12-1-2007

 Templated fabrication of large area subwavelength antireflection gratings on silicon

 Chih-Hung Sun
 University of Florida

 Wei-Lun Min
 University of Florida

 Nicholas C. Linn
 University of Florida

 Peng Jiang
 University of Florida

 Bin Jiang
 Portland State University

 Let us know how access to this document benefits you.

 Follow this and additional works at: http://pdxscholar.library.pdx.edu/mth_fac

 Part of the Mathematics Commons

 Recommended Citation

 This Article is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Templated fabrication of large area subwavelength antireflection gratings on silicon

Chih-Hung Sun, Wei-Lun Min, Nicholas C. Linn, and Peng Jiang

Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA

Bin Jiang
Department of Mathematics and Statistics, Portland State University, Portland, Oregon 97201, USA

(Received 2 October 2007; accepted 15 November 2007; published online 5 December 2007)

We report a cheap and scalable bottom-up technique for fabricating wafer-scale, subwavelength-structured antireflection coatings on single-crystalline silicon substrates. Spin-coated monolayer colloidal crystals are utilized as shadow masks to generate metallic nanohole arrays. Inverted pyramid arrays in silicon can then be templated against nanoholes by anisotropic wet etching. The resulting subwavelength gratings greatly suppress specular reflection at normal incidence. The reflection spectra for flat silicon and the templated gratings at long wavelengths agree well with the simulated results using a rigorous coupled wave analysis model. These subwavelength gratings are of great technological importance in crystalline silicon solar cells. © 2007 American Institute of Physics. [DOI: 10.1063/1.2821833]

Current production of solar cells is dominated by crystalline silicon modules, however, due to the high refractive index of silicon, more than 30% of incident light is reflected back, which greatly reduces the conversion efficiency of photovoltaic devices. To significantly suppress the reflective loss of solar cells, various antireflection techniques, such as quarter-wavelength multilayer films and nanoporous coatings, have been developed. For crystalline silicon solar cells, silicon nitride films deposited by plasma enhanced chemical vapor deposition have become the industry standard for antireflection coatings (ARCs). Unfortunately, these existing techniques often perform suboptimally or are expensive to implement, impeding development of solar cells that can be made truly economically competitive with fossil fuels.

Inspired by the microstructured cornea of some nocturnal moths, subwavelength-structured gratings directly patterned on silicon substrates have been extensively explored both experimentally and theoretically for developing broadband ARCs. These gratings with a period smaller than the wavelength of incident light are intrinsically more stable and durable than multilayer ARCs since no foreign material is involved. Electron-beam lithography (EBL) is a common approach in fabricating subwavelength gratings. Unfortunately, the low throughput and the high cost of EBL raise big concerns. Interference lithography and nanoimprint lithography enable the creation of subwavelength antireflection structures over large areas; however, these techniques are still expensive to implement.

Here, we demonstrate a much simpler and cheaper self-assembly technology in creating wafer-scale subwavelength antireflection gratings on single-crystalline silicon substrates. Contrary to most bottom-up approaches, which are favorable for low-volume, laboratory-scale production, this nonlithographic technique is compatible with standard microfabrication, enabling large-scale production of subwavelength ARCs for solar collectors. The technology is based on the robust spin-coating technological platform we have recently developed for scalable production of periodic nanostructured materials.

A schematic illustration of the fabrication procedures for making wafer-scale subwavelength inverted pyramid gratings on single-crystalline silicon wafers is shown in Fig. 1. We start to generate nonclose-packed colloidal monolayers on a (100) silicon wafer (test grade, n type, Montco Silicon Technologies) by the spin-coating technology. The nonclose-packed silica particles function as shadow masks during an electron-beam evaporation process for depositing a 30 nm thick chromium layer. After lifting off the templating silica particles, a periodic array of nanoholes whose diameter is determined by the size of templating silica spheres can be formed. These circular nanoholes can then be used as etching masks during a KOH anisotropic etching process to create wafer-scale inverted pyramid arrays in silicon substrates.

We are able to control the pyramid size by simply adjusting the anisotropic etching conditions. Figure 2 shows...
scanning electron microscope (SEM) images of two inverted pyramid arrays templated from the same spin-coated silica monolayer sample (320 nm particle diameter). The samples are etched in the same solution containing 62.5 g KOH, 50 ml anhydrous 2-propanol, and 200 ml ultrapure water at 60 °C for 90 and 210 s, respectively. It is apparent that longer etching leads to larger pyramids with well-defined square bases, while the less etched samples have rounded corners. The size of the pyramids can be larger than that of the templating silica spheres due to the undercutting of silicon substrates underneath chromium nanoholes. The long-range hexagonal ordering of the templated pyramidal pits is evident from the SEM images. The orthogonal crosses at the centers of the pits confirm the inverted pyramidal structures.39

The specular optical reflectivity of the replicated pyramid arrays is evaluated using visible-near-IR reflectivity measurement at normal incidence.35 The solid lines in Fig. 3 show the measured normal-incidence specular reflection from a polished (100) silicon wafer and the sample, shown in Fig. 2(b), with 360 nm pyramidal pits. The flat silicon substrate exhibits high reflection (>35%) for visible and near-infrared wavelengths, while the subwavelength-structured gratings show reduced reflection of ~10% for long wavelengths (>600 nm). The reflection is further reduced to ~2% for wavelengths around 400 nm. For smaller pyramids, the reflection progressively increases with decreased pyramidal pits.

The templated silicon subwavelength gratings exhibit lower reflection than colloid-based antireflection coatings on crystalline silicon solar cells.5 Though the normal-incidence reflection from the templated pyramid gratings is higher than other subwavelength-structured ARCs made by lithographic techniques with typical reflection of ~2% –10%,7,19,22,23,28 the cost benefit of this nonlithographic methodology is a major advantage. Additionally, optimization of the templated structures will facilitate further improvement of the antireflection performance. The state-of-the-art silicon nitride ARCs on crystalline silicon solar cells exhibit minimal (<2%) reflection around 600 nm, while the reflection increases to more than 10% for near-IR (>800 nm) and visible (<500 nm) wavelengths, which account for a significant portion of the solar spectrum.3,5 By contrast, the templated pyramid arrays show relatively low reflection at short wavelengths (Fig. 3).

A multilayer rigorous coupled wave analysis (RCWA) model40–42 has also been developed to complement the optical measurement. Firstly, we divide the inverted pyramid array into 100 horizontal layers with equal thickness. Since the KOH-etched silicon pyramids have characteristic of 54.7°
sidewalls, the depth of the anisotropic V-shape pitches is determined by the base length of the pits. Based on the effective medium theory, the effective refractive index \(n(z^a) \) of the layer at level \(z^a \) can be approximated by

\[
[n(z^a)]^2 = \frac{n_{air}^q}{q[1-f(z^a)]} + \left[1-f(z^a)\right]n_{air}^q \]

where \(f(z^a) \) is the fraction of silicon contained in the layer, \(n_{air} \) is the complex refractive index of silicon (\(n \) and \(k \) are optical constants), \(n_{air} = 1 \), and \(q = \frac{2}{3} \). The optical constants of silicon which are functions of wavelengths are obtained from literature. Secondly, we calculate the reflectance of the whole system by solving the Maxwell equation to express the electromagnetic (EM) field in each layer and then match EM boundary conditions between neighboring layers for the determination of the reflectance of the system.

The RCWA-simulated reflection for a bare silicon substrate and an inverted pyramid array in silicon with 360 nm base length are shown in Fig. 5. It is apparent that larger pyramids lead to lower reflection, matching our experimental observation.

In summary, we have developed a cheap and scalable non lithographic approach for creating subwavelength-structured antireflection coatings directly on single-crystalline silicon substrates.

This work was supported in part by the NSF under Grant No. CBET-0651780, the start-up funds from the University of Florida, and the UF Research Incentive Seed Fund.

\[3.43\] The optical constants of silicon which are functions of wavelengths are obtained from literature. The RCWA-simulated reflection for a bare silicon substrate and an inverted pyramid array in silicon with 360 nm base length are shown in Fig. 5. It is apparent that larger pyramids lead to lower reflection, matching our experimental observation.

In summary, we have developed a cheap and scalable non lithographic approach for creating subwavelength-structured antireflection coatings directly on single-crystalline silicon substrates.

This work was supported in part by the NSF under Grant No. CBET-0651780, the start-up funds from the University of Florida, and the UF Research Incentive Seed Fund.

FIG. 5. RCWA-simulated normal-incidence optical reflection at \(\lambda = 600 \text{ nm} \) vs inverted pyramid size. The 320 nm silica spheres are used as templates.