
Persistent homology analysis of brain artery trees

Paul Bendich∗, J.S. Marron†, Ezra Miller∗, Alex Pieloch∗, and Sean Skwerer†

23 November 2014

Abstract

New representations of tree-structured data objects, using ideas from topological data analysis,
enable improved statistical analyses of a population of brain artery trees. A number of represen-
tations of each data tree arise from persistence diagrams that quantify branching and looping of
vessels at multiple scales. Novel approaches to the statistical analysis, through various summaries
of the persistence diagrams, lead to heightened correlations with covariates such as age and sex,
relative to earlier analyses of this data set. The correlation with age continues to be significant
even after controlling for correlations from earlier significant summaries.

1 Introduction

In the modern era of large, complex data, statistical analysis is particularly challenging when the
sample points are not vectors but rather objects with more intrinsic structure. In the present case, each
data point is a tree, embedded in 3-dimensional space, with additional attributes such as thickness.
Background and additional information concerning these data objects, which represent arteries in
human brains (isolated via magnetic resonance imaging [3]), occupy Section 2. Earlier analyses of this
data set have correlated certain features with age and produced hints of sex effects (Section 2.1).

Topological data analysis (TDA), implemented here using persistent homology, reveals anatomical
insights unavailable from earlier approaches to this data set (Section 3). In particular, TDA shows age
to be correlated with certain measures of how brain arteries bend through space (Sections 3.1 and 3.2).
This contrasts with a previous study [9] that correlates age with total artery length, and furthermore
the TDA correlations are independent of that earlier one (Section 3.3). TDA in our context also finds
stronger sex effects than the only other study [31] to find any sex difference at all (Section 3.4).

To quantify the bending of arteries through space, we rely on persistent homology (Section 4),
which we review from scratch. One of our methods records how the connectedness of the subset of
the vessels beneath a given horizontal plane changes as the plane rises from below the brain to above
it (Section 4.1). Another of our methods records the evolution of independent loops contained in the
ε-neighborhood of the tree as ε increases from 0 to ∞ (Section 4.2). In either method, for each tree
the topological information is recorded in a persistence diagram, which is a finite set of points above
the main diagonal in the positive quadrant of the Cartesian plane. These diagrams are turned into
feature vectors in a variety of ways, resulting in several statistical analyses, detailed in Section 5.

This work fits into the framework of Object Oriented Data Analysis (OODA, [33], and also [24]
for a current overview). In particular, the concept of data object here serves as a platform for inter-
disciplinary discussion of a type that lies at the core of complicated data analyses. The transition
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Figure 1: Tree of arteries from the brain of one person, showing one data object. Thickest arteries appear near
the bottom. Arteries bend, twist, and branch through three dimensions, which results in meaningful aspects
of the data being captured by persistent homology representations.

from 3-dimensional tubular image to persistence diagram to feature vector, with only the latter be-
ing amenable to standard linear statistics, demonstrates the power of the notion of data object to
incorporate data representation, in contrast to the concept of experimental unit in [23].

2 Brain artery trees

Each data point in this study is the tree of arteries in the brain of one person, collected by tube-tracking
vessel segmentation from 3-dimensional Magnetic Resonance Angiography (MRA) images followed by
a combination of automatic and manual assembly into trees. Aylward and Bullitt [3] and Aydin et
al. [2] describe and discuss this process. A visual (2-dimensional) rendering of one such reconstructed
tree is shown in Figure 1. The full data set consists of n = 98 such trees from people whose ages range
from 18 to 72 years old. While the long-term goal of study is to develop methods for exploring stroke
tendency, and perhaps to develop diagnostics for brain cancer based on vasculature, pathological cases
were deliberately excluded from the Handle dataset, with the idea of first understanding variation in
the population of non-pathological cases. The only remaining interesting covariates are age and sex;
understanding correlations with these is the central goal of this study.

2.1 Earlier analyses

Among the earlier analyses of this and closely related data sets, the first was by Bullitt, et al. in
[9], who studied simple summaries of each data tree, such as overall branch length and also average
branch thickness, which were both seen to be significantly correlated with age. A clear avenue for
refinement of that approach is to make better use of the large amount of additional information
available in this rich data set, such as the tree topologies, and also the multiple individual branch
locations, structures, widths, and so on. Early approaches to this, such as [33] or [2], chose to focus
solely on the combinatorics of the branching structure, ignoring other aspects such as thickness or the
geometry of the 3-dimensional embedding. The latter paper found statistically significant age effects.
These age effects were studied more deeply using the notion of tree smoothing developed by Wang et
al. in [34].

A much different approach to this data set was taken by Shen et al. in [31], based on representations
of planar binary trees via Dyck paths, an early appearance of which came in probability theory of
branching processes [18]. The bijection represents each planar binary tree as a function, allowing
application of standard asymptotic methods when trees are viewed as random objects. Adaption to
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the brain artery tree dataset had the goal of making available the large array of methods available
for Functional Data Analysis (FDA), where the data objects are curves such as graphs of univariate
functions; see [30, 29]. Dyck path analysis of the brain tree data found more significant correlation
with age as well as the first indication of a significant sex effect.

A drawback of the above approaches to tree data analysis is that they require 2-dimensional
embedding of the given 3-dimensional tree structure, as noted in Section 2.1 of [2] and Section 2.1
of Shen et al. [31]. For each non-leaf node, a choice must be made as to which child node goes on
the left and which goes on the right (if the tree is not binary, then an ordering of the node’s children
is required). While ad hoc methods were used to reasonable effect in those papers, it is natural
to suspect that they result in loss of statistical efficiency. This issue can be seen as an instance
of the correspondence problem: planar embedding necessarily violates any consistent, anatomically
meaningful assignment of 3-dimensional features across objects in this dataset.

An approach to overcoming this problem is based on the concept of phylogenetic tree from evolu-
tionary biology; see [19] for a good introduction to this area, and [8] for an insightful mathematical
treatment. A major challenge in applying this idea to a set of brain artery trees is that phylogenetic
trees require a fixed underlying set of leaves, while brain artery trees have leaves that appear where
the vessel thickness passes below the imaging resolution of MRA, locations of which vary across cases.
One way to resolve this problem was implemented by Skwerer et al. [32], who used additional cortical
surface information plus a correspondence technique to produce a common set of landmarks, which
became the leaves. That paper went on to find statistically significant age and gender effects, some
of which were stronger than those previously found.

For additional treatments of tree-structured data objects that did not analyze this data set, Feragen
et al. [15] developed an approach that avoids both the planar embedding and fixed-leaf-set problems,
and Nye [27] invented an analogue of principal component analysis for phylogenetic trees. Hotz et al.
[20], followed by Barden et al. [4, 5] have investigated surprising non-standard central limit theory in
phylogenetic tree spaces.

3 Persistent homology analysis of brain arteries

The present investigation takes a completely different approach, using topological data analysis (TDA);
see [14] for a good introduction to that set of ideas. We postpone to Sections 4 and 5 a review of
precise definitions of key terms from TDA and the detailed extraction of useful features for statistical
analysis. In this section, we confine ourselves to a loose, intuitive description of these features, and we
describe the striking age and sex effects found using this new feature set. We also demonstrate that
these effects are independent of coarser geometric measures, such as total artery length or average
branch thickness, used in the earliest analyses.

3.1 Intuition

The methodology developed here provides a direct and quantitative description, in the form of nu-
merical features usable for statistical analysis, of the way arterial structure occupies space within the
3-dimensional geometry of the brain. Although a full description is deferred to the next section, we
illustrate some of what this means here, with the aid of the tree in Figure 2.

First, looking near the bottom of Figure 2, notice a large S-shaped bend in the arterial structure.
Bends such as these, and other much tighter bends, occur throughout the tree. The technique of
zero-dimensional persistent homology locates these bends and measures their sizes. TDA summarizes
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Figure 2: A MATLAB rendering of the brain artery tree of Patient 1. Highlighted in pink is one of the loops
formed by thickening the artery tree within the brain. Also found are some of the loops and bends made by
the artery tree within the 3-dimensional geometry of the brain.

these sizes as a sequence p1 > p2 > · · · of non-negative numbers, where pi is the size of the i-th largest
bend in a particular brain.

For a different flavor of geometry, imagine gradually thickening each artery so that the tree begins
to fill the 3-dimensional space containing it. Loops start to form (for example, the one outlined in
pink in the figure) and then eventually fill in. The time between when a loop forms and when it fills
in is called its persistence. The technique of one-dimensional persistent homology locates these loops
and measures their persistences, resulting in another sequence q1 > q2 > · · · of non-negative numbers.

Rigorous definitions of the above terms are given in the next two sections. For the rest of this
section, we suppress such details and focus only on the analysis of features derived from persistence.

3.2 Age effects

Figure 3 depicts a first population level view of the sets of numbers p1, . . . , p100 across the entire data
set of n = 98 brain trees. Two out of three panels in each row contain a set of n = 98 overlaid curves,
each of which is a parallel coordinates plot (see [21] for an overview of this graphical device): the
coordinates of each data vector are plotted as heights on the vertical axis as a function of the index,
in this case i = 1, . . . , 100. Color denotes age via a rainbow scheme starting with magenta for the
youngest (19), ranging smoothly through blue, green, yellow to red for the oldest (79). The upper left
panel shows the data curves, which already exhibit potential age structure in this sample, with the
younger people tending to appear near the top, and the older people near the bottom.

As elegantly illustrated in [30, 29], Principal Component Analysis (PCA) can reveal deeper struc-
ture in a sample of curves; see [22] for an introduction to that method in general. PCA starts at the
center of the data: the mean shown as a curve in the top center panel. Variation about the mean is
studied through the mean residuals, which are the data curves minus the mean, shown in the top right
panel. PCA next investigates modes of variation by finding orthogonal projections in the curve space
that represent maximal amounts of variation. Projections corresponding to the first PC are shown
in the left panel of the second row, which gives a more focused impression of younger people on the
top, and older people near the bottom. In PCA terminology, this is called a loadings plot, because
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Figure 3: PCA of vector representations. Raw data, mean and mean residuals are in the top row. Other rows
show loadings and scores for the first 3 PCs, i.e. modes of variation. Rainbow colors indicate age. Correlation
of PC1 and age is apparent, with warmer colors generally at the bottom and cooler colors generally at the top.

each curve is merely a multiple of the first eigenvector, whose entries are called loadings. The shape
of the curve gives insight concerning this component (mode of variation). In this case the variation
is all values moving in unison, being either large or small together. The center plot in the second
row shows the remaining variation, after subtracting the first component from the centered residuals.
Careful study of the vertical axes shows there is much less variation present. The second row right
panel shows the PC1 scores as horizontal coordinates of points (with age ordering for the vertical
coordinates) with corresponding rainbow colors, which are the coefficients of the projections shown in
the left panel. These show a clear correlation between age and PC1.

The second PC explains as much variation in the data as possible among directions orthogonal to
PC1. This shows the second major mode of variation in the data, which differs in how quickly the
values taper off. Similarly for PC3 (orthogonal to both earlier directions) in the bottom row. Note
that neither PC2 nor PC3 seems to have much visual connection with age, suggesting that most age
effects have been captured by PC1.

Figure 4 depicts an alternate PCA view of the data. This is a scores scatterplot : the scores are the
coefficients of the projections. Here each symbol represents a person (same rainbow coding for age
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Figure 4: Scatterplot of PC1 vs. PC2. Shows joint distribution of scores. Main lesson is PC1 appears strongly
correlated with age, but not PC2 does not.

color scheme as in Figure 3), with the PC1 score plotted on the vertical axis, and the PC2 score on the
horizontal. This scatterplot is the most variable two-dimensional projection of the data and thus is
generally useful for understanding relationships between data objects. In the current case, again the
rainbow color suggests an age gradient in the horizontal (PC1) direction. Figure 4 also allows study
of sex using symbols, with females represented by circles and males by plus signs. No apparent visual
gender differences can be seen here, but it is important to keep in mind this is only a two-dimensional
view of a 100-dimensional data space. This issue is explored more deeply at the end of this section.

A more direct study of the correlation between PC1 and age appears in Figure 5, which plots
the PC1 score as a function of age. The correlation is visually present, and the Pearson correlation
of ρ = 0.53 reflects it. A simple Gaussian-based hypothesis test against the null hypothesis of no
correlation shows a strongly significant p-value < 10−7.
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Figure 5: PC1 vs. age for the zero-dimensional topological features verifies strong correlation of PC1 with age.

The same analysis can be repeated for the loop-persistence-based numbers q1, . . . q100. Omitting
the lengthy development above, the key result can be seen in Figure 6, namely that the correlation
between PC1 and age is even stronger for this feature set: ρ = 0.61 with a p-value < 10−10.
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Pearson Correlation = 0.60937

p−val = 2.7669e−11

Figure 6: PC1 vs. age for the one-dimensional topological features exhibits even stronger correlation.

3.3 Total artery length

Early exploration of these data by Bullitt et al. [9] demonstrated that younger patients tend to have
longer total artery length L, a statement that might lead (as it led us) to justifiable skepticism about
the novelty of our findings. More precisely, we quantify the sizes of artery bends (and loops) at
different scales, and these sizes could plausibly be controlled by the total artery length of the tree:
speaking loosely, an attempt to jam a longer tree into the same skull would naturally lead to more
bending behavior.

To ensure we were not merely applying a complicated TDA machine to detect a simple geometric
phenomenon, we performed a more sophisticated analysis. For each i, linear regression between the
variables pi and L yields a residual p̂i. Replacing pi by p̂i in the analysis from Section 3.2 results in
an equally strong Pearson correlation of ρ = 0.52, with a p-value on the order of 10−8.

Geometrically motivated methods to control for effects of total artery length yield similarly neg-
ligible increases or decreases in Pearson correlation and p-value. These methods simply divide the
numbers pi by (i) L or (ii)

√
L or (iii) 3

√
L before running the analysis in Section 3.2. The exponents

on L correspond to physical models where vessel length (i) scales according to total linear skull size,
(ii) has constant flux (i.e. number of arteries passing) through each unit of cross-sectional area, or
(iii) remains constant per unit volume.

The strength and significance of correlation after controlling for total length breaks new ground in
the analysis of the brain artery data. In particular, the persistent homology analysis here is sensitive
to genuine multi-scale geometrical structure in the arterial systems, and does not simply reflect coarse
size aspects of the data.

Controlling for total length in the one-dimensional persistence analysis from Section 3.2 yields
decidedly weaker (but still non-negligible) age correlation: replacing the qi features with their residu-
als q̂i, after running a linear regression between each qi and L, results in Pearson correlation ρ = 0.35.

3.4 Sex effects

Also of interest is an investigation of potential differences in brain artery structure between the sexes.
Figure 4 provides a preliminary view: male cases are indicated with a plus sign, and females are
shown as circles. As noted in Section 3.2, meaningful sex difference is not apparent in this plot,
perhaps because PC1 seems to be driven more by the independent age difference. However, in high-
dimensional data analysis, simple visualization of the first few PC components is frequently revealed
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Figure 7: Illustration of DiProPerm results on the zero-dimensional persistence features. The left panel shows
the result of projecting the data onto the direction vector determined by the means, suggesting some difference.
The results of the permutation test are shown on the right, with the proportion of simulated differences that
are bigger than that observed in the original data giving an empirical p-value.

to be an inadequate method of understanding all important aspects of such data, because it is driven
entirely by variation, which can be a different goal.

A way to focus on desired effects in higher dimension is to calculate the arithmetic mean of the
vectors (p1, . . . , p100) corresponding to male subjects, to do the same for the female subjects, and then
compute the Euclidean distance between these means in R100. The size of this mean difference alone
does not tell much as a raw number, but a simple permutation test on the mean-difference statistic
reveals more: randomly reassign the 98 vectors into two groups of equal size, compute the difference
between the means of the two groups, and repeat this procedure 1000 times. This method has been
called DiProPerm in [35], and is illustrated in Figure 7.

In our test, 119 of the reassignments led to a larger mean-difference than the original male–female
split, giving an estimated p-value of 0.1, which is not impressive. However, we then repeated the
entire procedure for the loop-vectors (q1, . . . , q100), and found a more compelling p-value of 0.032.

In Section 5, we demonstrate that a more thorough analysis of feature selection results in even
lower p-values for sex difference. These results are stronger than those in [31], which is the only other
study to find a statistically significant sex difference in this data set.

4 Topological data analysis methods

We now give a more thorough discussion of topological data analysis, in particular the zero- and
one-dimensional persistence diagrams, from which the features pi and qi in Section 3 are extracted.
Put briefly, a persistence diagram provides a compact two-dimensional record of the geometric and
topological changes that occur as an object in space is built in stages.

A rigorous description of persistence diagrams in their most general context requires background
from algebraic topology. Fortunately, the applications in this paper involve the simplest type of
persistence diagram, which tracks the appearance and disappearance of connected components in
a filtered graph, as well as a slightly more complicated diagram, which tracks the formation and
destruction of loops in a thickening object. This section contains a fully rigorous description of the
first type of diagram, a broadly intuitive description of the second, and the details of how our initial
artery tree data objects produce both types. Interpretation of these diagrams across a population
requires the statistical analysis outlined in Section 5, but the current section demonstrates, via a few
examples, the major features they are meant to isolate.

For more information on persistence diagrams in general, see [14] or [10]. For a fully detailed,
rigorous exposition of what we outline here, see [11].
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Figure 8: On the left, a graph G. The function h measures height in the vertical direction, and the persis-
tence diagram Dgm0(h) is shown on the right. The coordinates of the dots are, reading from right to left,
(h(A),∞), (h(B), h(H)), (h(C), h(F )), and (h(D), h(E)).

4.1 Height functions and connected components

4.1.1 Graphs and critical values

Let G be a graph [36], which loosely speaking is a set V of vertices with specified pairs from V joined
by edges. Fix a real-valued function h : V → R. For simplicity of exposition, assume h(v) = h(w)
only if v = w. As a working example, let G be the graph embedded in the plane as shown on the left
side of Figure 8, and let h(v) be the height of vertex v as measured in the vertical direction. Extend h
to a function on the edge set by setting h((v, w)) = max(h(v), h(w)) for each edge (v, w) of G.

The persistence diagram Dgm0(h) takes G and h as input and returns as output a multi-scale
summary of the component evolution of the threshold sets of h. This output is robust with respect
to small perturbations of h [12, Section 3]. We now explain in more detail what this means.

For each real number r, define G(r) to be the full subgraph on the vertices with h-value at most r.
For example, in Figure 8, G(r) is empty if r < h(A) and G(r) = G whenever r ≥ h(H). The graph G
itself consists of only one connected component, but we are far more interested in what happens for
values of r between h(A) and h(H).

To be precise, label the vertices v1, . . . , vN by ascending order of h-value, choose real numbers ri
such that h(vi) < ri < h(vi+1), and set G(i) = G(ri). Define the lower link L(i) of the vertex vi to be
the set of vertices adjacent to vi that have lower h-value than vi does. Persistent homology records
how the number β0(i) of connected components of G(i) changes as i increases.

Observe that G has a nested sequence of subgraphs, starting with the empty subgraph,

∅ = G(0) ⊂ G(1) ⊂ G(2) ⊂ · · · ⊂ G(N) = G. (1)

New components appear and then join with older components as the threshold parameter increases.
For the graph in Figure 8, four snapshots in this evolution appear in Figure 9.

If β0(i) = β0(i − 1), then h(vi) is a regular value; this happens precisely when L(i) is a single
vertex. Otherwise, h(vi) is a critical value. In Figure 8, the critical values are the h-values of the
letter-labeled vertices.

When h(vi) is a critical value, precisely one of the following two things happens when passing from
G(i− 1) to G(i).

9



Figure 9: Four threshold sets for the function shown in Figure 8, with increasing threshold value from left to
right. The component born at the far left only dies as it enters the far right, while the much shorter-lived
component born left of center dies entering the very next step.

• β0(i) = β0(i − 1) + 1: this happens when L(i) is empty. In this case, a new component Ci is
born at h(vi), and we associate Ci with vi for the rest of its existence. The first birth in our
example happens at h(A), where the threshold graph changes from the empty set to a single
vertex. Subsequent component births can be seen in the far left and center left of Figure 9.

• β0(i) = β0(i− 1)− k for some integer k ≥ 1: this happens when L(i) consists of k + 1 vertices.
In this case, k components die at h(vi); the only one that remains alive is the one associated to
the vertex in L(i) with lowest h-value. For example, referring again to Figure 9, the components
born at the far left and center left die when entering the far right and center right, respectively.

4.1.2 Persistence diagrams

The evolution of connected components is compactly summarized in the persistence diagram Dgm0(h).
This is a multiset of dots in the plane R2, meaning that each dot occurs with positive integer (or
infinite) multiplicity. A dot of multiplicity k at the planar point (a, b) indicates that k components
are born at h-value a and die at h-value b. A component that is born at a but never dies corresponds
to a dot (a,∞) in the diagram, so R2 is extended to allow such points. All of the dots in Dgm0 lie
above the major diagonal y = x, since birth must always precede death. For technical reasons that
will become clear below, we also add a dot of infinite multiplicity at each point (x, x) on the major
diagonal itself. The diagram for our example is on the right side of Figure 8.

The persistence of a dot u = (a, b) is defined to be pers(u) = b − a, the vertical distance to the
major diagonal. Each such dot corresponds to a component C that

• is not present in any of the graphs before threshold value a,

• exists as its own independent component for every threshold value between a and b, and

• joins with another component, born at or before a, exactly at the threshold value b.

Hence the persistence b − a indicates the lifetime of this feature as an independent component. The
actual geometric meaning of this lifetime can vary. For example, in Figures 8 and 9, the small-
persistence dot u = (h(D), h(E)) points to the existence of a small “wobble” in the graph, as seen by
the height function h. On the other hand, the large-persistence dot v = (h(C), h(F )) reflects an arm
of the tree that is very long, again as measured in the vertical direction.

A general heuristic for interpreting these diagrams is to say that the smaller the persistence of a
dot is, the more likely its corresponding feature is to be caused by measurement error or other noise.
A small change in the values of h, for example, could remove the small wobble that u indicates. This
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Figure 10: On the left, functions f and g, shown in black and red, respectively. On the right, their persistence
diagrams, with the same color scheme. The optimal bijection between Dgm0(g) and Dgm0(f) matches the
three high-persistence dots together, and matches the extra red low-persistence dots to the black diagonal.

interpretation can be given more rigor by the Stability Theorem described below. That said, there
is no guarantee of persistence being correlated with importance, just with reliability. Indeed, one of
the findings in Section 5 is that dots of not-particularly-high persistence have the most distinguishing
power in our specific application.

4.1.3 Stability

We have outlined a tool that takes as input a real-valued function h on a graph and returns a diagram
Dgm0(h) as output. This tool would be useless if it were not robust to small changes in the input
function. For example, consider the left side of Figure 10, which shows two functions f (black) and g
(red) defined on the same interval; in this case, imagine that G is a simple path and the curves drawn
indicate function values as height. Since g is just a noisy version of f , data analysis would fail to be
robust if Dgm0(g) differed too greatly from Dgm0(f). Examining the right side of the same figure,
the major features of the two diagrams are very close, the only difference being three extra red dots
that lie very close to the diagonal, corresponding to the low-persistence wobbles in the red function.

There are several metrics on the set of all persistence diagrams, but all of them see these diagrams
as being close to each other. For example, let D and D′ be two diagrams and choose a number
p ∈ [1,∞). For each bijection φ : D → D′, define its cost to be

Cp(φ) =
(∑
u∈D
||u− φ(u)||p

) 1
p

.

Such bijections always exist, due to the infinite multiplicity of every diagonal dot in each diagram.
The p-th Wasserstein distance Wp(D,D

′) between the two diagrams is the infimum cost Cp(φ) as φ
ranges over all possible bijections. Many technical results (for example, [12, 13]) all basically say that,
under mild conditions, Wp(Dgm0(f),Dgm0(g)) ≤ K||f − g||∞.

4.2 Thickening and loops

Having focused the previous discussion on connected components, we now turn to the other type of
persistence diagram used in our analysis. Let Y be a compact subset of some Euclidean space RD.
For each non-negative α, define Yα to be the set of points in RD whose distance from Y is at most α.
As α increases, loops appear and then subsequently fill in. Just as above, plot the birth and death
times of each loop as dots in the plane, and call the multiset of all such dots the one-dimensional
persistence diagram Dgm1(Y).

11



(a) Point cloud Y (b) Thickening of Y (c) Persistence diagram Dgm1(Y)

Figure 11: Point cloud to persistence diagram

4.2.1 Example

Suppose that Y is the point cloud shown on the left of Figure 11. Each Yα is the union of closed balls
of radius α centered at the points of Y; one such thickening is shown in the middle of the same figure.
The persistence diagram Dgm1(Y) is on the right.

To explain the diagram, pretend that Y has been sampled from an underlying space suggested
by the point cloud. The two dots of highest persistence correspond to the two larger loops; the one
with later birth time corresponds to the leftmost loop, which reflects the sparser density of sampling
there. The smaller loops are indicated by the two dots of next highest persistence. Finally, the group
of dots that sit almost on the diagonal are caused by little loops that quickly come and go as the
points thicken, as the result of holes between small, increasingly overlapping convex sets; dots like
these would appear no matter what shape underlies the point cloud.

4.2.2 Stability

As with connected components, these loop diagrams are stable with respect to perturbations of the
input, in the following sense. The Hausdorff distance dH(Y,Y′) between two compact sets is the
smallest ε such that Y ⊆ Y′ε and Y′ ⊆ Yε. For example, the set Y′ (in red) on the left of Figure 12
is close to our original set Y (in blue) in this metric. The work of Cohen-Steiner et al. ([12], [13])
implies that Wp(Dgm1(Y),Dgm1(Y′)) ≤ K · dH(Y,Y′), as illustrated on the right of this figure. A
powerful consequence of this result arises when Y′ is a small but dense sub-sampling of Y: stability
ensures that the persistence diagram Dgm1(Y) can be well approximated by the diagram derived from
the sub-sample, a fact we apply in our analysis of brain artery trees.

4.3 From trees to diagrams

For persistence via connected components, our function h on each tree T is height: the value
h(v) at each vertex v = (x, y, z) is its third coordinate z, and on each edge (u, v) the value is
h(u, v) = max{h(u), h(v)}. We computed Dgm0(h) as in Section 4.1, with a simple (and fast) union-
find algorithm, running in O(N logN), where N is the number of vertices of T .

The running time for one-dimensional persistence is much slower, so we did not compute the full-
resolution persistence diagrams Dgm1(T ) associated to the thickening of each tree T within the brain.
Instead, we sub-sampled each tree branch to produce a set of 3000 total vertices per tree. In contrast,
each tree in the original dataset has on the order of 105 vertices, spread among roughly 200–300 tree
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(a) Point cloud Y′ (b) Persistence diagrams

Figure 12: Illustration of stability of persistence diagrams. Two point clouds (blue and red) that are close in
Hausdorff distance are on the left, and their corresponding persistence diagrams are on the right.

branches. The stability theorem for persistent homology provides theoretical guarantees that our
sub-sampling procedure does not cause great change to the resulting persistence diagrams.

Figure 13 shows the results of this analysis on the brain tree of a 24-year old subject: from left
to right are the brain tree, the 0-dimensional diagram, and the 1-dimensional diagram. Compare this
to Figure 14, which shows a 68-year old subject. Some qualitative differences might be noticed from
these two diagrams, but to give them any quantitative backing requires actual statistical analysis of
the diagram population, which we describe in the next section.

(a) Brain tree (b) Dgm0 (c) Dgm1

Figure 13: Persistent homology data objects from a 24-year old. Left: brain tree. Middle: zero-dimensional
diagram. Right: one-dimensional diagram.

(a) Brain tree (b) Dgm0 (c) Dgm1

Figure 14: Persistent homology data objects from a 68-year old. Left: brain tree. Middle: zero-dimensional
diagram. Right: one-dimensional diagram.
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5 Detailed analysis of brain artery data

The methods in prior sections generate persistence diagrams to summarize brain artery trees. From
there, statistical analysis can proceed either with further summarization or without. As the analysis
in Section 3 shows, vector-based summaries can capture substantial structure while maintaining the
possibility to apply the full range of standard statistical analyses. This section describes our approach
in more detail and then examines the effect of changes in feature selection.

Our admittedly ad hoc method to turn diagrams into feature vectors is justified somewhat by the
nature of the geometry it is intended to capture, but also by the excellent age and sex effects it reveals.
Other approaches to the same problem include binning the plane and then turning each diagram into
an integral vector consisting of bin counts, as in [6], or basing features on more sophisticated algebraic
geometry, as advocated in [1].

We settled on vector-based analyses as a middle ground. In general, simple numerical summaries,
such as total persistence or total number of dots, miss too much useful information to be potent. At
the opposite extreme, it is possible to work directly populations of persistence diagrams, basing the
analysis on metrics such as the Wasserstein metric Wp in Section 4.1.3. For example, Gamble and
Heo [17] found interesting structure using multidimensional scaling with a Wp-dissimilarity matrix
computed from a set of persistence diagrams, each one associated with a set of landmarks on a
single tooth. One could go further, using methods such as the Fréchet mean approach of Mileyko et
al. [25] to find the center of the data followed by multidimensional scaling to analyze variation about
the mean. We opted not to go that route because computation of the Wp-metric is generally very
expensive. Another possibility, which we have not yet investigated, would be to use Bubenik’s theory
of persistence landscapes [7] to translate the problem into one of functional data analysis.

Initial approach. For each of the n = 98 zero-dimensional persistence diagrams, we computed the
persistence of each dot; recall a dot has coordinates (b, d), where b is birth and d is death, and that
its persistence is d − b. We then sorted these persistences in descending order, and picked the first
100 to produce a vector (p1, p2, . . . , p100) for each brain. In other words, the i-th coordinate of this
vector represents the size of the i-th largest “bend” in the brain, as measured in the vertical direction.
The same procedure on the one-dimensional diagrams led to the vectors (q1, q2, . . . , q100), so that the
number qj represents the size of the j-th most persistent loop in the brain. Both sets of vectors were
used in the age and sex analyses in Section 3.

Feature scale. Are the observed age correlations being driven more by the high-persistence features
or by the lower-scale ones? In addition, does restricting to the 100 most persistent dots miss useful
information? To pursue these questions, we created the following sets of vectors, for each pair of
positive integers n < N ≤ 200 :

• pn,N = (pn, . . . , pN ) ∈ RN−n+1,

• qn,N = (qn, . . . , qN ) ∈ RN−n+1.

Using this notation, the original vectors used in our analysis were p1,100 and q1,100.
Extensive analysis of this feature set led to the heat map shown in Figure 15. The horizontal

and vertical axes indicate n and N , respectively, while the color at coordinates (n,N) shows the age
correlation value ρ(n,N) obtained by running our analysis on the vectors pn,N . Color in the lower
diagonal part of the plot codes correlation, ranging from very dark red (lowest) through hotter colors
to white (highest correlation). The bottom of the color range is 0.29 and the top is 0.56, chosen to
maximize use of the color scale.
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Figure 15: Age correlation heat map for features extracted from zero-dimensional persistent homology analysis.
Color indicates the value of the function ρ(n,N), which is the age correlation derived from the vectors pn,N ,
with n on the horizontal axis and N on the vertical. The upper-right black triangle is meaningless, as n > N
does not lead to a vector in our scheme.

Figure 15 contains a lot of useful information. First, the small red area in the upper left indicates
that the highest-persistence features alone had far less distinguishing power with respect to age;
indeed, the two highest persistences p1 and p2 lead only to an age correlation of ρ = 0.26. On the
other hand, the rest of the lower triangle shows a fairly uniform, and high, age correlation, leading
to the surprising conclusion that one need only include some of the more medium-scale persistence
features to obtain good age effects. In fact, the length of the 28-th longest bar alone is a numerical
feature that yields near-optimal correlation. The same analysis performed on the one-dimensional
features produced a very similar pattern, not shown here.

The medium scale at which age correlation is optimized suggests a reason why, in the initial stages
of our connected component analysis (Section 4.1), we found negligible differences in the strength of
correlation or significance upon filtering in various directions other than upward. Probably it is due to
the stochastic nature of blood vessel formation in the brain at the relevant scale: while large features
common to all human brains might have natural ventral-dorsal orientation—such might be the case
for major arteries that branch from the circle of Willis and arch up to the top of the brain and back
down—the medium-sized features driving the observed correlations are apparently random enough to
be devoid of natural orientation, statistically speaking.

Recall from Section 3 that a permutation test on the vectors q1,100 found a significant (p = 0.032)
separation between male and female subjects. One can also calculate the sex-difference significance
p(n,N) obtained by running an identical analysis on the vectors qn,N . The resulting pattern turns
out to be similar to the findings for age correlation, but even more stark. Analyses that use only the
most persistent loops do not give clear sex separation; for example, p(1, 2) is only 0.21. On the other
hand, every single value of p(n,N) with N > 30 lands below the significance level of 0.05, with the
minimum value being p(189, 192) = 0.013. The heat map in Figure 16 displays all of these values
at once (darker is lower, and hence more significant), and the near-uniformity of the sex-difference
significance is evident.
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Figure 16: Sex difference significance heat map for features extracted from one-dimensional persistent ho-
mology analysis. Color indicates the value of the function p(n,N), which is the significance, derived via
permuation test, of the difference between the male and the female vectors qn,N , with n on the horizontal
axis and N on the vertical. The upper-right black triangle is meaningless, as n > N does not lead to a vector
in our scheme. To provide good contrast between the values, a color scheme running from 0.1 (white) to 0
(black) was chosen. A few values are actually above 0.1 and are simply shown as white in this scheme.

6 Discusssion

This paper takes analysis of the brain artery tree data in the entirely new direction of persistent
homology. This topological analysis approach to data object representation gives stronger results
than those from alternative representations used in earlier studies. This is the first study to find
significant results even after controlling for total artery length.

The lessons here are intended to suggest the power of these tools, rather than to be anatomically
conclusive, so multiple comparison issues have not been carefully accounted for. This serves to make
the main ideas more accessible than they would be with a careful family-wise error rate, or false
discovery rate analysis. Interesting future work is to apply these powerful new methods to other data
sets of tree-structured (or otherwise 1-dimensional) objects. An important example of this is the
airway data set of Feragan et al. [16].

Finally, we note that the original data objects under consideration in this paper were not the
actual sets of arteries in 98 human brains; rather, they were the outputs of 98 runs of the tube-
tracking algorithm from [2]. Like all algorithms that process raw data, that algorithm introduces
artifacts, leading to the worry that analysis of its output data objects may be picking up more on
error than on signal. In our case, this worry applies to the zero-dimensional analysis, which looks
at component evolution in a given tree. In contrast, the loop analysis thickens a point sample from
each tree into three-dimensional space, so the stability theorem for persistent homology ensures that
replacing the given tree with a slightly modified version—even one whose connectivity properties
differ from the output of the tube-tracking algorithm—does not cause great changes in the persistence
diagram. An interesting new paper [26] uses persistent homology methods to aid in artifact-reduction
in the actual “upstream” production of the artery trees. It would be valuable to run our analytical
methods on these new data objects to see if significant changes result.
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