus it was not 

analyzed. The other transient was voltage independent with 

L = 16 - 27 ~sec. The current level in this case was sufficiently large 

that only moderate feedback resistance and capacitance values were 

used. Since the amplifier feedback values were kept nearly the same 

at all voltages, the voltage-independent T can be attributed to ampli-

fier response rather than to any ion transport process. Earlier steady 

state measurements gave a value of 0.18 for parameter A when 55 ~M 

3PI was present in the aqueous solution (see Table IV), which implies 

that nonactin-K+ transport is being kinetically limited at that 3PI 

concentration. We conclude that if any transient current existed in 



TABLE V 

RELAXATION AMPLITUDE AND TIME CONSTANT OF PHOSPHATIDYLCHOLINE/ 
CHOLESTEROL BILAYER IN THE PRESENCE OF NONACTIN, 

0.1 M KCl and 80 ~M 3-PHENYLINDOLE 

Voltage T 
(mV) (~sec) 

25 8.6 4.4 
50 17.5 3.7 
75 3.1 4.9 

100 11.4 4.3 
125 3.3 4.6 
150 1.8 5.6 
175 3.3 4.9 

these conditions it had a small amplitude and decayed with a time 

constant less than 30 ~sec. 

In a thorough review article on the carrier mechanism, Hladky 

(1979) has pointed out inconsistencies which arise when the results 
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of steady state and transient current measurements are combined in 

order to obtain values for all the rate constants. He speculates that 

either the assumptions leading to Eq. (4) in Chapter V are too simpli-

stic or that the transport scheme of Fig. 19 needs major modifications. 

To demonstrate the former hypothesis, he gives examples in which 

slightly different assumptions give entirely different results for 

the relaxation amplitudes. In particular, the form of the voltage 

dependence of the rate constants is very much open to question. Hladky 

(1979) also proposes a more complex transport scheme which may reflect 

the true physical situation better and eventually lead to agreement 

between steady state and transient techniques. The possibility that 
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the absence of the transient predicted at high [3PI] was related not 

to instrument resolution but to some subtle deficiency in the carrier 

theory should, therefore, not be discounted. 



CHAPTER VII 

CONCLUSION 

SUMMARY OF EXPERIMENTAL RESULTS 

In this study the physical effects of 3-phenylindole (3PI) were 

investigated using well-defined model membrane systems containing no 

metabolic pathways. We found that at concentrations of 5 ~M to 80 ~M 

3PI, the pesticide adsorbed strongly to lipids, producing changes in 

electrical potential of the aqueous/lipid interface, changes in bilayer 

fluidity, and changes in electrical conductivity induced by both 

carriers and lipophilic ions. 

The adsorption of 3PI to egg phosphatidylcholine/cholesterol 

monolayers was well described by a Langmuir adsorption isotherm, from 

which it was determined that the adsorption coefficient of 3PI was 

1.35 x 10-4 m and the maximum adsorbed surface density of 3PI was 

1.11 x 10-6 moles/m2• The surface potential of the lipid monolayer 

was decreased by as much as 200 mV. 

We detected no changes in the electrical conductivity of egg 

phosphatidylcholine/cholesterol bilayers in the presence of 3PI, and 

therefore conclude that 3PI does not act as a carrier of ions or as 

a pore through which ions could permeate the bilayer. We found that 

3PI exerted an indirect effect on electrical conductivity of bilayers 

as evidenced by the following observations. 3PI increased the conduc-

tivity induced by TPhA+ and nonactin-K+ by several orders of magnitude 
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and decreased the conductivity induced by TPhB- and DPA- by a factor 

of less than ten. We have shown that these changes in conductivity 

are consistent with a decrease in electrical potential of the bilayer 

interior caused by the presence of 3PI. The disparity between the 

magnitude of enhancement of cation conductivity and inhibition of 

anion conductivity was shown to be compatible with decreased viscosity 

or decreased bilayer thickness brought about by the presence of 3PI. 

By using two dissimilar lipophilic anions, we determined that 

the small magnitude of the change in lipophilic anion conductivity 

was not related to the detailed chemical structure of the anion, and 

that fluidity or thickness changes contributed to TPhB- transport to 

a greater extent than to DPA- transport. In the same experiment we 

found that 3PI decreased the partition coefficients of TPhB- and DPA-

by less than a factor of three. 

Although 3PI caused a slightly greater enhancement of nonactin-K+ 

zero voltage conductivity than of TPhA+ zero voltage conductivity, 

we believe this is insufficient evidence to decide whether 3PI affects 

any of the steps specific to the carrier mechanism. On the other hand, 

we found in voltage-dependence studies of normalized conductivity that 

3PI did not kinetically limit TPhA+ transport but that at concentra-

tions greater than 25 ~M, 3PI caused a kinetic limitation to nonactin-

K+ transport. We were unable to detect any transient currents in the 

kinetically limited regime for nonactin-K+. 



POSSIBLE BIOLOGICAL SIGNIFICANCE OF THE 
EXPERIMENTAL RESULTS 
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Relating our experiments using model membranes to the biological 

changes which 3PI induces requires speculation about how physical 

changes in the lipid portion of the membrane influence not only the 

lipids but also the transport proteins and the metabolic pathways 

present in the organism but absent in the model membranes. First of 

all, note that the physical changes we found were all observable 

within minutes after the model membranes came in contact with 3PI. 

The uptake of 3PI is probably slower in fungal mycelium than in lipid 

monolayers or bilayers due to the presence of the cell wall in the 

fungus. Our finding that 3PI did not act as a pore in PC/cholesterol 

bilayers is consistent with the fact that 3PI has a fungistatic rather 

than a fungicidal action; that is, the damage 3PI causes is not so 

great that it is irreversible, whereas the presence of pores is usually 

associated with gross permeability changes causing irreversible damage. 

The fact that degradation and biosynthesis of phospholipids play 

a central role in the fungistatic action of 3PI is apparent from the 

evidence given by Hoppe, Kerkenaar, and Sijpesteijn (1976a) [HKSa] that 

the fungistatic effect occurs two to three days after treatment with 

3PI and is reversible by addition of phospholipids. These changes 

in biosynthetic or degradative pathways are presumably responsible 

for the changes in phospholipid composition and free fatty acid concen-

tration as described in Chapter I. HKSa found that 3PI had no effect 

on O2 uptake which indicates that respiration pathways necessary for 

phospholipid synthesis and for ion transport are intact. In further 
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investigations Hoppe, Kerkenaar, and Sijpest~ijn (1976b) [HKSb] found 

that 3PI inhibited 32Pi uptake within a period of one to several hours 

after treatment with the pesticide. This change in transport is not 

primarily responsible for growth inhibition, but a deficiency of 

phosphorus could decrease the rate of phospholipid biosynthesis and 

hence be related to subsequent changes in phospholipid concentration 

and eventual growth inhibition. We found that 3PI, at concentrations 

which HKSb found to decrease Pi uptake, influenced ion transport in 

lipid bilayers by changing the dipole potential at the lipid/aqueous 

interface and by changing the fluidity of the bilayer interior. Assum-

ing that these same physical effects occur to some extent when 3PI 

adsorbs to fungal membranes, we speculate that these effects could 

be responsible for decreasing phosphate transport in the fungus. We 

are not aware of any investigations on phosphate transport in 

Aspergillus niger, but it seems probable that phosphate transport in 

this species occurs both by mediated transport and by an energy-

dependent carrier, as discussed in Chapter I for Neurospora crassa, 

yeast, and mitochondria. In general we postulate that when 3PI adsorbs 

to the membrane and changes the local electrostatic potential, the 

protein(s) responsible for phosphate transport change conformation 

due to electrostatic interactions. This type of electrostatic control 

of enzyme activity has been reported for Na++K+-ATPase preparation 

containing charged lipids (Ahrens, 1981). If the conformational change 

makes binding to Pi less energetically favorable, then Pi transport 

would be inhibited. Alternatively, the increased fluidity of the mem-

brane interior due to the presence of 3PI may influence the location 
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or diffusion rate of the protein(s) involved in the transport process. 

It is not clear at this time how a specificity to the Pi transport 

system would occur. 

In view of possible influences on phospholipid degradation path-

ways, the effect of 3PI on the concentration of free fatty acids and 

on phospholipase activity should be considered. HKSa report that the 

concentration of free fatty acids in~. niger increased dramatically 

two days after treatment with 3PI, a phenomenon which could be due 

either to a disruption of normal phospholipid biosynthesis or to 

increased degradation of phospholipids. Since free fatty acids are 

produced when phospholipase acts on phospholipids, it would be valuable 

to quantitate the effect of 3PI on phospholipase activity in the fungal 

membrane. Possibly the increased membrane fluidity brought about by 

the presence of 3PI allows for better contact between the phospho-

lipase molecule and that portion of the phospholipid molecule in which 

the change occurs, presumably near the glycerol backbone. In addition 

to fatty acids, another product of phosphatidylcholine degradation 

is lysolecithin, for which HKSa did not assay. If phospholipid degra-

dation is accelerated by 3PI, then increased quantities of lysolecithin 

would be expected. It is known that an abnormally high concentration 

of lysolecithin, a molecule having a wedge shape preventing it from 

fitting in well with a normal bilayer of dual-chained lipids, causes 

disruption of liposomes composed only of lipid (Bangham and Horne, 

1964), and causes leakage of the intracellular contents of red blood 

cells (Reman et ~., 1969). Thus the presence of elevated lysoleci-

thin concentrations could account for the slight leakage of 32p_ 



labeled compounds from fungal mycelia treated with 3PI as reported 

by HKSa. 

SUGGESTIONS FOR FUTURE RESEARCH 
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In this study of the physical effects of 3PI, we found indica-

tions that 3PI decreased the viscosity of lipid bilayers. There are 

several types of experiments (e.g., differential scanning calorimetry, 

nuclear magnetic resonance, electron spin resoryance, and fluorescence 

spectroscopy) which are traditionally used to detect fluidity changes, 

and it would be beneficial to use one or more of these methods to 

measure the effect of 3PI on viscosity in a more direct manner. We 

found that 3PI fluoresces brightly when illuminated with ultraviolet 
o 

light of wavelength 2537 A, and this phenomenon could perhaps be 

utilized in viscosity measurements, thereby eliminating the need for 

a foreign probe molecule. 

Dekker, Selling, and Overeem (1975) have tested 64 substituted 

indoles for antifungal activity and attempted to relate the biological 

activity with lipophilicity of the analogs and location of the substi-

tuent group with respect to the NH group. They found that 2-phenylin-

dole has almost no fungicidal activity whereas the nearly identical 

compound 3PI was one of the most toxic analogs out of all those tested. 

An examination of the effect of 2-phenylindole on the electrical 

conductivity of lipid bilayers and on lipid monolayer surface potential 

would aid in testing the correlation between the physical and biologi-

cal effects as discussed in the preceding section. 



The influence of 3PI on Pi transport in~. niger could be open 

to in vitro investigation if the techniques used to isolate the Pi 

transport protein in mitochondria (Wohlrab, 1980) can be used as a 

basis to isolate the Pi transport protein in~. niger. Changes in 
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Pi transport in a reconstituted system as a function of 3PI concentra-

tion, lipid composition, and temperature would undoubtedly yield much 

information. 

Since it is still an open question whether 3PI affects degra-

dation of phospholipids, it would seem prudent to check for the buildup 

of lysophospholipids in fungal mycelia treated with 3PI. The role 

of phospholipase could perhaps be further investigated by in vitro 

tests of the effect of 3PI on lipase activity, e.g., by an extension 

of the study of Colacicco (1969) on the interaction between phospho-

lipase A and monolayers of various lipoproteins. 

Since HKSa conclude that interaction of 3PI with phospholipids 

is a crucial part of the fungistatic action of 3PI, it would be helpful 

to do monolayer adsorption experiments as described in Chapter II using 

monolayers of non-phospholipids to determine whether 3PI adsorbs 

preferentially to phospholipids. In a similar vein, the conductivity 

studies could be repeated with lipids other than phospholipids to 

determine whether specific 3PI-lipid interaction is involved in conduc-

tivity changes. 

In connection with our studies of 3PI, we attempted to determine , 
the effect of 3PI on the proton nuclear magnetic resonance (NMR) 

spectra of PC/cholesterol liposomes and from these preliminary studies 

it became obvious that several experimental difficulties would have 
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to be overcome before quantitative results could be obtained. The main 

difficulty was the requirement for high concentrations of lipid neces-

sary to generate the NMR signal. Whereas in the conductivity experi-

ments a small area of bilayer is bathed by a large volume of aqueous 

solution containing 3PI, in NMR studies a large amount of lipid in the 

form of spherical liposomes is bathed by a small volume (~ 2 ml) of 

aqueous solution containing 3PI. Thus, due to the large partition 

coefficient of 3PI, the liposomes can actually deplete the solution 

of its 3PI content. HKSb found that 3PI, when mixed with lecithin 

prior to addition of water for liposome formation, prevented the 

dispersion of phospholipids in salt solution. The second difficulty 

encountered in using liposomes for NMR was the reproducibility of the 

degree of sonication; the sonicator used in these preliminary studies 

did not have automatic intensity control so the intensity of ultra-

sonic energy tended to vary with time. Unsonicated lipid dispersions 

produce very broad peaks in the NMR spectrum and well-sonicated lipo-

somes produce relatively sharp peaks. Therefore, depending on the 

degree of sonication, apparently different spectra were obtained. 

In the present study the analysis of the data for adsorption 

of 3PI onto l,ipid monolayers was based only on geometrical arguments. 

An important complement to these experimental investigations would 

be the development of a general theory of adsorption of lipophilic 

pesticides onto lipid monolayers, beginning with the condition of equi-

librium of the pesticide between aqueous phase and monolayer, and 

taking into account the variable area of contact between aqueous phase 

and monolayer. The approximation used for the area of the pesticide 



121 

molecule could perhaps be improved on by a more detailed consideration 

of its freedom to rotate and to interact with surrounding molecules. 
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