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Abstract

The dynamics of a population undergoing selection is a central topic in evolutionary biol-
ogy. This question is particularly intriguing in the case where selective forces act in opposing
directions at two population scales. For example, a fast-replicating virus strain out-competes
slower-replicating strains at the within-host scale. However, if the fast-replicating strain
causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-
replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn
process which models this type of phenomenon. We prove the weak convergence of this
process under two natural scalings. The first scaling leads to a deterministic nonlinear
integro-partial differential equation on the interval [0, 1] with dependence on a single param-
eter, λ. We show that the fixed points of this differential equation are Beta distributions and
that their stability depends on λ and the behavior of the initial data around 1. The second
scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic
process that is frequently associated with a population genetics.

1. Introduction

We study the model, introduced in [13], of a trait that is advantageous at a local or indi-
vidual level but disadvantageous at a larger scale or group level. For example, an infectious
virus strain that replicates rapidly within its host will outcompete other virus strains in the
host. However, if infection with a heavy viral load is incapacitating and prevents the host
from transmitting the virus, the rapidly replicating strain may not be as prevalent in the
overall host population as a slow replicating strain.

A simple mathematical formulation of this phenomenon is as follows. Consider a popu-
lation of m ∈ N groups. Each group contains n ∈ N individuals. There are two types of
individuals: type I individuals are selectively advantageous at the individual (I) level and
type G individuals are selectively advantageous at the group (G) level. Replication and se-
lection occur concurrently at the individual and group level according to the Moran process
[6] and are illustrated in Fig 1. Type I individuals replicate at rate 1 + s, s ≥ 0 and type
G individuals at rate 1. When an individual gives birth, another individual in the same
group is selected uniformly at random to die. To reflect the antagonism at the higher level
of selection, groups replicate at a rate which increases with the number of type G indivduals
they contain. As a simple case, we take this rate to be w(1 + r k

n
), where k

n
is the fraction of

indivduals in the group that are type G, r ≥ 0 is the selection coefficient at the group level,
and w > 0 is the ratio of the rate of group-level events to the rate of individual-level events.
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Figure 1. Schematic of the particle process. (a) Left: A population of m = 3
groups, each with n = 3 individuals of either type G (filled small circles) or type
I (open small circles). Middle: A type I individual replicates in group 3 and a
type G individual is chosen uniformly at random from group 3 to die. Right:
Group 1 replicates and produces group 2′. Group 2 is chosen uniformly at
random to die. (b) The states in (a) mapped to a particle process. Left : Group
2 has no type G individuals, represented by ball 2 in urn 0. Similarly, group 3
is represented by ball 3 in urn 2 and group 1 by ball 1 in urn 3. Middle: The
number of type G individuals in group 3 decreases from two to one, therefore
ball 3 moves to urn 1. Right : A group with zero type G individuals dies, while
a group with three type G individuals is born. Therefore ball 2 leaves urn 0
and appears in urn 3 as ball 2′.

More general functions for the group replication rate are possible, though the subsequent
analysis of the model may be less tractable. As with the individual level, the population
of groups is maintained at m by selecting a group uniformly at random to die whenever a
group replicates. The offspring of groups are assumed to be identical to their parent.

As illustrated in Fig 1, this two-level process is equivalent to a ball-and-urn or particle
process, where each particle represents a group and its position corresponds to the number
of type G individuals that are in it.

Let X i
t be the number of type G individuals in group i at time t. Then

µm,nt :=
1

m

m∑
i=1

δXi
t/n

is the empirical measure at time t for a given number of groups m and individuals per group
n. δx(y) = 1 if x = y and zero otherwise. The X i

t are divided by n so that µm,nt is a
probability measure on En := {0, 1

n
, . . . , 1}.

For fixed T > 0, µm,nt ∈ D([0, T ],P(En)), the set of càdlàg processes on [0, T ] taking
values in P(En), where P(S) is the set of probability measures on a set S. With the particle
process described above, µm,nt has generator

(Lm,nψ)(v) =
∑
i,j

(R1 + wR2)(v, vij)[ψ(vij)− ψ(v)](1)



SCALING LIMITS OF A MODEL FOR SELECTION AT TWO SCALES 3

where vij := v + 1
m

(δ j
n
− δ i

n
), ψ ∈ Cb(P([0, 1])) are bounded continuous functions, and

v ∈ P(En) ⊂ P([0, 1]). The transition rates (R1 + wR2) are given by

R1 (v, vij) =

 mv( i
n
)i
(
1− i

n

)
(1 + s) if j = i− 1, i < n

mv( i
n
)i
(
1− i

n

)
if j = i+ 1, i > 0

0 otherwise

and
R2 (v, vij) = mv( i

n
)v( j

n
)(1 + r j

n
).

R1 represents individual-level events while R2 represents group-level events.
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NSF for its support though DMS-08-54879. SL would like to thank support from the NSF
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2. Main results

We prove the weak convergence of this measure-valued process as m,n → ∞ under two
natural scalings. The first scaling leads to a deterministic partial differential equation. We
derive a closed-form expression for the solution of this equation and study its steady-state
behavior. The second scaling leads to an infinite dimensional stochastic process, namely a
Fleming-Viot process.

Let us briefly introduce some notation. By m,n → ∞ we mean a sequence {(mk, nk)}k
such that for any N , there is an n0 such that if k ≥ n0, mk, nk ≥ N . We define 〈f, v〉 =∫ 1

0
f(x)v(dx) where f is a test function and v a measure. Lastly, δx will denote the delta

measure for both continuous and discrete state spaces.
To provide intuition for the two scalings and the corresponding limits, take ψ to be of the

form ψ(v) = F (〈g, v〉), where g is some suitable function on [0, 1], and apply the generator
in (1) to it:

Lm,nψ(µ) = F ′ ·
{∑[

1
n
g′′( i

n
)− sg′( i

n
)
]
i
n
(1− i

n
)µ( i

n
)

+ wr
[∑

i
n
g( i

n
)µ( i

n
)−

∑
g( i

n
)µ( i

n
)
∑

j
n
µ( j

n
)
]}

+ 1
m
wF ′′ ·

{∑
g( i

n
)2µ( i

n
)−

(∑
g( i

n
)µ( i

n
)
)2

+ 1
2
r
∑

(g( j
n
)− g( i

n
)2 j
n
µ( j

n
)µ( i

n
)
}

+ o( 1
m

) + o( 1
n
)

This suggests two natural scalings. The first is to take m,n → ∞ without rescaling any
parameters. The g′′ and F ′′ terms vanish and we have a deterministic process. The precise
statement of the weak convergence of the finite state space system to the deterministic limit
is in terms of a weak measure-valued solution to a partial differential equation:

Theorem 1. Suppose the particles in the system described by µm,nt are initially independently
and identically distributed according to the measure µm,n0 , where µm,n0 → µ0 ∈ P([0, 1]) as
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m,n → ∞. Then, as m,n → ∞, µm,nt → µt ∈ D([0, T ],P([0, 1])) weakly, where µt solves
the differential equation

d
dt
〈f, µt〉 = −〈x(1− x)f ′, µt〉+ λ [〈xf, µt〉 − 〈f, µt〉〈x, µt〉](2)

for any positive-valued test function f ∈ C1([0, 1]) and with initial condition 〈f, µ0〉. Here,
λ := wr

s
and time has been sped up by a factor of s.

Throughout we will denote the measure-valued solutions to (2) by µt(dx). We note that
strong, density-valued solutions, denoted by ηt(x), solve:

∂
∂t
ηt = ∂

∂x
[x(1− x)ηt] + ληt ·

(
x−

∫ 1

0

yηt(y)dy

)
(3)

with initial density η0(x). In this more transparent form one can see that the first term on
the right is a flux term that transports density towards x = 0 whereas the second term is a
forcing term that increases the density at values of x above the mean of the density. The flux
corresponds to the individual-level moves: nearest neighbor moves in the particle system.
The forcing term corresponds to group-level moves: moves to occupied sites in the particle
system.

We will see that if we start with an initial measure µ0 which is the sum of delta measures,
then the solution µt retains the same form. More explicitly, if

µ0(dx) =
∑
i

ai(0)δxi(0)(dx)

where xi(0) ∈ [0, 1], ai(0) > 0, and
∑
ai(0) = 1, then we will see (from Lemma 5) that the

solution µt to (2) has the form

µt(dx) =
∑
i

ai(t)δxi(t)(dx) .

Moreover, the parameters (ai(t), xi(t)) satisfy the following set of coupled equations

(4)


dxi
dt

= −xi(1− xi)

dai
dt

= λai

(
xi − 〈y, µt〉

)
= λai

(
xi −

∑
j

ajxj

)
.

Notice that the positions of the delta masses change according to a negative logistic function,
independently of the other masses and the density. The weight ai increases at time t if the
position of the particle xi is above the mean,

∑
ajxj, and decreases if it is below the mean.

To build intuition, it is instructive to consider some simple examples of this form.

Example 1. According to (4), if µ0 = δ1, then µt = µ0. This can also be seen directly from
(2). In the case of an initial condition containing some delta mass at 1, all of the rest of
the mass will migrate towards zero. Eventually all of the mass will be below the mean as
the mass at one will not move and will ever be increasing its mass as it is always above the
mean. Once this happens it is clear that all of the mass will drain from all of the points not
at one and hence µt → δ1 as t→∞. This reasoning holds in a more general setting and is
included in Theorem 3.



SCALING LIMITS OF A MODEL FOR SELECTION AT TWO SCALES 5

Example 2. According to (4), if µ0 = δ0, then µt = µ0. This too can be seen directly from
(2). In the case of an initial condition containing no mass at one and only finite number
of masses total, the mass will eventually all move towards zero and hence hence µt → δ0 as
t→∞. If an infinite number of masses are allowed the situation is not as simple. Theorem 3
hints at the possible complications by giving an example of a density which is invariant.

Though δ0 is a fixed point of the system attracting many initial configurations, it is not
Lyapunov stable. This means that even small perturbations of δ0 can lead to an arbitrary
large excursion away from δ0 even though the system eventually returns to δ0. Rather
than making a precise statement which would require quantifying the size of a perturbation,
consider the example of µ0 = (1 − ε)δ0 + εδ1−α. As ε → 0, the distance between µ0 and δ0
goes to zero in any reasonable metric. If we write µt = (1− at)δ0 + atδxt then as α→ 0 one
can ensure that the system spends arbitrarily long time with xt >

1
2

and hence at will grow
to as close to one as one wants in this time. Thus the system could be described as making
an an arbitrarily big excursion away from δ0 even though µt → δ0 as t→∞.

It natural to ask if there are other fixed points beyond δ0 and δ1.

Lemma 2 (Fixed points). The measures delta δ0, δ1, and densities in the Beta(λ − α, α)
family of distributions:

1

B(λ− α, α)
xλ−α−1(1− x)α−1

with α ∈ (0, λ), are fixed points of (2). B(λ− α, α) is the normalizing constant that makes
the density integrate to 1 over the interval [0, 1].

For measure-valued initial data, we show that the basins of attraction for the fixed points
are determined by whether they charge the point x = 1 and their Hölder exponent around
x = 1.

Theorem 3 (Steady state behavior). Consider measure valued solution µt(dx) to (2) with
initial probability measure µ0(dx). If µ0({1}) > 0 then

µt → δ1 as t→∞
and if µ0([1− ε, 1]) = 0 for some ε > 0 then

µt → δ0 as t→∞ .

Alternatively, suppose that for some α > 0 and C > 0

x−αµ0([1− x, 1])→ C as x→ 0 .

If α < λ, then

µt(dx)→ Beta(λ− α, α) as t→∞ .

Otherwise, if α ≥ λ,

µt(dx)→ δ0(dx) as t→∞

The results of Theorem 3 should be contrasted with the original Markov chain before taking
the limit m,n→∞. In the Markov chain, all individuals eventually become either entirely
type G or type I. These two homogeneous states are absorbing states for the individual level
dynamics. The population level state made of individuals that are all either homogeneous
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of type G or I is absorbing for the group level dynamics. Hence, the state of the system
eventually becomes composed entirely of homogeneous groups of solely G or I and stays in
that state for all future times.

These two absorbing states of the Markov chain, with finite m and n, correspond to the
states δ0 and δ1 in the scaling limit. Hence the natural discretization for the Beta distribution
to the lattice { k

n
: 0 < k < n}, given by

1

Z(m,n, λ, α)

(
k
n

)λ−α−1(
1− k

n

)α−1
,

cannot be invariant. (Here Z is the normalization constant which ensures the probabilities
sum to one.) However for large m and n, it is reasonable to expect it to be nearly invariant
in the sense that if the initial states {Xi(0) : 1 ≤ i ≤ m} are independent and distributed
as the discrete Beta distribution then the Markov chain dynamics will keep the distribution
close to the product of discretized Beta distributions for a long time. The expectation of
this time will grow to infinity as m,n→∞.

We will not pursue a rigorous proof of this near or quasi invariance here. Nonetheless,
we now briefly sketch the argument as we understand it, giving the central points. If the
distribution of the Markov chain is close to a product of discretized Beta distributions, then
the empirical mean will be highly concentrated around the mean of continuous Beta when
m and n are large. Hence the generator projected on to any Xi is nearly decoupled from
the other particles and close to being Markovian. More precisely, the dynamics of any fixed
Xi is well approximated in this setting by the one-dimensional Markov chain obtained by
replacing the mean of the empirical measure in the full generator with the mean of the
Beta distribution. It is straightforward to see that for m and n large the discretized Beta
distribution is an approximate left-eigenfunction of this one-dimensional generator with an
eigenvalue which goes to zero as m,n→∞.

All of these observations can be combined to show that if the systems starts in the product
discretized Beta distribution then it will say close to the product discretized Beta distribution
for a long time if m and n are large.

We now turn to the second scaling. Let s = σ
n
, r = ρ

m
, and n

m
→ θ, and let νm,nt denote the

empirical measure under this scaling. The terms F ′′ and g′′ in the generator (1) no longer
vanish and the process converges to a limit that is stochastic. Our weak convergence result
is proved and stated in terms of a martingale problem.

Theorem 4. Suppose n
m
→ θ, w = O(1), s = σ

n
, r = ρ

m
, and we speed up time by a

factor of n. Suppose the particles in the rescaled νm,nt process are initially independently and
identically distributed according to the measure νm,n0 where νm,n0 → ν0 as m,n → ∞. Then
the rescaled process converges weakly to νt as m,n → ∞, where νt satisfies the following
martingale problem:

Nt(f) = 〈f, νt〉 − 〈f, ν0〉 −
∫ t

0

〈Af, νz〉dz(5)

− wθρ
∫ t

0

{∫ 1

0

∫ 1

0

f(x)V (z, νz, y)Q(νz; dx, dy)

}
dz
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is a martingale with conditional quadratic variation

〈N(f)〉t = 2wθ

∫ t

0

[∫ 1

0

∫ 1

0

f(x)f(y)Q(ντ ; dx, dy)

]
dτ(6)

where

Af(x) = x(1− x)
[
d2

dx2
f(x)− σ d

dx
f(x)

]
V (t, ν, x) = x

Q(ν; dx, dy) = ν(dx)(δx(dy)− ν(dy))

and f ∈ C2([0, 1]).

The drift part of the martingale (5) comprises a second order partial differential operator
A and the centering term from the global jump dynamics (the expression in curly brackets).
The entire process is a Fleming-Viot process [9]. Fleming-Viot processes frequently arise
in models of population genetics (see [8] for a review). In these contexts, the variable
x can represent the geographical location of an individual, or as in the original paper of
Fleming and Viot [9], the genotype of an individual (where genotype is a continuous instead
of a discrete variable). To our knowledge, the specific form of the limiting Fleming-Viot
process above has not previously been studied. In particular, although infinite dimensional
stochastic processes have been applied to multilevel population dynamics of a single type
[5], this appears to be the first Fleming-Viot process for the evolution of two types under
opposing forces of selection at two population scales.

The dynamical properties of the deterministic partial differential equation (2) are the
focus of the next section. The proofs of weak convergence (Theorems 1 and 4) are deferred
to section 4.

3. Properties of the deterministic limit

We begin with a closed-form expression for solutions to the deterministic partial differential
equation (2).

Lemma 5. The solution to the deterministic partial differential equation (2) with initial
measure µ0 is given by

µt(dx) = (Gtµ0)(dx) = (µ0φ
−1
t )(dx) · wt(x)(7)

where

φ−1t (x) =
x

e−t + x(1− e−t)

wt(x) =
[
(e−t + x(1− e−t))et−

∫ t
0 h(z)dz

]λ
and h(t) satisfies h(t) = 〈x, µt〉

Remark 1: (µ0φ
−1
t )(dx) := µ0(φ

−1
t (dx)) captures the changes in the initial data that are

solely due to the flux term. This expression is also known as the push-forward measure of
µ0 under the dynamics of φ. As we will see in the proof, φt(x) is precisely the characteristic
curve for the spatial variable x and includes a normalizing constant. The multiplication by
wt(x) captures the changes in the initial data that are due to the forcing term in (2) and
includes a normalizing factor.
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Remark 2: Density-valued solutions are given by

ηt(x) = η0(φ
−1
t (x))∂xφ

−1
t (x) · wt(x)

= η0

(
x

e−t+x(1−e−t)

)
[e−t + x(1− e−t)]λ−2e(λ−1)t−λ

∫ t
0 h(z)dz(8)

To see this, suppose µ0(dx) = η0(x)dx. Then for any test function f ,∫ 1

0

f(x)(µ0φ
−1
t )(dx) =

∫ 1

0

(f ◦ φt)(x)µ0(dx) =

∫ 1

0

f(y)η0(φ
−1
t (y))∂yφ

−1
t (y)dy

The first equality follows from the change-of-variable property of push-forward measures
and the second from a standard change of variables. The limits of integration do not change
because 0 and 1 are fixed points of both φt and φ−1t .

Proof of Lemma 5. We apply the method of characteristics (see for example [14]) to obtain a
formula for a density-valued solution. We then prove that the weak, measure-valued analog
of this solution satisfies (2). Consider the following modification of (3):

∂
∂t
ξ(t, x) = ∂

∂x
[x(1− x)ξ(t, x)] + λξ(t, x) [x− h(t)](9)

where h(t) is a general function in time and ξ0 ∈ C1([0, 1]). Note that when h(t) =∫ 1

0
yξ(t, y)dy, this differential equation is equivalent to (3). To be clear about which equation

we are solving, we use ξ(t, x) to denote solutions when h(t) is unspecified.
Rewriting (9):(

∂
∂t
ξ, ∂

∂x
ξ,−1

)
· (1,−x(1− x), [(1− 2x) + λ(x− h(t))] ξ) = 0

The second vector is therefore tangent to the solution surface and gives the rates of change
for the t, x, and ξ coordinates. Let the initial condition be parameterized as (0, x, ξ0(x)) =
(0, p, ξ0(p)). The t, x, and ξ coordinates change according to the characteristic equations

dt
dq

= 1 t(0, p) = 0

dx
dq

= −x(1− x) x(0, p) = p

dξ
dq

= [(1− 2x(q, p)) + λ(x(q, p)− h(t(q, p)))] ξ ξ(0, p) = ξ0(p)

where q is the parameter as we move through the solutions in time. The first two ordinary
differential equations have solutions

t(q, p) = q

x(q, p) =
p

p− (p− 1)eq
=: φq(p)(10)

From this, the third differential equation can be solved exactly:

dξ

dq
=
[
1 + p

p−(p−1)eq (λ− 2)− λh(q)
]
ξ

ξ(q, p) = ξ0(p) exp

{
q − λ

∫ q

0

h(z)dz + (λ− 2)

∫ q

0

p

p− (p− 1)ez
dz

}
= ξ0(p)e

q−λ
∫ q
0 h(z)dz

[
p(e−q − 1) + 1

](−λ+2)



SCALING LIMITS OF A MODEL FOR SELECTION AT TWO SCALES 9

Next, make the substitutions q = t and p = φ−1t (x) from (10) to obtain ξ in terms of t and
x:

ξ(t, x) = (ξ0 ◦ φ−1t )(x)
[
e−t + x(1− e−t)

](λ−2)
e(λ−1)t−λ

∫ t
0 h(z)dz

= (ξ0 ◦ φ−1t )(x)∂xφ
−1
t (x) · wt(x)(11)

If h(t) satisfies h(t) =
∫ 1

0
yξ(t, y)dy, then by definition, ξ(t, x) solves the partial differential

equation (3). Conversely, if ξ(t, x) solves the partial differential equation (3), it also solves

the differential equation (9) with h(t) =
∫ 1

0
yξ(t, y)dy. Therefore this above expression, along

with the condition h(t) =
∫ 1

0
yξ(t, y)dy, are equivalent to solutions of (3).

To extend this result to measures, suppose we have a strong solution ηt(x) with initial
condition η0:

ηt(x) = (η0 ◦ φ−1t )(x)∂xφ
−1
t (x) · wt(x)

Using a similar calculation as that in Remark 2, the measure µt(dx) corresponding to ηt(x)
is given by

µt(dx) = (µ0φ
−1
t )(dx) · wt(x)

It remains to check that this satisfies the weak deterministic partial differential equation (2),
with h(t) = 〈x, µt〉. The left hand side of the equation is

d
dt
〈f, µt〉 = d

dt

∫ 1

0

f(x)wt(x)(µ0φ
−1
t )(dx) = d

dt

∫ 1

0

f(φt(x))wt(φt(x))µ0(dx)

Differentiating under the integral sign, expanding out the expressions for ∂tφt and ∂t(wt(φt(x)),
and applying change of variables for push-forward measures again, we obtain

d
dt
〈f, µt〉 = −

∫ 1

0

x(1− x)f ′(x)wt(x)(µ0φ
−1
t )(dx) + λ

∫ 1

0

[x− h(t)] f(x)wt(x)(µ0φ
−1
t )(dx)

This matches right hand side of the weak deterministic partial differential equation (2). �

In practice, the condition h(t) = 〈x, µt〉 is difficult to use. The following provides an
equivalent and simpler condition.

Lemma 6 (Conservation of measure condition). Suppose ξ is a weak measure-valued solution

to the deterministic partial differential equation (9) with initial condition
∫ 1

0
ξ0(dx) = 1.

Then

h(t) =

∫ 1

0

yξ(t, dy) if and only if

∫ 1

0

ξ(t, dy) = 1 ∀ t > 0

Proof. (⇒ direction) Suppose h(t) =
∫ 1

0
yξ(t, dy). Then ξ is a weak measure-valued solution

to (2). Taking the test function f ≡ 1, we obtain

d
dt
〈1, ξ〉 = 0 + λ[〈x, ξ〉 − 〈1, ξ〉〈x, ξ〉] = 0

Thus, if the initial data has total measure 1, 〈1, ξ〉 remains constant at 1 for all t ≥ 0.

(⇐ direction) Suppose
∫ 1

0
ξ(t, dx) = 1 for all t > 0. Again take the test function f ≡ 1

but this time with unspecified h(t):

0 = d
dt
〈1, ξ〉 = 0 + λ[〈x, ξ〉 − 〈1, ξ〉h(t)] = λ[〈x, ξ〉 − h(t)].

For this to hold, we must have h(t) =
∫ 1

0
xξ(t, dx). �
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The above lemmas imply that solutions µt(dx) to (2) can be obtained by using formula
(7) from Lemma 5 and imposing the conservation of measure condition 〈1, µt〉 ≡ 1 from
Lemma 6. We illustrate this with some examples of exactly solvable solutions for special
choices of initial data. We will see that the long time behavior of the examples is consistent
with results stated in Theorem 3.

Example 3. Initial measure concentrated at x0 ∈ [0, 1], i.e. µ0 = δx0
Using formula (7),∫

f(x)µt(dx) =

∫
f(x)wt(x)δx0(φ

−1
t (dx)) = f(φt(x0))wt(φt(x0))

=

∫
f(x)wt(x)δφt(x0)(dx)

Thus µt(dx) = wt(x)δφt(x0)(dx). Imposing the conservation of measure condition gives
µt(dx) = δφt(x0)(dx). In other words, an initial delta measure at x0 moves as a delta measure
along the x axis with position given by φt(x0), the solution to the negative logistic equation
with initial position x0.

Example 4. Initial uniform density: η0(x) = 1, i.e µ0(dx) = dx
Using formula (8),

ηt(x) = e(λ−1)t−λ
∫ t
0 h(z)dz

[
e−t + x(1− e−t)

](λ−2)
Imposing conservation of measure:

e(λ−1)t−λ
∫ t
0 h(z)dz =

[∫ 1

0

[
e−t + x(1− e−t)

](λ−2)
dx

]−1

=


(λ− 1)(1− e−t)

1− e−(λ−1)t
if λ 6= 1

1− e−t

t
if λ = 1

Thus,

ηt(x) =


(λ− 1)(1− e−t)

1− e−(λ−1)t
[
e−t + x(1− e−t)

](λ−2)
if λ 6= 1

1− e−t

t

[
e−t + x(1− e−t)

](λ−2)
if λ = 1

Note that η0 ≡ 1 corresponds to an initial condition satisfying the hypothesis of Theorem 3
with α = 1. As predicted when λ > 1, we obtain η(t, x) → (λ − 1)xλ−2 = Beta(λ − 1, 1) as
t→∞.

The following is an example with α > 1.

Example 5. If η0(x) = 2(1 − x), i.e. µ0([1 − x, 1]) = x2, then the corresponding α from
Theorem 3 is α = 2.
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Using formula (8)

ηt(x) = 2e(λ−2)t−λ
∫ t
0 h(z)dz(1− x)

[
e−t + x(1− e−t)

](λ−3)
Imposing the condition in Lemma 6 to solve for the h(z) term

e(λ−2)t−λ
∫ t
0 h(z)dz =

[
2

∫ 1

0

(1− x)
[
e−t + x(1− e−t)

](λ−3)
dx

]−1
=

 (λ−2)(1−e−t)
2

[
1

(λ−1)(1−e−t) −
e−(λ−1)t

(λ−1)(1−e−t) − e
−(λ−2)t

]−1
if λ 6= 2

(1−e−t)2
2te−t

if λ = 2

As predicted by Theorem 3 for λ > 2 = α,

ηt(x)→ 1
2
(λ− 2)(λ− 1)(1− x)xλ−3 = Beta(λ− 2, 2)

as t→∞.

Example 6. η0(x) = 1
c
· 1[0,c](x) with c < 1.

Using formula (8)

ηt(x) = 1
c
1{x ≤ φt(c)}wt(x)∂xφ

−1
t (x)

Since φt(c) = ce−t

1−c+ce−t → 0 as t → ∞, ηt(x) → 0 for any x > 0. Since η must have total
mass 1, it follows that regardless of the value of λ, ηt(x)dx → δ0(dx) for any c < 1. This

can also be seen by applying Theorem 3 and noting that µ0([1− c, 1]) =
∫ 1

1−c η0(x)dx = 0.

We end these examples with solutions for µ0 that are mixtures of delta measures and
densities. First, note that it is straightforward to extend Example 3 to the case where
µ0(dx) =

∑
aiδxi(dx) is a linear combination of delta measures, ai > 0 for all i. Applying

(7), we obtain

µ(t, dx) =
∑
i

aiwt(x)δφt(xi)(dx) =
∑
i

ai(t)δxi(t)(dx)

where xi(t) = φt(xi) and ai(t) = aiwt(x)|x=xi(t). Our earlier system of equations (4) is
obtained from this and the definitions of φt(x) and wt(x).

Second, we consider a combination of a delta measure and a density

µ0(dx) = aδx0(dx) + (1− a)v0(x)dx

Notice that the formula for the solution (7) at first seems linear in the initial condition:∫
f(x)µt(dx) =

∫
f(x)(Gtµ0)(dx)

=

∫
f(x)wt(x)[aδφt(x0)(dx) + (1− a)v0(φ

−1
t (x))∂xφ

−1
t (x)dx]

=

∫
f(x)[a(Gtδx0)(dx) + (1− a)(Gtv0)(dx)]

This gives (Gtµ0)(dx) = a(Gtδx0)(dx)+(1−a)(Gtv0)(dx). However, this notation is mislead-
ing because implicit in the Gt operator is the function h(t), the mean of the overall process
over time. Here, h(t) involves both the delta measure and the density. The solution operator
Gt is therefore not linear for this reason.
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Nevertheless, we can still use this formula to obtain expressions for solutions. We illustrate
this with a concrete example.

Example 7. Take x0 = 0 and v0(x) the density function for Beta(λ− α, α) with α ∈ (0, λ).
Using the solution formula and direct calculation, we obtain

µt(dx) = awt(0)δ0(dx) + (1− a)wt(x)(v0 ◦ φ−1t )(x)∂xφ
−1
t (x)dx

= e−λ
∫ t
0 h(z)dz)

{
aδ0(dx) + (1− a)e(λ−α)tv0(x)dx

}
Note in particular that µt remains a linear combination of δ0 and the Beta distribution. The
Beta distribution ultimately dominates because λ > α.

We now use Lemma 5 to show that Beta distributions, δ0, and δ1 are fixed points for the
deterministic partial differential equation and thus provide a proof of Lemma 2 announced
earlier in this note.

Proof of Lemma 2. Note that we could prove this lemma by substituting δ0, δ1, and the
Beta distribution into the deterministic partial differential equation (2) and showing the
right-hand side equals zero. Instead, we will show that these distribution are fixed points of
the solution operator. Let v be the density of the Beta distribution,

v(x) =
1

B(λ− α, α)
xλ−α−1(1− x)α−1.

The mean of v is λ−α
λ

. Using (8)

(Gtv)(x) = v
(

x
e−t+x(1−e−t)

)
[e−t + x(1− e−t)]λ−2e(λ−1)t−(λ−α)t = v(x)

v is therefore a fixed point of the solution operator and hence is a fixed point of the deter-
ministic partial differential equation.

For δ0 and δ1, we use Example 3 above to obtain (Gtδx0)(dx) = δφt(x0)(dx). Since x0 = 0
and x0 = 1 are fixed points of φt, it follows that δ0 and δ1 are fixed points of Gt. �

We now prove when the fixed points are stable. We begin with a lemma which gives more
general conditions than those given in Theorem 3 for the delta measure at zero to attract a
given initial condition.

Lemma 7. If for some α ≥ λ > 0,

lim
x→0

x−αµ0([1− x, 1]) <∞

then µt → δ0 as t → ∞. In particular, this condition holds if µ0([1 − ε, 1]) = 0 for some
ε > 0.

To prove this and subsequent results, we will need the following technical lemma.

Lemma 8. Setting h(t) = 〈x, µt〉, the following two implications hold:∫ ∞
0

h(t) dt <∞ =⇒ h(t)→ 0 as t→∞ .∫ ∞
0

[
1− h(t)

]
dt <∞ =⇒ h(t)→ 1 as t→∞ .



SCALING LIMITS OF A MODEL FOR SELECTION AT TWO SCALES 13

Proof of Lemma 8. Since h(t) ≥ 0 and 1− h(t) ≥ 0, the only obstruction to the implication
is that h(t) (or 1 − h(t)) could have ever shorter and shorter intervals were they return to
an order one value before returning to a value close to zero. This would require h(t) to have
unbounded derivatives. However this is not possible since

dh

dt
(t) = −

(
h− 〈x2, µt〉

)
+ λ
(
〈x2, µt〉 − h2

)
from which one easily see that −1 ≤ dh

dt
(t) ≤ λ since 0 ≤ h − 〈x2, µt〉 ≤ 1 and 0 ≤

〈x2, µt〉 − h2 ≤ 1. �

Proof of Lemma 7. As usual let h(t) = 〈x, µt〉. We begin by observing that if∫ ∞
0

h(t)dt <∞

then h(t)→ 0 as t→∞ by Lemma 8 and µt → δ0 as we wish to prove. Thus, we henceforth
assume that

∫∞
0
h(t)dt = ∞. Under this assumption, we will show that for any continuous

function f ∫ 1

0

f(x)µt(dx)→ f(0) as t→∞ .

Since f is continuous, given any ε > 0, there exists a δ > 0 so that |f(x)−f(0)| < ε whenever
x ≤ δ. Hence

(12)
∣∣∣ ∫ 1

0

f(x)µt(dx)− f(0)
∣∣∣ ≤ ∫ 1

0

|f(x)− f(0)|µt(dx) ≤ ε+

∫ 1

δ

|f(x)− f(0)|µt(dx)

Now setting∫ 1

δ

|f(x)− f(0)|µt(dx) =

∫ 1

φ−1
t (δ)

|(f ◦ φt)(x)− f(0)| (wt ◦ φt)(x)µ0(dx)

≤ 2‖f‖∞
∫ 1

φ−1
t (δ)

(wt ◦ φt)(y)µ0(dy).

Since for all y ∈ [φ−1t (δ), 1] and t > 0, we have

(wt ◦ φt)(y) ≤ eλt−λ
∫ t
0 h(s)ds

we see that ∫ 1

δ

|f(x)− f(0)|µt(dx) ≤ 2‖f‖∞eλt−λ
∫ t
0 h(s)dsµ0([φ

−1
t (δ), 1]) .

Now using the assumptions on µ0 and that φ−1t (δ) ≥ 1−De−t for some D > 0 and all t > 0,
one has that

eλt−λ
∫ t
0 h(s)dsµ0([φ

−1
t (δ), 1]) ≤ D̂e−(α−λ)t−λ

∫ t
0 h(s)ds

for some constant D̂ and all t > 0. Since α ≥ λ and
∫∞
0
h(s)ds = ∞, this bound converges

to zero as t→∞ and the proof is complete as the ε in (12) was arbitrary. �
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Proof of Theorem 3. We start with the setting when µ0({1}) > 0 and begin by writing
µt(dx) = atδ1(dx) + (1 − at)νt(dx) for some time dependent process at ∈ [0, 1] with a0 > 0
and some probability measure valued process νt(dx). As usual we define h(t) = 〈x, µt〉 and
using the representation given in (7), one sees that at solves

dat
dt

= λat
(
1− h(t)

)
=⇒ at = a0 exp

(
λ

∫ t

0

[1− h(s)]ds
)
.

Since 1 − h(t) ≥ 0, we know that
∫ t
0
[1 − h(s)]ds converges as t → ∞. If it converges to ∞

then at also converges to ∞ since a0 > 0. However this is impossible since at ∈ [0, 1] for all

t ≥ 0. Thus, we conclude that
∫ t
0
[1 − h(s)]ds < ∞. Then Lemma 8 implies that h(t) → 1

which in turn implies that µt → δ1 as t→∞.
We know turn to the setting when x−αµ0([1 − x, 1]) → C > 0 as x → 0. The case when

λ ≤ α is already handled by Lemma 7 leaving only the case when λ > α > 0 to be proven.
For x ∈ [0, 1], define U(x) = µ0([0, x]). Since µ0 is a probability measure we know that U
has finite variation and is regular in the sense that both the right limit U(x+) and the left
limit U(x−) exist, where U(x±) = limU(y) as y →± x. At the extreme points, only the limit
obtained by staying in [0, 1] is defined.

Now for any smooth function f of [0, 1], we have from (7) that∫ 1

0

f(x)µt(dx) = Zt

∫ 1

0

f(x)gt(x)(µ0φ
−1
t )(dx) = Zt

∫ 1

0

[(fgt) ◦ φt](x)µ0(dx)

where wt(x) has been written as the product of gt(x) = (e−t + x(1 − e−t))λ and Zt some
positive, time dependent normalizing constant. It is enough to show that for some time
positive, dependent constant Kt,

(13) Kt

∫ 1

0

[(fgt) ◦ φt](x)µ0(dx)→
∫ 1

0

f(x)xλ−α−1(1− x)α−1dx as t→∞ .

Since x 7→ f(x)gt(x) is continuous on [0, 1], even if U(x) has discontinuities the integration
by parts formula for Lebesgue-Stieltjes integrals produces∫ 1

0

[(fgt) ◦ φt](x)µ0(dx) = (fgtU)(1−)− (fgtU)(0+)−
∫ 1

0

∂x[(fgt) ◦ φt](x)U(x) dx

= [fgt(U − 1)](1−) + [fgt(1− U)](0+) +

∫ 1

0

∂x[(fgt) ◦ φt](x) [1− U ](x) dx .

Here we have used that φt is continuous with φt(1) = 1 and φt(0) = 0.
First observe that 1 − U(1−) = 0 since µ0([1 − x, 1]) → 0 as x → 0 by assumption and

that gt(0
+) = e−λt. Hence

(14) [fgt(1− U)](1−) + [fgt(U − 1)](0+) = [U(0+)− 1]f(0)e−λt.

Now turning to the integral term, applying the chain rule and changing variables to y = φt(x)
produces∫ 1

0

∂x[(fgt) ◦ φt](x) [1− U ](x) dx =

∫ 1

0

[∂x(fgt) ◦ φt](x) [1− U ](x) (∂xφt)(x) dx

=

∫ 1

0

[∂x(fgt)](y) [(1− U) ◦ φ−1t ](y)dy



SCALING LIMITS OF A MODEL FOR SELECTION AT TWO SCALES 15

For any fixed x ∈ (0, 1) by direct calculation and use of the assumption on µ0, one sees that

∂x(fgt)(x)→ ∂x(x
λf)(x)

eαt(1− U(φ−1t (x))) = eαtµ0([φ
−1
t (x), 1])→ C

(
1−x
x

)α
}

as t→∞ .

Combining these facts with (14) and the fact that e−(λ−α)t → 0 as t → ∞ since λ > α
produces

eαt
∫ 1

0

[(fgt) ◦ φt](x)µ0(dx)→ C

∫ 1

0

∂x(x
λf)(x)

(1− x
x

)α
dx as t→∞ .

for some new positive constant C. Now since integration by parts implies that

1

α

∫ 1

0

∂x(x
λf)(x)

(1− x
x

)α
dx =

∫ 1

0

f(x)xλ−α−1(1− x)α−1dx

the last part of the proof is complete. �

4. Proofs of weak convergence

The proofs of Theorems 1 and 4 follow a standard procedure [11, 10, 3]. Both proofs
require: (i) tightness of the sequence of stochastic processes – which implies a subsequential
limit, and (ii) uniqueness of this limit. For the tightness of {µm,nt }m,n on D([0, T ],P([0, 1])),
it is sufficient, by Theorem 14.26 in Kallenberg [12] to show that {〈f, µm,nt 〉} is tight on
D([0, T ],R) for any test function f from a countably dense subset of continuous, positive
functions on [0, 1]. For the uniqueness of solutions to the partial differential equation in
Theorem 1, we apply Gronwall’s inequality. For uniqueness of solutions to the martingale
problem in Theorem 4, we apply a Girsanov theorem by Dawson [4].

4.1. Semimartingale property of multilevel selection process. It will be useful for
what follows to treat 〈f, µm,nt 〉 as a semimartingale. Below, D+

x f is the first order difference
quotient of f taken from the right, D−x f is the first order difference quotient of f taken from
the left, and Dxxf is the second order difference quotient.

Lemma 9. For f ∈ C2([0, 1]) and µm,nt with generator Lm,n defined in (1),

〈f, µm,nt 〉 − 〈f, µ
m,n
0 〉 = Am,nt (f) +Mm,n

t (f)(15)

where Am,nt (f) is a process of finite variation, Am,nt (f) :=
∫ t
0
am,nz (f)dz, with

am,nt (f) =
∑
i

µm,nt ( i
n
) i
n
(1− i

n
)
[
1
n
Dxxf( i

n
)− sD−x f( i

n
)
]

(16)

+ wr

{∑
j

µm,nt ( j
n
) j
n
f( j

n
)−

∑
i

µm,nt ( i
n
)f( i

n
)
∑
j

µm,nt ( j
n
) j
n

}
and Mm,n

t (f) is a càdlàg martingale with (conditional) quadratic variation

〈Mm,n(f)〉t = 1
m

∫ t

0

{
1
n

∑
i

µm,nz ( i
n
) i
n
(1− i

n
)
[(
D+
x f( i

n
)
)2

+ (1 + s)
(
D−x f( i

n
)
)2]

+w
∑
i,j

µm,nz ( i
n
)µm,nz ( j

n
)(1 + r j

n
)(f( i

n
)− f( j

n
))2

}
dz(17)
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Proof. By Dynkin’s formula (see, for example, Lemma 17.21 in [12]),

ψ(µm,nt )− ψ(µm,n0 )−
∫ t

0

(Lm,nψ)(µm,ns )ds

where ψ ∈ dom(Lm,n), is a càdlàg martingale. In particular, this is true for

ψ(µm,nt ) = F (〈f, µm,nt 〉)

where f ∈ C2([0, 1]) and F : R→ R. Setting F (x) = x and plugging this f into (1):

(Lm,n〈f, ·〉)(v) =
∑
i

v( i
n
) i
n
(1− i

n
)
[
1
n
Dxxf( i

n
)− sD−x f( i

n
)
]

+ wr

{∑
j

v( j
n
) j
n
f( j

n
)−

∑
i

v( i
n
)f( i

n
)
∑
j

v( j
n
) j
n

}
Thus,

〈f, µm,nt 〉 − 〈f, µ
m,n
0 〉 −

∫ t

0

am,nz (f)dz = Mm,n
t (f)(18)

where Mm,n
t (f) is some martingale and am,nt (f) = (Lm,n〈f, ·〉)(µm,nt ). At(f) is a process of

finite variation because for a given f , am,nt (f) is uniformly bounded in t.
Next, setting F (x) = x2 and plugging this ψ into (1):

(Lm,n〈f, ·〉2)(v) =2〈f, v〉am,nt (f) + 1
mn

∑
i

v( i
n
) i
n
(1− i

n
)
[(
D+
x f( i

n
)
)2

+ (1 + s)
(
D−x f( i

n
)
)2]

+ w
m

∑
i,j

v( i
n
)v( j

n
)(1 + r j

n
)(f( i

n
)− f( j

n
))2

Thus,

〈f, µm,nt 〉2 − 〈f, µ
m,n
0 〉2 −

∫ t

0

cm,nz (f)dz = martingale(19)

where cm,nt (f) = (Lm,n〈f, ·〉2)(µm,nt ).
Alternatively, take Yt = 〈f, µm,nt 〉 and apply Ito’s formula (for example, p78 in [15]) to Y 2

t

to obtain

〈f, µm,nt 〉2 − 〈f, µ
m,n
0 〉2 =2

∫ t

0

〈f, µz〉am,nz (f)dz + [Mm,n(f)]t + martingale(20)

where [Mm,n(f)]t is the quadratic variation process of Mm,n
t . Since 〈Mm,n(f)〉t is the com-

pensator of [Mm,n(f)]t,

[Mm,n(f)]t − 〈Mm,n(f)〉t
is a martingale. Thus,

〈f, µm,nt 〉2 − 〈f, µ
m,n
0 〉2 − 2

∫ t

0

〈f, µm,nz 〉am,nz (f)dz − 〈Mm,n(f)〉t = martingale(21)

The compensator 〈Mm,n(f)〉t is a predictable process of finite variation (see p118 in[15]).
By the Doob-Meyer inequality (p103 in [15]), the martingale in (21) is the same as the
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martingale in (19) . Equating these martingale parts we obtain

2

∫ t

0

〈f, µm,nz 〉am,nz (f)dz + 〈Mm,n(f)〉t =

∫ t

0

cm,nz (f)dz .(22)

Substituting in the expressions for am,nz and cm,nz then gives the explicit expression for the
conditional quadratic variation (17) in the statement of the lemma. �

4.2. Proof of deterministic limit. To prove Theorem 1, we need the two following lem-
mas. The first uses criteria in Billingsley [2] to show tightness of the sequence of processes
〈f, µm,nt 〉. The second uses Gronwall’s inequality to show uniqueness of solutions to the
limiting system.

Lemma 10. The processes 〈f, µm,nt 〉, as a sequence in {(m,n)}, is tight for all positive-valued
test functions f ∈ C1([0, 1]).

Proof. By Theorem 13.2 in [2], a sequence of probability measures {Pn} on D([0, T ],R+) is
tight if and only if (i) for all η > 0, there exists a such that

Pn

(
x : sup

t∈[0,T ]
|x(t)| ≥ a

)
≤ η for n ≥ 1

and (ii) for all ε > 0 and η > 0, there exists δ ∈ (0, 1) and n0 such that

Pn(x : w′x(δ) ≥ ε) ≤ η for all n > n0

where w′ is the modulus of continuity for càdlàg processes and is defined

w′x(δ) := inf
{ti}

max
1≤i≤v

sup
s,t∈[ti−1,ti)

|x(s)− x(t)|

where {ti} is a partition of [0, T ] such that max
i
{ti − ti−1} ≤ δ and x ∈ D([0, T ],R+) is

distributed according to Pn.
First, note that since µm,nt is a probability measure, we have

|〈f, µm,nt 〉| ≤ ‖f‖∞
for all t, m, and n. Thus, (i) holds.

For (ii), we have by Markov’s inequality:

Pm,n(w′(δ) ≥ ε) ≤ 1
ε
Em,n(w′(δ))(23)

where w′(δ) := w′〈f,µm,nt 〉(δ). We will use the fact that 〈f, µm,nt 〉 is a pure jump process to

bound the right-hand side. The process 〈f, µm,nt 〉 has two types of jumps: nearest-neighbor,
and occupied-site jumps. Nearest-neighbor jumps occur at rate∑

i

mµm,nt ( i
n
)i(1− i

n
)(2 + s) ≤ mn

4
(2 + s)

and have magnitude

|〈f, µm,nt 〉 − 〈f, µ
m,n
t− 〉| =

∣∣∣〈f, µm,nt− + 1
m

(
δ i±1

n
− δ i

n

)〉
− 〈f, µm,nt− 〉

∣∣∣ ≤ 1
mn

max
i
|D−x f( i

n
)|

Occupied-site jumps occur at rate∑
i,j

mµm,nt ( i
n
)µm,nt ( j

n
)(1 + r j

n
) ≤ m(1 + r)
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and have magnitude

|〈f, µm,nt 〉 − 〈f, µ
m,n
t− 〉| =

∣∣∣〈f, µm,nt− + 1
m

(
δ j
n
− δ i

n

)〉
− 〈f, µm,nt− 〉

∣∣∣ ≤ 2
m
‖f‖∞

Putting this together,

Em,n(w′(δ)) ≤ Em,n[number of nearest-neighbor jumps in time δ] · 1
mn

max
i
|D−x f( i

n
)|

+ Em,n[number of occupied-site jumps in time δ] · 2 1
m
‖f‖∞

≤ mn
4

(2 + s)δ 1
mn

max
i
|D−x f( i

n
)|+m(1 + r)δ 2

m
‖f‖∞

=
{

2+s
4

max
i
|D−x f( i

n
)|+ 2(1 + r)‖f‖∞

}
δ

Because f ∈ C1([0, 1]), the expression in curly brackets is uniformly bounded by Cf , a
constant that depends on f but not on m nor n. Substituting the above into (23) we get
that for δ < εη

Cf
,

Pm,n(w′(δ) ≥ ε) ≤ η

for all m and n. Thus, both conditions for tightness are satisfied and 〈f, µm,nt 〉 is tight. �

Lemma 11. The integro-partial differential equation (2) in Theorem 1 has a unique solution.

Proof. Suppose µt satisfies (2). Fix t ≥ 0 and let ψt(x) be a function of time t and space x.
By the chain rule and the differential equation (2),

d
dt
〈ψt, µt〉 = d

dz
〈ψz, µt〉

∣∣
z=t

+ d
dz
〈ψt, µz〉

∣∣
z=t

= 〈 ∂
∂t
ψt, µt〉 − 〈sx(1− x)∂ψt

∂x
, µt〉+ wr [〈xψt, µt〉 − 〈ψt, µt〉〈x, µt〉]

〈ψt, µt〉 = 〈ψ0, µ0〉+

∫ t

0

〈 ∂
∂z
ψz(x) +Gψz(x), µz〉dz(24)

+ wr

∫ t

0

〈xψz, µz〉 − 〈ψz, µz〉〈x, µz〉dz

where Gf = −sx(1 − x) ∂
∂x
f . Let Pt be the semigroup operator associated with G. In fact,

using the method of characteristics (or Lemma 5 with λ = 0),

Ptf = f
(

xe−st

1−x+xe−st

)
(25)

Now, set ψz(x) = Pt−zf(x) for 0 ≤ z ≤ t, where f ∈ C1([0, 1]) is some test function.
Substituting this into (24), we have

〈P0f, µt〉 =〈Ptf, µ0〉+

∫ t

0

〈 ∂
∂z
Pt−zf(x) +GPt−zf(x), µz〉dz

+

∫ t

0

wr [〈xPt−zf, µz〉 − 〈Pt−zf, µz〉〈x, µz〉] dz

〈f, µt〉 =〈Ptf, µ0〉+

∫ t

0

wr [〈xPt−zf, µz〉 − 〈Pt−zf, µz〉〈x, µz〉] dz(26)

since ∂
∂z
Pt−zf = −GPt−zf . Thus, any µt that satisfies (2) also satisfies (26). We show that

(26) has a unique solution, which in turn implies that (2) has a unique solution.



SCALING LIMITS OF A MODEL FOR SELECTION AT TWO SCALES 19

Suppose µt and νt both satisfy (26), with µ0 = ν0. Let t ≥ 0.

‖µt − νt‖TV = sup
‖f‖∞≤1

〈f, µt〉 − 〈f, νt〉

= sup
‖f‖∞≤1

{∫ t

0

wr〈xPt−zf, µz − νz〉+ wr [〈x, µz〉〈Pt−zf, µz〉 − 〈x, νz〉〈Pt−zf, νz〉] dz
}

(27)

We can bound the first term in the integrand by

wr|〈xPt−zf, µz − νz〉| ≤ wr‖µz − νz‖TV
because ‖xPt−zf‖∞ ≤ ‖Pt−zf‖∞ ≤ ‖f‖∞ ≤ 1, where the first inequality follows from x ∈
[0, 1] and the second from (25). For the second term in the integrand of (27), add and
subtract 〈x, νz〉〈Pt−zf, µz〉:

wr
∣∣∣〈x, µz〉〈Pt−zf, µz〉 − 〈x, νz〉〈Pt−zf, νz〉∣∣∣ =wr

∣∣∣〈x, µz − νz〉〈Pt−zf, µz〉+ 〈x, νz〉〈Pt−zf, µz − νz〉
∣∣∣

≤wr (‖Pt−zf‖∞‖µz − νz‖TV + ‖µz − νz‖TV )

≤wr(‖f‖∞ + 1)‖µz − νz‖TV
again, the inequalities follow from x ∈ [0, 1], ‖Ptf‖∞ ≤ ‖f‖∞ and also that µz and νz are
probability measures. Substituting this back into (27),

‖µt − νt‖TV ≤
∫ t

0

3wr‖µz − νz‖TV dz

By Gronwall’s inequality, ‖µt − νt‖TV = 0, so we have uniqueness. �

Proof of Theorem 1. The uniqueness of the limit is given by Lemma 11 and the tightness of
the process by Lemma 10. It remains to show that {〈f, µm,nt 〉}m,n converges to the solution
of (2). Recall from Lemma 9 that

〈f, µm,nt 〉 − 〈f, µ
m,n
0 〉 = Am,nt (f) +Mm,n

t (f)

Since tightness implies relative compactness (Prohorov’s theorem), there exists a subsequence
of µm,nt that converges to a limit, call it µt. Thus, 〈f, µm,nt 〉 → 〈f, µt〉. We also have
〈f, µm,n0 〉 → 〈f, µ0〉 by assumption. In addition,

Am,nt (f) =

∫ t

0

{∑
i

µm,nz ( i
n
) i
n
(1− i

n
)
[
1
n
Dxxf( i

n
)− sD−x f( i

n
)
]

+ wr

[∑
j

µm,nz ( j
n
) j
n
f( j

n
)−

∑
i

µm,nz ( i
n
)f( i

n
)
∑
j

µm,nz ( j
n
) j
n

]}
dz

→
∫ t

0

{
〈−x(1− x)s df

dx
, µz〉+ wr [〈xf(x), µz〉 − 〈f(x), µz〉〈x, µz〉]

}
dz

=: At(f)

The factor of 1
m

in the quadratic variation (17) implies that Mm,n
t → 0 as m,n → ∞.

Therefore,
〈f, µt〉 − 〈f, µ0〉 = At(f)

or,
d
dt
〈f, µt〉 = 〈−x(1− x)s df

dx
, µt〉+ wr [〈xf(x), µt〉 − 〈f(x), µt〉〈x, µt〉]
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�

4.3. Proof of Fleming-Viot limit. The elementary proof for tightness in Theorem 1 does
not easily carry over for the case of Theorem 4. We thus use a criterion by Aldous [1] to
prove tightness for the martingale part of the stochastic process.

First, consider the semimartingale formulation of 〈f, µm,nt 〉 (15) with the rescaled param-

eters s = σ
n

and ρ = r
m

. Let Em,n
t (f) :=

∫ t
0
em,nz (f)dz and Nm,n

t (f) denote the drift and
martingale parts of 〈f, νm,nt 〉, the rescaled process. Then

Em,n
t (f) =

∫ t

0

∑
i

νm,nz ( i
n
) i
n
(1− i

n
)
[
Dxxf( i

n
)− σD−x f( i

n
)
]

(28)

+ wρ n
m

{∑
j

νnz ( j
n
) j
n
f( j

n
)−

∑
i

νnz ( i
n
)f( i

n
)
∑
j

νnz ( j
n
) j
n

}
dz

and

〈Nm,n(f)〉t =

∫ t

0

{
n
m2

∑
i

νm,nz ( i
n
) i
n
(1− i

n
)
[(
D+
x f( i

n
)
)2

+ (1 + σ
n
)
(
D−x f( i

n
)
)2]

(29)

+ w n
m

∑
i,j

νm,nz ( i
n
)νm,nt ( j

n
)(1 + ρ

m
j
n
)(f( i

n
)− f( j

n
))2

}
dz

Lemma 12. The processes 〈f, νm,nt 〉, as a sequence in {(m,n)}, is tight for all f ∈ C2([0, 1]).

Proof. Since 〈f, νm,nt 〉 = Em,n
t (f) + Nm,n

t (f), it suffices, by the triangle inequality applied
to Billingsley’s tightness criterion (Theorem 13.2 in [2]), to show tightness of Em,n(f) and
Nm,n(f) separately.

For the tightness of the finite variation term Em,n
t (f):

|em,nt (f)| ≤ 1
4

∑
i

νm,nz ( i
n
)
[∣∣Dxxf( i

n
)
∣∣+ σ

∣∣D−x f( i
n
)
∣∣]

+ wρ n
m

{∑
j

νnz ( j
n
) j
n
|f( j

n
)|+

∑
i

νnz ( i
n
)|f( i

n
)|
∑
j

νnz ( j
n
) j
n

}
For a given γ > 0, we can choose n and m sufficiently large such that n

m
∈ (θ − γ, θ + γ),

|Dxxf( i
n
)| ≤ ‖f ′′‖∞ + γ, and |D−x f( i

n
)| ≤ ‖f ′‖∞ + γ. We thus obtain

|em,nt (f)| ≤ 1
4

[‖f ′′‖∞ + γ + σ(‖f ′‖∞ + γ)] + 2wρ(θ + γ)‖f‖∞
There are only a finite number of m and n for which this condition is not satisfied. Taking
the maximum of the right-hand side of the above equation with the value of |em,nt (f)| for
such m and n, we obtain that for all m and n,

|em,nt (f)| ≤ Gf

and therefore
sup
t∈[0,T ]

|Em,n
t (f)| ≤ GfT

where Gf is a constant that depends on f . Using the same conditions for tightness as in
the proof of Theorem 1, condition (i) is satisfied because Em,n

t (f) is bounded uniformly in
t, m, and n. Condition (ii) is satisfied because |Em,n

t+δ − E
m,n
t | ≤ δGf for all t, m, and n and
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therefore we can always choose δ to be sufficiently small so that |Em,n
t+δ −E

m,n
t | ≤ ε for some

prescribed ε.
We will show tightness for the martingale part 〈Nm,n

t (f)〉t using Aldous’ tightness condition
(we use the result as stated in [7]). First, note that by equation (29),

〈Nm,n
t (f)〉t ≤ Jf t

for f ∈ C2([0, 1]), where Jf is a constant that depends on f . Thus for fixed t,

Pm,n(|Nm,n
t (f)| > a) ≤ 1

a
Em,n|Nm,n

t (f)|

≤ 1
a

(
Em,n(Nm,n

t (f))2
)1/2

= 1
a

(Em,n〈Nm,n
t (f)〉t)1/2 ≤

√
Jf t

a

Given ε > 0, choose a >

√
Jf t

ε
and we have that Nm,n

t (f) is tight for each t. Next, let τ be
a stopping time, bounded by T , and let ε > 0. For κ > 0,

Pm,n(|Nm,n
τ+κ(f)−Nm,n

τ (f)| ≥ ε) ≤ 1
ε
Em,n|Nm,n

τ+κ(f)−Nm,n
τ (f)|

Now (suppressing subscripts on expected value for clarity),

E|Nm,n
τ+κ(f)−Nm,n

τ (f)| ≤
[
E(Nm,n

τ+κ(f)−Nm,n
τ (f))2

]1/2
=
[
E(Nm,n

τ+κ(f)2 −Nm,n
τ (f)2 + 2Nm,n

τ (f)(Nm,n
τ (f)−Nm,n

τ+κ(f))
]1/2

= [E(〈Nm,n(f)〉τ+κ − 〈Nm,n(f)〉τ )]1/2

≤
√
Jfκ

Hence,

Pm,n(|Nm,n
τ+κ(f)−Nm,n

τ (f)| ≥ ε) ≤ 1
ε

√
Jfκ

By taking κ < ε4√
Jf

, we satisfy the conditions of Aldous’ stopping criterion.

�

Lemma 13. The martingale problem (5) and (6) has a unique solution.

Proof. The martingale problem with V (t, ν, x) = 0 corresponds to a neutral Fleming-Viot
with linear mutation operator. Its uniqueness has previously been established (see for exam-
ple [4]). To show uniqueness for nontrivial V , we use a Girsanov-type transform by Dawson
[4]. It suffices to check that

sup
t,µ,x
|V (t, µ, x)| ≤ V0 (a constant)(30)

In our case, V (t, µ, x) = x and since x ∈ [0, 1], the condition is satisfied and the martingale
problem has a unique solution. �

Proof of Theorem 4. The uniqueness of the limit is given by Lemma 13 and the tightness of
the process by Lemma 12. To see that the limit is the martingale problem stated in Theorem
4, note that for a fixed t,

Em,n
t (f) −→

∫ t

0

∫ 1

0

x(1− x)[ ∂
2

∂x2
f(x)− σ ∂

∂s
f(x)]νz(dx)

wρθ

{∫ 1

0

xf(x)νz(dx)−
∫ 1

0

f(x)νz(dx)

∫ 1

0

xνz(dx)

}
dz
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as n,m→∞ and

〈Nm,n(f)〉t −→
∫ t

0

wθ

∫ 1

0

∫ 1

0

(f(x)− f(y))2νz(dx)νz(dy)dz

Finally, notice that∫ 1

0

∫ 1

0

(f(x)− f(y))2νz(dx)νz(dy)

= 2

∫ 1

0

∫ 1

0

f(x)2νz(dx)νz(dy)− 2

∫ 1

0

∫ 1

0

f(x)f(y)νz(dx)νz(dy)

= 2

∫ 1

0

∫ 1

0

f(x)f(y)νz(dx)[δx(dy)− νz(dy)]

and∫ 1

0

xf(x)νz(dx) −
∫ 1

0

f(x)νz(dx)

∫ 1

0

xνz(dx) =

∫ 1

0

∫ 1

0

f(x)yνz(dx)[δx(dy) − νz(dx))]

satisfying the form of the martingale problem in the theorem. �
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